《工程电磁场》何小祥 第二章
- 格式:ppt
- 大小:5.49 MB
- 文档页数:99
第2章 静电场(二)2.1 静电场的唯一性定理及其应用静电场中的待求量:电场强度E ,静电力F 。
静电场求解方法:(1) 直接由电场强度公式计算;(2) 求解泊松方程(或拉普拉斯方程)→电位→电场强度E 。
唯一性定理的重要意义:确定静电场解的唯一性。
2.1.1 唯一性定理静电场中,满足给定边界条件的电位微分方程(泊松方程或拉普拉斯方程)的解是唯一的。
2.1.2 导体边界时,边界条件的分类(1) 自然边界条件:有限值参考点=∞→ϕr r lim(相当于指定电位参考点的值)(2) 边界衔接条件:σϕεϕεϕϕ=∂∂-∂∂=nn 221121 (该条件主要用于求解区域内部)(3) 导体表面边界条件(a) 给定各导体表面的电位值。
(第一类边界条件)(b) 导体表面为等位面,给定各导体表面的电荷量。
该条件相当于给定了第二类边界条件。
在求解过程中,可通过积分运算确定任意常数。
Sn ∂∂-=ϕεσ,(注:n 的正方向由介质导向导体内部) (c) 给定某些导体表面的电位值及其它每一导体表面的电荷量。
相当于给定了第三类边界条件。
思考?为什么条件(a),或(c)可唯一确定电位函数,而条件(b)确定的电位函数相关任一常数? 答:边值问题的求解所需的边界条件有:自然边界条件、衔接条件和区域边界条件。
条件(a),(c)中,同时给定了边界条件和自然边界条件,与条件(2)结合,可唯一地确定场解;而条件(c)没有指定自然边界条件(电位参考点的值),因而,其解相差一个任意常数。
2.1.3 静电场唯一性定理的意义唯一性定理为静电场问题的多种解法(试探解、数值解、解析解等)提供了思路及理论根据2.1.4 等位面法1 等位面法:静电场中,若沿场的等位面的任一侧,填充导电媒质,则等位面另侧的电场保持不变。
2 等位面法成立的理论解释:等位面内填充导电媒质后,边界条件沿发生变化:(1)边界k 的等位性不变;(2)边界k 内的总电荷量不变。
(相当于给定了第二类边界条件)3 等位面法在解释静电屏蔽现象中的应用现象一、接地的封闭导体壳内的电荷不影响壳外的电场。
2.4 电介质中的电场1.电位移矢量 由高斯定理,得()P E P •∇-=+=•∇ρεερρ001整理得 ▽•(ε0E + P )= ρ定义电位移矢量: D =ε0E + P = ε0(1+χe )E = ε E其中, ε = ε0(1+χe )= εr ε0, εr =ε /ε0 =(1+χe )2.介电常数上式分别给出了介质的介电常数和相对介电常数。
从而电介质中电场问题可简洁地归结为场量D 、E 或位函数ϕ 的定解问题。
例1:同轴电缆其长度L 远大于截面半径,已知内、外导体半径分别为a 和b 。
其间充满介电常数为ε的介质,将该电缆的内外导体与直流电压源U 0相联接。
试求:(1)介质中的电场强度E ;(2)介质中E max 位于哪里?其值多大?[解]:(1)设内、外导体沿轴线方向线电荷密度分别为+τ 和-τ。
由应用高斯定理,得L L 2D d Sτρρ=π=•⎰S D即 ρρτe D π=2所以 ρερτεe D E π==2 (a < ρ < b )由因为 a b 2d E d U ba l 0ln ετρρπ==•=⎰⎰l E 则 abU ln 20ετπ=得 ρρe E ab U 0ln= (a < ρ < b )(2)最大场强位于内导体表面(ρ = a ),其值为ρe E ab a U 0lnmax =图 同轴电缆的电场 图 E 切向分量的边界条件图 D 法向分量的边界条件3.边界条件介质分界面上的边界条件:跨越分界面的一狭小的矩形回路l 如图所示,且令 ∆l 2→0而 ∆l 1足够地短。
求电场强度在l 上的环量,有0d d d 12112111=∆+∆-=•+•=•⎰⎰⎰∆∆l E l E t t l l ll El El E即 E 1t = E 2t 或 e n ⨯(E 2-E 1) = 0上式表明,在介质分界面上电场强度的切向分量是连续的。
跨越分界面的一个扁平圆柱体S 如图所示,令两个底面∆S 足够小且平行于分界面,圆柱面高度 ∆l →0。