工程电磁场 第一章
- 格式:ppt
- 大小:1.48 MB
- 文档页数:25
第一章矢量剖析与场论1 源点是指。
2 场点是指。
3 距离矢量是,表示其方向的单位矢量用表示。
4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。
5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。
6 方导游数与梯度的关系为。
7 梯度在直角坐标系中的表示为u 。
8 矢量 A 在曲面 S 上的通量表示为。
9 散度的物理含义是。
10 散度在直角坐标系中的表示为 A 。
11 高斯散度定理。
12 矢量 A 沿一闭合路径l的环量表示为。
13 旋度的物理含义是。
14 旋度在直角坐标系中的表示为 A 。
15 矢量场 A 在一点沿e l方向的环量面密度与该点处的旋度之间的关系为。
16 斯托克斯定理。
17 柱坐标系中沿三坐标方向 e r , e , e z的线元分别为,,。
18 柱坐标系中沿三坐标方向 e r , e , e 的线元分别为,,。
19 1 ' 1 12 e R12 e 'RR R R R20 1 'g 1 0 ( R 0)g '4 ( R) ( R 0)R R第二章静电场1 点电荷 q 在空间产生的电场强度计算公式为。
2 点电荷 q 在空间产生的电位计算公式为。
3 已知空间电位散布,则空间电场强度 E= 。
4 已知空间电场强度散布 E,电位参照点取在无量远处,则空间一点P 处的电位P = 。
5 一球面半径为 R,球心在座标原点处,电量Q 平均散布在球面上,则点R,R,R处的电位等于。
2 2 26 处于静电均衡状态的导体,导体表面电场强度的方向沿。
7 处于静电均衡状态的导体,导体内部电场强度等于。
8 处于静电均衡状态的导体,其内部电位和外面电位关系为。
9 处于静电均衡状态的导体,其内部电荷体密度为。
10 处于静电均衡状态的导体,电荷散布在导体的。
11 无穷长直导线,电荷线密度为,则空间电场 E= 。
12 无穷大导电平面,电荷面密度为,则空间电场 E= 。
电磁场理论第一章静电场1.1 电场强度电位4 2 2了解:定义法求解带电体电场强度和电位方法掌握:库仑定律、电场强度、电位的定义及定义式掌握:静电场环路定律及应用,叠加法计算电场强度和电位知识点:库仑定律;电场强度定义;电位定义;叠加法计算;电力线;等位线(面);静电场环路定律;电场强度与电位关系的微分表示及意义;电偶极子定义及其在远区场的电场强度和电位.重点:静电场环路定律,电场强度与电位关系难点:静电场环路定律的微分表示,电场强度与电位关系的微分表示及意义1. 从学生比较熟悉的大学物理中的电场强度和电位的积分式及意义引出其微分式及意义;=-∇ϕE2. 从高等数学中的Stocks定理讲解静电场环路定律.0∇⨯=E《工程电磁场导论》(冯慈璋马西奎主编,高等教育出版社)P13 1-1-1 直接应用1.1节三个例题(均匀带电直导线、平面、球面)的结果简化运算1-1-3 =-∇ϕE的应用上机编程:用数值积分法研究静电场场分布(2学时,地点:新实验楼B215)电磁场理论 1.2 高斯定律2 2了解:静电场中导体和电介质的性质掌握:各向同性线性电介质中,电极化强度、电通量密度与电场强度的关系掌握:高斯定律积分式、微分式及应用知识点:静电场中导体的特点;静电场中电介质的特点;电极化强度;电通量密度;高斯定律重点:高斯定律难点:电极化强度、电通量密度与电场强度的关系用高斯定律计算电场强度1. 从高等数学中的高斯定理讲解高斯定律.∇⋅=ρD2. 应用高斯定律计算1.1节三个例题,和本节例1-8, 并总结均匀带电直导线、平面、球面、球体的电场强度和电位特点.《工程电磁场导论》(冯慈璋马西奎主编,高等教育出版社)P13 1-1-1 直接应用1.1节三个例题(均匀带电直导线、平面、球面)的结果简化运算1-1-3 =-∇ϕE的应用电磁场理论1.3 静电场基本方程分界面上的衔接条件2 2了解:静电场电位方程(泊松方程和拉普拉斯方程)掌握:静电场基本方程的积分式、微分式及物理意义掌握:分界面上的衔接条件及应用知识点:静电场基本方程;分界面上的衔接条件;静电场电位方程重点:静电场基本方程;分界面上的衔接条件难点:用分界面衔接条件分析不同电介质分界面的电场情况1. 从静电场基本方程的积分形式推导不同介质分界面的衔接条件2. 用分界面衔接条件分析不同电介质分界面的电场情况例1-10,例1-11《工程电磁场导论》(冯慈璋马西奎主编,高等教育出版社)P24 1-3-3 分界面衔接条件分析,注意电场的值和电场是不同的概念电磁场理论 1.6 有限差分法4 2 2掌握:有限差分法的原理与计算步骤;理解并掌握:求解差分方程组的三种方法(简单迭代法、高斯赛德尔法、超松弛迭代法),分析三种方法的优缺点,加速收敛因子 的作用,编程,图示电位。
《工程电磁场教案》第一章:电磁场的基本概念1.1 电磁现象的发现1.2 电荷与电场1.3 电流与磁场1.4 电磁感应第二章:静电场2.1 静电场的定义与特性2.2 静电力与库仑定律2.3 电势与电势能2.4 电场强度与高斯定律第三章:稳恒电流场3.1 电流场的定义与特性3.2 欧姆定律3.3 电阻的计算3.4 电流场的分布与等势线第四章:稳恒磁场4.1 磁场的基本概念4.2 安培定律4.3 磁感应强度与磁场强度4.4 磁通量与磁通量密度第五章:电磁波5.1 电磁波的产生与传播5.2 电磁波的波动方程5.3 电磁波的极化与反射、折射5.4 电磁波的应用第六章:电磁场的数值计算方法6.1 有限差分法6.2 有限元法6.3 边界元法6.4 有限体积法第七章:电磁场的测量与检测7.1 电磁场测量的基础知识7.2 电磁场测量仪器与设备7.3 电磁兼容性测试7.4 电磁辐射的防护与控制第八章:电磁场在工程中的应用8.1 电机与变压器8.2 电磁兼容设计8.3 无线通信与雷达技术8.4 电力系统的电磁场问题第九章:电磁场相关的标准与规范9.1 国际电工委员会(IEC)标准9.2 北美电气和电子工程师协会(IEEE)标准9.3 欧洲电信标准协会(ETSI)标准9.4 我国电磁兼容性标准第十章:电磁场的环境保护与安全10.1 电磁污染与电磁干扰10.2 电磁场的生物效应10.3 电磁场的防护措施10.4 电磁场环境监测与管理重点和难点解析一、电磁场的基本概念难点解析:电磁现象的内在联系,电磁场的定量描述,电磁感应的数学表达。
二、静电场难点解析:静电场的能量分布,电势的计算,高斯定律在复杂几何形状中的应用。
三、稳恒电流场难点解析:电流场的散度,等势面的概念,复杂电路中的电流分布计算。
四、稳恒磁场难点解析:磁场的闭合性,安培定律的适用条件,磁通量的计算,磁场的能量。
五、电磁波难点解析:电磁波的麦克斯韦方程组,电磁波的产生机制,电磁波在不同介质中的传播特性。
技能培训专题工程电磁场讲义第一章第一章入门概述1.1 工程电磁场的定义和意义工程电磁场是研究电磁现象在实际工程中的应用问题的学科,其包括电磁场的产生、传输、辐射、作用及其与其他物理现象的相互作用等方面的内容。
工程电磁场的应用范围非常广泛,如电力系统、通信系统、雷达系统、电磁兼容等领域都是工程电磁场的应用领域。
1.2 工程电磁场的基本概念电磁场是指由电荷或电流所产生的电场和磁场以及它们之间的相互作用。
电场和磁场分为静电场和静磁场和交变电场和交变磁场。
其中,静电场和静磁场是指电荷和电流不随时间变化,而交变电场和交变磁场是指电荷和电流随时间变化。
1.3 工程电磁场的数学描述工程电磁场的数学描述是通过一组方程来完成的,它们包括麦克斯韦方程组和洛伦兹力方程。
其中麦克斯韦方程组是电磁场的基本方程,它描述了电场和磁场的产生,传输和作用。
洛伦兹力方程是描述带电粒子运动时受到电磁场力作用的方程。
1.4 工程电磁场的计算方法工程电磁场的计算方法分为解析方法和数值方法。
解析方法包括解析解法和半解析解法,它们常常基于对电磁场方程的数学分析进行求解。
数值方法则通过对电磁场的离散化求解,其中常用的数值方法包括有限差分法、有限元法和时域有限差分法等。
1.5 工程电磁场的应用工程电磁场应用非常广泛,其中包括电力系统、通信系统、雷达系统、电子系统以及电磁兼容等领域。
在电力系统中,工程电磁场可用于估算高压输电线路附近的电场和磁场强度,以评估对周边环境和生态环境的潜在危害。
在通信系统中,工程电磁场可用于优化通信信号的传输质量和覆盖区域,以保证通信的可靠性和稳定性。
在电磁兼容领域中,工程电磁场可用于解决电子产品之间相互干扰和影响的问题。
1.6 工程电磁场中的注意事项在工程电磁场的计算和应用过程中需要注意以下事项:(1)要注意电磁场的安全性,防止人员和周边环境受到电磁辐射的危害;(2)要充分考虑电磁场的相互作用和复杂性,避免过度简化和假设,保证模型的准确性和可靠性;(3)应充分利用计算机技术和模拟分析手段,以提高计算效率和精度,加快问题的解决;(4)在实际应用中应充分结合相关标准和法规,遵循规范和要求,确保应用的合法性和准确性。