《点集拓扑学》第3章 §3.1 子空间
- 格式:doc
- 大小:125.00 KB
- 文档页数:6
点集拓扑学(教学大纲)General Topology课程编码:学分: 3 课程类别:专业方向课计划学时:其中讲课:实验或实践:0 上机:0适用专业:数学与应用数学专业推荐教材:熊金城,《点集拓扑讲义》(第三版),高等教育出版社,2003。
参考书目:1. J.R.曼克勒斯,《拓扑学基本教程》,科学出版社,1987。
2. 尤承业,《基础拓扑学讲义》,北京大学出版社,2006。
课程的教学目的与任务拓扑学是研究图形在同胚映射下的不变性质(即拓扑性质)的一门数学分科,其基本思想和处理方法对近代数学产生了深刻的影响,它与近世代数、泛函分析一起被称作数学的“新三基”;它的中心任务是研究拓扑不变性质,对拓扑空间按照同胚分类。
通过本课程的学习,使学生掌握点集拓扑的一些基本概念、基本理论、基本方法,掌握拓扑学研究问题的整体性、抽象性及高度概括性;培养学生的抽象思维能力、逻辑推理能力、理论联系实际分析问题解决问题的能力,提高学生的数学素养,为进一步学习、研究现代数学打好基础。
课程的基本要求1、使学生了解公理集合论的初步知识并将度量空间中熟悉的知识推广到一般的拓扑空间中去。
比如连续映射的概念。
2、掌握由已知拓扑空间构造新的拓扑空间的若干方法。
比如子空间的概念,有限乘积空间。
3、掌握几种重要的拓扑性质:可数性、分离性、紧致性、连通性等。
各章节授课内容、教学方法及学时分配建议(含课内实验)第一章:集合与映射建议学时:6[教学目的与要求] 了解朴素集合论和公理集合论的区别,了解选择函数与选择公理的内容;从关系的角度理解映射的概念。
[教学重点与难点] 选择公理及其等价形式。
[授课方法] 以课堂讲授为主,课堂讨论和课下自学为辅。
[授课内容]第一节集合论一、集合的基本运算二、公理集合论的相关内容第二节映射理论一、关系与映射的联系二、选择公理第二章:拓扑空间与连续映射建议学时:8[教学目的与要求]将连续函数的主要特征抽象出来用以定义拓扑空间之间的连续映射;将开区间的主要特征抽象出来用以定义拓扑空间中的开集。
《点集拓扑》课件一、教学内容本节课的教学内容来自于教材《数学分析》的第十章第二节,主要内容包括点集拓扑的基本概念、拓扑空间的定义及其性质、以及一些常见的拓扑空间。
具体内容包括:1. 点集拓扑的基本概念:邻域、开集、闭集、连通性等。
2. 拓扑空间的定义及其性质:拓扑空间是一个集合及其上的一组开放集的系统。
3. 常见的拓扑空间:欧几里得空间、度量空间、范数空间等。
二、教学目标1. 理解点集拓扑的基本概念,能够熟练运用拓扑空间的概念描述集合的性质。
2. 掌握拓扑空间的定义及其性质,能够判断给定的集合是否构成拓扑空间。
3. 熟悉常见的拓扑空间,能够理解不同拓扑空间之间的联系和区别。
三、教学难点与重点1. 教学难点:拓扑空间的定义及其性质,特别是连通性的理解。
2. 教学重点:点集拓扑的基本概念,以及常见拓扑空间的理解。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材《数学分析》、笔记本、文具。
五、教学过程1. 实践情景引入:通过生活中的实例,如房间内的家具布局,引出点集拓扑的基本概念。
2. 点集拓扑的基本概念:介绍邻域、开集、闭集、连通性等概念,并通过图形和实例进行解释。
3. 拓扑空间的定义及其性质:引导学生理解拓扑空间的定义,并通过实例说明拓扑空间的特点。
4. 常见的拓扑空间:介绍欧几里得空间、度量空间、范数空间等常见的拓扑空间,并通过图形和实例进行解释。
5. 课堂练习:给出一些具体的例子,让学生判断是否构成拓扑空间,以及识别给定的集合的拓扑性质。
六、板书设计1. 点集拓扑的基本概念:邻域、开集、闭集、连通性。
2. 拓扑空间的定义及其性质:拓扑空间是一个集合及其上的一组开放集的系统。
3. 常见的拓扑空间:欧几里得空间、度量空间、范数空间。
七、作业设计(1)集合R上的二元组(x,y)构成的集合。
(2)集合N上的自然数构成的集合。
答案:(1)构成拓扑空间,拓扑由所有形如(∞,a)∪(a,+∞)的开集构成。
河北师大点集拓扑第教案一、教学内容本节课选自《点集拓扑学》教材第三章,详细内容如下:1. 基本概念:拓扑、拓扑空间、开集、闭集、边界、内部和外部。
2. 拓扑性质:连续性、紧致性、连通性。
3. 拓扑空间中的基本定理:闭包、开覆盖、聚点、极限点。
二、教学目标1. 掌握拓扑空间的基本概念,了解开集、闭集、边界等概念。
2. 理解拓扑空间的性质,如连续性、紧致性、连通性。
3. 学会运用拓扑空间的基本定理,解决实际问题。
三、教学难点与重点1. 教学难点:拓扑空间的性质及其应用。
2. 教学重点:拓扑空间的基本概念、基本定理。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
五、教学过程1. 实践情景引入:通过生活中的实例,引导学生了解拓扑学在实际应用中的价值。
2. 例题讲解:讲解教材第三章相关例题,详细解释拓扑空间的概念、性质和基本定理。
3. 随堂练习:布置相关练习题,让学生巩固所学知识。
4. 小组讨论:分组讨论课后习题,培养学生合作学习能力。
六、板书设计1. 拓扑空间基本概念开集、闭集、边界内部、外部2. 拓扑性质连续性、紧致性、连通性3. 拓扑空间基本定理闭包、开覆盖、聚点、极限点七、作业设计1. 作业题目:(1)证明:一个集合是开集,当且仅当它的每一个点都是内部点。
(2)证明:一个集合是闭集,当且仅当它的每一个聚点都属于该集合。
(3)讨论:紧致性与连通性的关系。
2. 答案:见教材课后习题解答。
八、课后反思及拓展延伸1. 反思:本节课的教学效果,学生对拓扑空间概念、性质和定理的掌握程度。
2. 拓展延伸:引导学生深入研究拓扑学在其他数学分支中的应用,如微积分、代数拓扑等,提高学生学术素养。
同时,鼓励学生参加相关竞赛和学术活动,提高自身能力。
重点和难点解析:1. 教学难点与重点的确定。
2. 教学过程中的实践情景引入、例题讲解、随堂练习和小组讨论。
3. 作业设计中的题目和答案。
4. 课后反思及拓展延伸。
详细补充和说明:一、教学难点与重点1. 拓扑空间基本概念的教学:通过生动的实例,解释开集、闭集、边界等概念,使学生能够直观地理解这些抽象概念。
第三章 子空间,(有限)积空间,商空间3.1子空间1. 证明:(1) 实数空间R 同胚于任何一个开区间;(2) n 维欧氏空间nR 同胚于其中的任何一个开方体, 也同胚于其中的任何一个球形邻域.证明: (1) 设(),αβ是R 的非空开区间. 情形一: ,αβ为有限数. 令()()11:,,.h h x x xαβαβ→=+--R> 用数学分析的方法可验证是从(),αβ到R 的同胚. 情形二:α=-∞, β∈R . 取(),c αβ∈. 令()()(),;:,,,.x x c h h x x c c c x x αβββββ≤⎧⎪→=--⎨-+<<⎪-⎩R> 用数学分析的方法可验证是从(),αβ到R 的同胚.情形三: α∈R , β=+∞. 取(),c αβ∈. 令()(),;:,,,.c x c x c h h x xx x c ααβα-⎧+<≤⎪→=-⎨⎪>⎩R> 用数学分析的方法可验证是从(),αβ到R 的同胚. 情形四: (),αβ=R . 结论显然成立.(2) 设()1,i ii n αβ≤≤∏是nR 中的方体. 取从(),i i αβ到R 的同胚i h , 1i n ≤≤. 则11i n i n h h h h ≤≤=⨯⨯∏ 是从()1,i i i n αβ≤≤∏到n R 的同胚. (定理: :i i i f X Y →连续,1,,i n = ⇒1111:i n i i i n i n i n f f f f X Y ≤≤≤≤≤≤=⨯⨯→∏∏∏ 连续, 其中()()()()1111,,n n n n f f x x f x f x ⨯⨯= .)设()(){}2211,|n n i i i n K x x x c r ≤≤=∈-<∑ R 是n R 中的开球. 则()()()11112211:,,,,n n n n i i i n h K h x x x c x c r x c ≤≤→=--⎛⎫-- ⎪⎝⎭∑ R是从K 到nR 的同胚.2. 如果Y 是拓扑空间X 的一个开(闭)子集, 则Y 作为X 的子空间时特别称为X 的开(闭)子空间. 证明:(1) 如果Y 是拓扑空间X 的一个开子空间, 则A Y ⊂是Y 中的一个开集当且仅当A 是X 中的一个开集;(2) 如果Y 是拓扑空间X 的一个闭子空间, 则A Y ⊂是Y 中的一个闭集当且仅当A 是X 中的一个闭集.证明: (1) 设Y 是拓扑空间X 的开子空间, 即Y 是X 的开子集. 若A Y ⊂是Y 的开子集, 由定理3.1.5, (1), 存在X 的开子集U 使得A U Y =⋂. 因为Y 也是X 的开子集, 故A 是X 的开子集. 反之, 若A Y ⊂是X 的开子集, 则A A Y =⋂是Y 的开集.(2) 设Y 是拓扑空间X 的闭子空间, 即Y 是X 的闭子集. 若A Y ⊂是Y 的闭子集, 由定理3.1.5, (2), 存在X 的闭子集F 使得A F Y =⋂. 因为Y 也是X 的闭子集, 故A 是X 的闭子集. 反之, 若A Y ⊂是X 的闭子集, 则A A Y =⋂是Y 的闭集.3. 设Y 是拓扑空间X 的一个子空间, A Y ⊂. 证明:(1) int ()int ()int ()X Y X A A Y =⋂;(2) ()()Y X A A Y ∂⊂∂⋂, 并举例说明等式可以不成立.其中int X 和int Y 分别表示在拓扑空间X 和Y 中求集合的内部; X ∂和Y ∂分别表示在拓扑空间X 和Y 中求集合的边界.证明: (1) 设()int X a A ∈. 则存在X 的开集O 使得a O A Y ∈⊂⊂. 由于O O Y =⋂,O 是Y 的开集, 从而()i n t Y a A ∈. 由a O Y ∈⊂得()int X a Y ∈. 故int ()int ()Y X a A Y ∈⋂. 反之, 设int ()int ()Y X a A Y ∈⋂. 由int ()X a Y ∈, 存在X 的开集1O 使得1a O Y ∈⊂. 由int ()Y a A ∈, 存在X 的开集2O 使得2a O Y A∈⋂⊂. 令12O O O =⋂. 则O 为X 的开集且a O A ∈⊂, 即有i n t ()X a A ∈. 综上得int ()int ()int ()X Y X A A Y =⋂.(2) 设()Y b A ∈∂. 则b Y ∈. 假设()X b A ∉∂. 则存在b 在X 的开邻域O 使得O A ⊂或O X A ⊂-. 若O A ⊂, 则O Y ⋂是b 在Y 中的开邻域且O Y A ⋂⊂. 这与()Y b A ∈∂矛盾. 若O X A ⊂-, 则O Y ⋂是b 在Y 中的开邻域且O Y A ⋂⋂=∅. 亦与()Y b A ∈∂矛盾. 于是()X b A Y ∈∂⋂. 故()()Y X A A Y ∂⊂∂⋂.令{}1,2,3X =, 其上拓扑为{}{}{}{},1,2,3,1,2,3∅; {}1,2Y =; {}2A =. 可验证2()X A Y ∈∂⋂, 2()Y A ∉∂. ()()Y X A A Y ∂≠∂⋂.4. 设Y 是拓扑空间X 的一个子空间, y Y ∈.证明: (1) 如果S 是X 的一个子基, 则|Y S是Y 的一个子基;(2) 如果yW 是点y 在X 中的一个邻域子基, 则|y YW 是点y 在Y 中的一个邻域子基.证明: 设S 是X 的一个子基, 则12{|,1,2.}n i S S S S i n =⋂⋂∈= BS 为X的基, 则1212|{|,1,2,.}{|,|,1,2,.}Y n i n i i i Y S S S Y S i n T T T T S Y T i n =⋂⋂⋂⋂∈==⋂⋂=⋂∈= B S S为Y 的基, 所以|Y S 为Y 的子基.(2) 设yW是点y 在X 中的一个邻域子基, 则1212|{||,1,2,.}{||,1,2,.}y n i n i W W W Y W y i n W W W W y i n =⋂⋂⋂∈==⋂⋂∈= V WW为y Y ∈在Y 中的邻域基, 所以|y YW是点y 在Y 中的一个邻域子基.5. 设(,)X T和1(,)Y T 的两个拓扑空间,并且Y X ⊂.证明:(1) 如果1(,)Y T 是(,)X T的一个子空间, 则内射:i Y X →是一个连续映射;(2) 如果内射:i Y X →是一个连续映射, 则1|Y ⊃T T.因此我们说: 相对拓扑是使内射连续的最小的拓扑. 证明: 设U ∈T, 则11()i U U Y -=⋂∈T, 故内射:i Y X →是一个连续映射;(2) 对于任意的|Y V ∈T , 存在U ∈T, 使得V U Y =⋂, 因为:i Y X →是一个连续映射, 对于U ∈T, 11()i U U Y V -=⋂=∈T, 因此1|Y ⊃TT.6. 设X 和Y 是两个拓扑空间. 证明映射:f X Y →是一个连续映射当且仅当:()f X f X →是一个连续映射.(这两个映射为何使用同一个符号, 请参见正文中的有关说明.)证明: 设:f X Y →是一个连续映射, 因为()f X 为Y 的子空间, 设U 是()f X 的开集, 则存在Y 的开集B , 使得()U B f X =⋂.1111()(())()()f U f B f X f B X f B ----=⋂=⋂=是X的开集, 所以:()f X f X →是一个连续映射.反之, 设:()f X f X →是一个连续映射, 因为()f X 为Y 的子空间, 设V 是Y 的开集. ()V f X ⋂为()f X 的开集, 而11(())()f V f X f V --⋂=为X 中的开集, 所以:f X Y →是一个连续映射7. 设X 和Y 是两个拓扑空间, A 是X 中的一个子集. 证明: 如果映射:f X Y →连续, 则映射|:A f A Y →也连续.证明: 因为内设 :i A X →是一个连续映射, 映射:f X Y →连续, 所以|A f f i = 是一个连续映射.8. 设X 和Y 是两个拓扑空间, A 是X 中的一个子集. 证明:(1) 如果映射:f X Y →是一个同胚, 则映射|:()A f A f A →也是一个同胚; (2) 如果X 可嵌入Y , 则X 的任何一个子空间也可嵌入Y .证明: 因为映射:f X Y →是一个同胚, 则映射|:()A f A f A →是在上的一一映射, 由第6题知, 映射|:()A f A f A →连续. 下证1(|):()A f f A A -→连续, 设V 是A 的开集,则存在开集U X ⊂, 使得V U A =⋂, 则()1111((|))()|()()()()()()()A A f V f V f V f U A f U f A fU f A ----===⋂=⋂=⋂由于f 是连续映射, 因此 ()11()f U --是Y 中的开集, 11((|))()A f V --是()f A 的开集.(2) 是 (1)的直接推论.9. 在集合2R 中给定一个子集族{[,)[,)|,,,,,}a b c d a b c d a b c d =⨯∈<<R S .验证2R 有惟一的一个拓扑T 以S为它的一个子基. 令2{(,)|1}A x y x y =∈+=R .问A 作为拓扑空间2(,)R T的一个子空间时有什么特点? (提示:证明拓扑空间(,|)A A T是一个离散空间.)10. 证明: 如果X 是一个只含可数个点的拓扑空间, 则存在一个满的连续映射:f X →Q . 其中Q 是由所有有理数构成的实数空间R 的子空间.11. 回答一下问题并给出必要的证明: (1) 有限补空间何时可嵌入可数补空间? (2) 可数补空间何时可嵌入有限补空间?3.2 (有限)积空间1. 设(,)X ρ是一个度量空间, 证明映射:X X ρ⨯→R 是一个连续映射.证明: 任取R 得开子集V . ()1U V ρ-. 若U =∅, 则为X X ⨯的开子集. 设U ≠∅. 任取()12,x x U ∈. 则()12,r x x V ρ∈ . 取0ε>使得(),r r V εε-+⊂. 对任意()()()1212,,/2,/2y y B x B x εε∈⨯, 利用三角不等式可得()()()()()()()12112212121122,,,,,,,.x x x y x y y y x x x y x y ρρρρρρρ--≤≤++即有()12,r y y r ερε-<<+, ()12,y y V ρ∈. 这样()()12,/2,/2B x B x U εε⨯⊂,()12,x x 是U 的内点. U 是开集. 所以ρ连续.2. 设11(,)X ρ和22(,)X ρ是两个度量空间, 定义121212,:()()d d X X X X ⨯⨯⨯→R ,使得对于任何12(,)x x x =, 12(,)y y y =12X X ∈⨯,11112222111222(,)(,)(,);(,)max{(,),(,)}.d x y x y x y d x y x y x y ρρρρ=+=(1) 验证1d 和2d 都是12X X ⨯的度量;(2) 证明12X X ⨯的度量1d , 2d 和ρ是等价的度量, 其中ρ是积度量.证明: (1) 显然1d 和2d 都满足度量的条件(1), (2). 下面证明它们满足三角不等式. 设()()()12121212,,,,,x x x y y y z z z X X ===∈⨯.()()()()()()()()()()()()()()()111122211111122222211122211122211,,,,,,,,,,,,,.d x y x y x y x z z y x z z y x z x z z y z y d x z d z y ρρρρρρρρρρ=+≤+++=+++=+()()(){}()()()(){}()(){}()(){}()()211122211111122222211122211122222,max ,,,max ,,,,,max ,,,max ,,,,,.d x y x y x y x z z y x z z y x z x z z y z y d x z d z y ρρρρρρρρρρ=≤++≤+=+故, 1d , 2d 是12X X ⨯的度量. 其次证明证明1d , 2d 和ρ等价.()()()22,,2,.d x y x y d x y ρ≤≤(1)设U 为()12,X X ρ⨯中的开集, 即对任意x U ∈, 存在0ε>, 使(),B x U ρε⊂, 其中(),B x ρε表示度量空间()12,X X ρ⨯中x 的ε-邻域.由(1)右边不等式, ()2,/2d B x U ε⊂. 即见U 是()122,X X d ⨯中的开集.反之, 设U 是()122,X X d ⨯中的开集, 即对任意x U ∈, 存在0ε>, 使()2,d B x U ε⊂. 由(1)左边不等式, (),B x U ρε⊂. 即见U 是()12,X X ρ⨯中的开集.因此, ()122,X X d ⨯和()12,X X ρ⨯有相同的开集, 2d 和ρ等价. 又()()()1,,2,x y d x y x y ρρ≤≤(2)利用此不等式, 仿上可证()121,X X d ⨯和()12,X X ρ⨯有相同的开集. 从而1d 和ρ等价.图形略.3. 将习题2中的结论推广到n 个度量空间的积空间中去.设(,)i i X ρ为度量空间, 1,2,,i n = 定义:121212,:()()n n d d X X X X X X ⨯⨯⨯⨯⨯→ 使得对于任意的12(,,)n x x x x = 1212(,,)()n n y y y y X X X =∈⨯⨯ , 定义:11112222111222(,)(,)(,)max{(,),(,),(,)}n n n n n d x y x y x y d x y x y x y ρρρρρρ=++=则12,d d 是12n X X X ⨯⨯ 的度量, 12,,d d ρ是等价的度量.4. 设1X 和2X 是两个拓扑空间, 12X X ⨯是它们的积空间, 证明对于任何1A X ⊂和2B X ⊂有(1) A B A B ⨯=⨯; (2) ()oooA B A B ⨯=⨯;(3) ()(())(())A B A B A B ∂⨯=∂⨯⋃⨯∂.(注意, 尽管这里在三个不同的空间中求集合的闭包, 内部和边界使用的记号分别相同, 但并不至于发生混淆.)证明: 设12(,)x x x A B =∈⨯, 对于任意的开邻域12,,x x x U V U V ∈∈⨯∈U UU , 从而()()()()U V A B U A V B ⨯⋂⨯=⋂⨯⋂≠Φ即,,U A V B ⋂≠Φ⋂≠Φ 则12,,x A x B ∈∈ 故 12(,)x x x A B =∈⨯, A B A B ⨯⊂⨯. 反之, 设 12(,)x x x A B =∈⨯, 则12,x A x B ∈∈对于任意的开邻域xW ∈U, 存在12,x x U V ∈∈U U 使得W U=⨯, 由于,U A V B ⋂≠Φ⋂≠Φ, 则()()U A V B ⋂⨯⋂≠Φ 所以x A B ∈⨯, 故,A B A B ⨯⊂⨯ 因此.A B A B ⨯=⨯5. 设1X 和2X 是两个拓扑空间, 1A 和2A 分别是1X 和2X 的子空间, 证明12A A ⨯作为积空间的拓扑与12A A ⨯作为积空间12X X ⨯的子空间的拓扑两者相同.6. 设1X ,2X 和3X 都是拓扑空间, 证明: (1) 积空间12X X ⨯同胚于积空间21X X ⨯;(2) 积空间123()X X X ⨯⨯同胚于积空间123()X X X ⨯⨯; (3) 存在一个拓扑空间Y 使得积空间1X Y ⨯同胚于1X ;(4) 如果1X ≠∅并且积空间12X X ⨯同胚于积空间13X X ⨯, 则2X 同胚于3X . 7. 证明§3.1习题9中定义的拓扑空间2(,)R T 是两个实数下限拓扑空间l R (参见例2.6.1)的积空间.3.3 商空间1. 证明: 离散空间(平庸空间)的任何一个商空间都是离散空间(平庸空间).证明: 设X 离散, 即X 的任一子集为开集. 设R 是X 的任一等价关系. 任取/A X R ⊂. 则()1p A -为X 的开子集, A 为商空间/X R 中的开集. 由/A X R ⊂的任意性, /X R 为离散空间.设(),X T平庸, 即{},X =∅T. 设R 是X 的任一等价关系. 若A 是/X R 的非空真子集, 则()1pA -为X 的非空真子集, ()1p A -∉T, 从而RA ∉T. 所以{},/RX R =∅T. /X R 为平庸空间.2. 设X , Y 和Z 都是拓扑空间. 证明: 如果:f X Y →和:g Y Z →都是商映射, 则:g f X Z → 也是商映射.证明: 因为:f X Y →和:g Y Z →都是满射, 所以:g f X Z → 也是满射. 若W 是Z 的开子集, 由g f 的连续性, ()()1g f W - 是X 的开子集. 若WZ ⊂不是Z 的开子集,由:g Y Z →是商映射, ()1g W -不是Y 的开子集. 进而, 由:f X Y →是商映射,()()11f g W --不是X 的开子集, 即()()1g f W - 不是X 的开子集. 于是, W 是Z 的开子集当且仅当()()1g fW - 是X 的开子集. 所以,:g f X Z → 是商映射.3. 定义映射1:p S →R , 使得对于任何t ∈R 有1()(cos(2),sin(2))p t t t S ππ=∈. 证明p 是一个商映射. (提示:事实上p 是一个开映射.)证明. 令1S 的度量ρ为2R 上的通常度量诱导而来. 由于()()()()()()()()122212(),(cos 2cos 2sin 2sin 2)21cos 222|sin |2||,p x p y x y x y x y x y x y ρππππππππ=-+-=--=-≤-p 为连续映射. p 显然是满射. 由定理3.3.3, 为证p 是商映射, 只需验证p 是开映射.设U 为R 的开子集. 任取x U ∈. 存在01/2ε<<使得(),x x U εε-+⊂.()(),C p x x εε-+ . 对任意1w S C ∈-, 取y ∈R 满足()p y w =以及||1/x y ε≤-≤.则()()()(),2|sin |2sin p x p y x y ρππε=-≥.从而()()(),2s in B p x p U πε⊂, ()px 为()p U 的内点. 由x U ∈得任意性, ()p U 为1S 的开子集.4. 定义映射21:{(0,0)}p S -→R , 使得对于任何2(,){(0,0)}x y ∈-R 有1(,)p x y S =∈.证明p 是一个商映射.5. 设X 和Y 是两个拓扑空间,:f X Y →是一个商映射. 令2{(,)|()()}R x y X f x f y =∈=. 证明:(1) R 是X 中的一个等价关系; (2) Y 同胚于商空间/X R .6. 定义映射1:p I S →, 使得对于任何t I ∈有1()(cos(2),sin(2))p t t t S ππ=∈.其中, [0,1]I =. 证明:(1) p 是满的连续闭映射;(2) 例3.3.2中的商空间/I R 与1S 同胚.7. 举例说明商映射可以既不是开映射也不是闭映射.。
《点集拓扑学》教学大纲课程名称:《点集拓扑学》Point Set Topology课程性质:数学与应用数学专业必修课学时数:36教材:《点集拓扑讲义》熊金城编著.高等教育出版社, 2011年12月第4版.主要参考书:《点集拓扑学》徐森林编著,高等教育出版社,2007年7月第1版.《基础拓扑学》胡适耕编著,华中科技大学出版社,2007年8月第1版.《基础拓扑学讲义》尤承业编著,北京大学出版社,1997年11月第1版.《拓扑学》 [美] 芒克里斯编著,熊金城等翻译,机械工业出版社,2006年4月第1版. 授课方式:课堂讲授为主所属院系:数学学院数学与应用数学系课程基础:《数学分析》、《实变函数论》一、课程简介拓扑学是近代数学的三大基础之一,是研究抽象空间的理论的一门学科,它具有高度的概括性和抽象性.点集拓扑学产生于19世纪.G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果.1906年M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始.泛函分析的兴起,希尔伯特空间和巴拿赫空间的建立,促进了把点集当作空间来研究.数学分析研究的中心问题是极限,而收敛与连续又是极限的基本问题.为把收敛与连续的研究推广到一般集合上,需要在一般集合上描述与点或与集合“邻近”的概念.如何描述“邻近”,可以用“距离”,但“距离”与“邻近”并无必然的联系.1914年F.豪斯道夫开始考虑用“开集”来定义拓扑.对一个非空集合X,规定X的每点有一个包含此点的子集作成的子集族,满足一组开集公理(即仿照欧几里得空间邻域所具特性给出的一组性质).该子集族中的每个集合称为这点的一个邻域,这就给出了X的一个拓扑结构,X连同此拓扑结构称为一个拓扑空间.X的每点有邻域,故可研究一点的邻近,由此可仿照微积分的方法定义两个拓扑空间之间的连续映射的概念.若一个映射连续,且存在逆映射,逆映射也连续,则称此映射为同胚映射.具有同胚映射的两个拓扑空间称为同胚的(直观地说即两个空间相应的图形从一个可连续地形变为另一个).要证明两个空间同胚,只要找到它们之间的同胚映射即可.在欧几里得直线上,作为子空间,两个任意的闭区间同胚;任意两开区间同胚;半开半闭的区间[c,d)与[a,b)同胚;二维球面挖去一个点S2-p与欧几里得平面K2同胚.要证明两个拓扑空间不同胚,需证明它们之间不存在同胚映射.方法是找同胚不变量或拓扑不变性(即在同胚映射下保持不变的性质);第一个空间具有某同胚不变量,另一个空间不具有,则此二空间不同胚.一般拓扑学中常见的拓扑不变性有连通性、道路连通性、紧性、列紧性、分离性等.在历史上F.豪斯多夫提出了分离空间;弗雷歇看出了紧性与列紧性有密切关系;帕维尔·萨穆伊洛维奇·乌雷松对紧空间进行了系统研究,且在拓扑空间可否变量化的问题上作出了贡献;1937年H.嘉当引进了“滤子”的概念,能进一步刻画一致收敛,使收敛的更本质的属性揭示了出来;维数的问题是E.嘉当在研究皮亚诺曲线(一种可填满整个正方形的“曲线”)时提出的,1912年H.庞加莱给出定义,由乌雷松等人加以改进.二、教学目的点集拓扑近代数学的三大基础之一,是研究抽象空间的理论的一门学科.该课程从点集拓扑学的发展简史出发,深入浅出地阐述了点集拓扑学的基本理论、基本问题和基本方法.内容包括:点集拓扑基础、拓扑空间与连续映射、子空间、积空间、商空间及有关可数性的公理等.其中各部分主题鲜明,逻辑性强,通过对各部分内容由浅入深的讲解,使学生透彻地理解基本概念,努力将每个知识点与中学数学的知识及已经学过的大学其它数学课程(例如实变函数论)联系起来,便于学生比较理解,增加对知识背景的认识.三、教学要求本课程研究点集拓扑学的基本理论和基本方法。
第3章子空间(有限),积空间,商空间
在这一章中我们介绍通过已知的拓扑空间构造新的拓扑空间的三种惯用的办法.为了避免过早涉及某些逻辑上的难点,在§3.2中我们只讨论有限个拓扑空间的积空间,而将一般情形的研究留待以后去作.
§3.1子空间
本节重点:掌握度量子空间、拓扑空间子空间的概念,子空间的拓扑与大空间拓扑之间的关系以及子空间的闭集、邻域、基、导集、闭包与大空间相应子集之间的关系及表示法.
讨论拓扑空间的子空间目的在于对于拓扑空间中的一个给定的子集,按某种“自然的方式”赋予它一个拓扑使之成为一个拓扑空间,以便将它作为一个独立的对象进行考察.所谓“自然的方式”应当是什么样的方式?为回答这个问题,我们还是先从度量空间做起,以便得到必要的启发.
考虑一个度量空间和它的一个子集.欲将这个子集看作一个度量空间,必须要为它的每一对点规定距离.由于这个子集中的每一对点也是度量空间中的一对点,因而把它们作为子集中的点的距离就规定为它们作为度量空间中的点的距离当然是十分自然的.我们把上述想法归纳成定义:
定义3.1.1 设(X,ρ)是一个度量空间,Y是X的一个子集.因此,Y×Y X×X.显然:Y×Y→R是Y的一个度量(请自行验证).我们称Y的度量,是由X的度量ρ诱导出来的度量.度量空间(Y,ρ)称为度量空间(X,ρ)的一个度量子空间.
我们常说度量空间Y是度量空间X的一个度量子空间,意思就是指Y是X的一个子集,并且Y的度量是由X的度量诱导出来的.我们还常将一个度量空间的任何一个子集自动地认作一个度量子空间而不另行说明.例如我们经常讨论的:实数空间R中的各种区间(a,b),
[a,b],(a,b]等;n+1维欧氏空间中的
n维单位球面:
n维单位开、闭球体:
以及n维单位开、闭方体和等等,并且它们也自然被认作是拓扑空间(考虑相应的度量诱导出来的拓扑).
定理3.1.1 设Y是度量空间X的一个度量子空间.则Y的子集U是Y中的一个开集当且仅当存在一个X中的开集V使得U=V∩Y.
证明由于现在涉及两个度量空间,我们时时要小心可能产生的概念混淆.对于x∈X
(y∈Y),临时记度量空间X(Y)中以x(y)为中心以ε>0为半径的球形邻域为,.
首先指出:有=∩Y.
这是因为z∈X属于当且仅当z∈Y且(z,y)<ε.
现在设U∈,由于Y的所有球形邻域构成的族是Y的拓扑的一个基,U可以表示为Y 中的一族球形邻域,设为A的并.于是
设,∴U=V∩Y
另一方面,设U=V∩Y,其中V∈.如果y∈U,则有y∈Y和y∈V.,
有
按照定理3.1.1的启示,我们来逐步完成本节开始时所提出的任务.
定义3.1.2 设A是一个集族,Y是一个集合.集族{A∩Y|A∈A}称为集族A在集合Y
上的限制,记作
引理3.1.2 设Y是拓扑空间(X,T)的一个子集.则集族是Y的一个拓扑.证明我们验证满足拓扑定义中的三个条件:
(1)由于X∈T和Y=X∩Y,所以Y∈;由于∈T,=∩Y,所以∈
(2)如果A,B∈,即
于是
(3)如果是集族的一个子集族,即对于每一个A∈,
定义3.1.3 设Y是拓扑空间(X,T)的一个子集.Y的拓扑称为(相对于X的拓扑T而言的)相对拓扑;拓扑空间(Y,,)称为拓扑空间的一个(拓扑)子空间.
我们常说拓扑空间Y是拓扑空间X的一个子空间,意思就是指Y是X的一个子集,并且Y的拓扑就是对于X的拓扑而言的相对拓扑.此外,我们也常将拓扑空间的子集认为是一个子空间而不另行说明.
假设Y是度量空间X的一个子空间.现在有两个途径得到Y的拓扑:一是通过X的度量诱导出Y的度量,然后考虑Y的这个度量诱导出来的拓扑;另一是先将X考虑成一个拓扑空间,然后考虑Y的拓扑为X的拓扑在Y上引出来的相对拓扑.事实上定理3.1.1已经指出经由这两种途径得到的Y的两个拓扑是一样的.下面把这层意思重新叙述一遍.
定理3.1.3 设Y是度量空间X的一个度量子空间.则X与Y都考虑作为拓扑空间时Y是X的一个(拓扑)子空间.
定理3.1.4 设X,Y,Z都是拓扑空间.如果Y是X的一个子空间,Z是Y的一个子空间,则Z是X的一个子空间.
证明当Y是X的一个子空间,Z是Y的一个子空间时,我们有;并且若设T为X的拓扑时,Z的拓扑是()={U∩Y|U∈T}
={U∩Y∩Z|U∈T}={U∩Z|U∈T}=
因此Z是X的一个子空间.
定理3.1.5 设Y是拓扑空间X的一个子空间,y∈Y.则
(l)分别记T和为X和Y的拓扑,则=;
(2)分别记F和为X和Y的全体闭集构成的族,则=;
(3)分别记和y为点y在X和Y中的邻域系,则y= .
证明(1)即是子空间和相对拓扑的定义.
(2)成立是因为:
={(X-U)∩Y|U∈T}={Y-U∩Y|U∈T}=
(3)设则,因此存在使得V=∩Y,令
,由于并且
=V∪U=U
所以U∈.以上证明.类似的论证指出
定理3.1.6 设Y是拓扑空间X的一个子空间,A是Y的一个子集.则
(1)A在y中的导集是A在X中的导集与Y的交;
(2)A在Y中的闭包是A在X中的闭包与Y的交.
证明为证明这个定理,我们仍分别记A在X中的导集和闭包为d(A)和;而记A
在Y中的导集和闭包分别为(A)和(A).
(l)一方面,设y∈(A).则对于y在X中的任何一个邻域U,根据定理3.1.5,U∩Y是y在Y中的一个邻域,所以因此y∈d (A).此外当然有y∈Y.所以y∈d(A)∩y.这证明(A)d(A)∩Y.
另一方面,设y∈d(A)∩Y,
所以y∈(A).这证明d(A)d(A)∩Y.
(2)成立是因为(A)=A∪(A)=A∪(d(A)∩Y)=(A∪d(A))∩(A∪Y)=∩Y
定理3.1.7 设Y是拓扑空间X的一个子空间,y∈Y.则
(1)如果B是拓扑空间X的一个基,则是子空间Y的一个基;
(2)如果是点y在拓扑空间X中的一个邻域基,则是点y在子空间Y中的一个邻域基.
证明(1)设B是X的一个基.对于Y中的任何一个开集U,存在X中的一个开集V使得U=V∩Y;存在B的一个子族,使得V=.因此U=由于上式中的每一个B∩Y是中的一个元素,所以在上式中U已经表示成了中的某些元素之并了.因此是Y的一个基.
(2)证明(略).
“子空间”事实上是从大拓扑空间中“切割”出来的一部分.这里有一个反问题,概言之就是:一个拓扑空间什么时候是另一个拓扑空间的子空间?换言之,一个拓扑空间在什么条件下能够“镶嵌”到另一个拓扑空间中去?当然假如我们拘泥于某些细节,例如
涉及的拓扑空间是由什么样的点构成的,那么问题会变得十分乏味,然而我们在§2.2中便提到过,拓扑学的中心任务是研究拓扑不变性质,也就是说我们不去着意区别同胚的两个拓扑空间.在这种意义下,以上问题可以精确地陈述如下:
定义3.1.4 设X和Y是两个拓扑空间,f:X→Y.映射f称为一个嵌入,如果它是一个单射,并且是从X到它的象集f(X)的一个同胚.如果存在一个嵌入f: X→Y,我们说拓扑空间X可嵌入拓扑空间Y.
事实上,拓扑空间X可嵌入拓扑空间Y意思就是拓扑空间X与拓扑空间Y的某一个子空间同胚.换言之,在不区别同胚的两个拓扑空间的意义下,X“就是”Y的一个子空间.
不能嵌入的一个简单例子是,一个离散空间,如果它含有多于一个点,就决不可能嵌入到任何一个平庸空间中去;反之,一个平庸空间,如果它含有多于一个点,也决不可能嵌入到任何一个离散空间中去.欧氏平面中的单位圆周是否可以嵌入到实数空间(即直线)中去呢?这个问题我们到第四章中再作处理.本书中我们还会涉及一些比较深刻的嵌入定理.
本节关键:掌握拓扑空间中的子集(这里称为子空间)的开集、闭集、闭包、导集”长”得什么模样.
作业:
P95 1.2.5.7.。