金属切削原理【详解】
- 格式:doc
- 大小:46.00 KB
- 文档页数:8
金属切削原理一、引言金属切削是一种重要的加工方法,广泛应用于机械制造、航空航天、汽车制造等领域。
金属切削的原理是将金属材料通过刀具的切削力和磨擦力进行去除,从而得到所需形状和尺寸的工件。
本文将详细介绍金属切削的原理。
二、金属材料的物理特性金属材料具有高强度、高硬度、高塑性等特点。
在进行切削加工时,需要考虑到这些特性对加工过程和结果的影响。
1.硬度硬度是指材料抵抗外界力量侵蚀和破坏的能力。
在进行金属切削时,硬度会影响到刀具对材料的切削深度和速度。
硬度越大,材料越难被去除,需要采用更高强度和更耐磨损的刀具。
2.韧性韧性是指材料抵抗断裂和变形的能力。
在进行金属切削时,韧性会影响到刀具对材料的变形程度和断裂情况。
韧性越大,材料越容易被刀具弯曲和拉伸,需要采用更大的切削力和更耐磨损的刀具。
3.塑性塑性是指材料在受到外力作用下发生变形的能力。
在进行金属切削时,塑性会影响到材料的变形程度和表面质量。
塑性越大,材料越容易被切削并留下较光滑的表面。
三、切削力的产生金属切削过程中,主要有三种力对工件进行去除:正向切削力、侧向切削力和径向切削力。
这些力产生的原因如下:1.正向切削力正向切削力是指沿着工件表面方向施加在主轴上的推进力。
它是由于主轴上旋转的刀具与工件之间产生了摩擦而引起的。
2.侧向切削力侧向切削力是指垂直于工件表面方向施加在主轴上的推进力。
它是由于主轴上旋转的刀具与工件之间产生了摩擦而引起的。
3.径向切削力径向切削力是指垂直于工件表面方向施加在主轴上的推进力。
它是由于主轴上旋转的刀具与工件之间产生了摩擦而引起的。
四、切削过程中的热效应金属切削过程中,由于摩擦和变形,会产生大量的热量。
这些热量会对材料和刀具造成影响。
1.材料的热变形在金属切削过程中,由于高速旋转的刀具与工件之间产生了摩擦,会使得材料表面温度升高。
当温度达到一定值时,材料就会发生热变形,导致尺寸和形状发生变化。
2.材料的热软化在金属切削过程中,由于高速旋转的刀具与工件之间产生了摩擦,会使得材料表面温度升高。
金属切削原理与刀具金属切削是指通过刀具对金属材料进行加工削除的过程,是金属加工领域中常见且基础的一种加工方式。
人们在制造和加工各种金属制品的过程中,常常需要通过切削来将金属材料加工成所需的形状和尺寸。
本文将深入探讨金属切削的原理以及相关的刀具类型。
一、金属切削原理金属切削的原理是利用刀具对金属工件进行力学削除材料的过程。
主要原理可以归纳为以下几点:1. 刀具与工件的相互作用力:切削过程中,刀具施加在工件上的作用力可以分为切割力、摩擦力、压力等。
切割力使刀具沿着切削方向削除金属,摩擦力影响工件表面的质量,而压力则有助于防止振动和提高切削质量。
2. 刀具与工件的接触面积:切削过程中,刀具与工件的接触面积较小,集中在切削刃上。
通过提高切削刃的硬度和耐磨性,可以减少切削面的磨损,延长刀具的使用寿命。
3. 金属切削时的切削角度:切削角度是指刀具切削刃与工件表面法线之间的夹角。
合理选择切削角度可以使切削过程更加顺利,减少切削力和切削温度。
二、常见的刀具类型不同的金属切削需求需要选择不同类型的刀具。
以下将介绍几种常见的刀具类型及其特点:1. 钻头:用于钻孔加工的刀具,主要特点是具有较高的刚性和旋转精度。
根据孔径的大小,可以选择不同类型的钻头,如常规钻头、中心钻头和孔径加工钻头等。
2. 铣刀:用于面铣、端铣、槽铣等加工的刀具,形状像一把小锯齿,可通过旋转进行切削。
铣刀可分为平面铣刀、球头铣刀、棒铣刀等多种类型,适用于不同形状和尺寸的金属切削。
3. 刀片:用于车削加工的刀具,通常由硬质合金制成,具有较高的耐磨性。
刀片形状多样,如可直线切削的刀片、可拐弯切削的刀片等,适用于不同形状和尺寸的车削加工。
4. 锯片:用于锯切金属材料的刀具,常用于金属管、金属板的切割。
根据不同的锯片规格和齿型,可以实现不同精度和效率的锯切加工。
5. 切割刀具:包括切割刀片和切割车刀等,主要用于金属材料的切割和切断。
根据切割的需求和要求,选择合适的切割刀具可以提高加工效率和切割质量。
金属切削原理的基本工作原理解析金属切削是一种常见的金属加工方式,广泛应用于制造业中。
它通过切削刀具与工件之间的相对运动,将工件上的金属材料切削、去除,从而得到所需形状和尺寸的工件。
金属切削是一项复杂的工艺,其基本工作原理涉及多个方面,包括切削力、切削温度和切削变形等。
本文将对金属切削原理的基本工作原理进行解析。
首先,金属切削过程中产生的切削力是一项重要的参数。
切削力是指切削刀具施加到工件上的力,它由两个主要部分组成:法向切削力和切向切削力。
法向切削力垂直于切削的刀具轴线,使工件沿着切削方向变形;而切向切削力平行于切削的刀具轴线,使刀具与工件之间产生摩擦。
切削力的大小受到多个因素的影响,包括切削速度、切削深度和切削角度等。
合理控制切削力的大小对于提高切削效率和延长刀具寿命具有重要意义。
其次,金属切削过程中的切削温度也是需要考虑的因素。
切削温度是指切削区域的温度,它的升高主要是由于切削产生的摩擦和塑性变形引起的工件材料的变形功。
切削温度的升高会导致切削刀具的磨损加剧,并可能引起工件表面的质量问题。
因此,减少切削温度对于提高加工质量和刀具寿命至关重要。
控制切削速度、供冷液和正确选择切削工具等措施可以有效降低切削温度。
此外,金属切削过程中还会产生切削变形。
切削变形是指在切削过程中,由于切削作用和热效应等原因引起的工件材料的形状和尺寸变化。
在金属切削中,切削变形主要表现为表面粗糙度、尺寸误差和变形层等。
合理选择切削参数、采用合适的切削工具和刀具结构设计等措施可以减少切削变形,提高工件的加工精度。
最后,金属切削还涉及切削刀具的选择和刀具材料的应用。
切削刀具是进行金属切削的关键工具,其选择将直接影响加工质量和效率。
常见的切削刀具包括旋转刀具、铣削刀具和钻削刀具等。
切削刀具的材料应具备良好的切削性能,如硬度高、强度好和耐磨性能佳等。
常用的刀具材料包括硬质合金、高速钢和陶瓷等。
正确选择和使用切削刀具是确保金属切削质量的重要因素之一。
金属切削原理与刀具的应用1. 金属切削原理金属切削是通过机床上的刀具对金属工件进行切削、铣削、车削、钻孔等加工过程。
在金属切削过程中,刀具与工件之间的相对运动产生切削力,使刀具将工件上的金属材料去除,从而实现对工件的加工。
以下是金属切削的基本原理:1.切削速度:切削速度是指刀具切削工件的速度。
切削速度的选择应根据工件材料、刀具材质和切削类型等因素来确定。
高速切削可以提高生产效率,但也会对刀具和工件产生一定的热影响。
2.进给量:进给量是指刀具在单位时间内前进的距离。
进给量的选择取决于工件表面的粗糙度要求、切削力和刀具的耐久度等因素。
3.切削深度:切削深度是指刀具切削时的最大切削量。
切削深度的选择应根据工件材料的硬度、刀具的尺寸和工艺要求来确定。
4.切削力:切削力是指刀具对工件施加的力。
切削力的大小受到切削参数、刀具材质和刀具几何形状的影响。
2. 刀具的应用刀具是金属切削过程中起到切削作用的工具。
不同的工件和切削任务需要选择合适的刀具来进行加工。
以下是常见的刀具及其应用:1.钻头:钻头用于钻孔加工,适用于加工圆孔和柱形孔。
常见的钻头有直柄钻头和 Morse 锥柄钻头两种。
2.车刀:车刀用于车削加工,常用于加工圆柱形工件的外轮廓。
车刀有内刀和外刀之分,可以用于精细车削和粗车削等不同工艺要求。
3.铣刀:铣刀用于铣削加工,可以用于多种铣削操作,如平面铣削、立体铣削、开槽铣削等。
铣刀可分为立铣刀、面铣刀和球形铣刀等。
4.刨刀:刨刀用于刨削加工,可以进行铺刨、面刨和纵切削等操作。
刨刀可根据切削刃的数量和类型来分类,如单刃刨刀、多刃刨刀和筷子刨刀等。
5.刀片:刀片用于各种切削加工,如割断、倒角、切割等。
刀片的种类繁多,根据刀片的应用需求和加工材料的类型来选择合适的刀片。
3. 刀具材料选择刀具材料选择是决定刀具性能的关键,不同的刀具材料有着不同的加工性能和适用范围。
以下是常见的刀具材料及其特点:1.高速钢(HSS):高速钢具有良好的耐磨性和耐热性,适用于中等切削速度和较硬的工件材料。
金属切削原理讲义及刀具一、金属切削原理金属切削是指用刀具对金属材料进行切削加工的过程。
它是制造业中最常见的加工方法之一、金属切削原理主要涉及到力学、热学、材料学、机械设计等多个学科。
1.金属切削力学金属切削的力学主要涉及到塑性变形、弹性变形、剪切应力等方面。
在切削过程中,刀具通过施加剪切力对金属材料进行剪切。
金属在剪切区域受到的应力会导致金属发生塑性变形,形成切屑。
2.金属切削热学金属切削过程中,由于摩擦和变形的能量损耗,切削区域会产生高温。
这些热量会传导到刀具和切削区域,导致材料软化和刀具磨损。
因此,及时冷却切削区域和刀具是非常重要的,可以通过切削润滑剂和冷却剂来实现。
3.金属切削材料学金属切削材料学主要研究刀具材料和工件材料之间的相互作用。
选择合适的刀具材料和工件材料对于获得良好的切削效果至关重要。
刀具材料需要具有一定的硬度、耐磨性和耐冲击性,以适应切削过程中的高负荷和高速度。
而工件材料的硬度、强度和塑性等性质则会影响到切削加工的难易程度。
4.金属切削的刀具刀具是金属切削过程中的重要工具,它直接与工件接触,对工件进行加工。
不同的切削操作需要使用不同类型的刀具。
常见的金属切削刀具包括刀片、铣刀、车刀和钻头等。
-刀片:刀片是金属切削中最为常用的刀具,它可用于车削、铣削、镗削等工艺。
刀片一般由高速钢制成,也有使用硬质合金和陶瓷材料制造的高级刀片。
-铣刀:铣刀是一种用于铣削操作的刀具。
它主要用于在工件上形成平面、槽口和曲面等形状。
-车刀:车刀是用于车削加工的刀具,它通过旋转刀具将工件上的旋转刀具切削掉。
-钻头:钻头是用于钻孔加工的刀具,它通过旋转切削力将工件上的孔切削掉。
以上只是金属切削原理及刀具的简要介绍,金属切削涉及的知识和技术极为广泛和复杂,需要深入学习和实践才能掌握。
通过不断的学习和实践,我们可以了解金属切削的原理和技术,并且选择合适的刀具进行加工,提高加工效率和质量。
2.王明玉,杨炯.金属材料切削原理与刀具[M].湖南大学出版社,2024.。
金属切削原理基础知识解析金属切削是一种常见的加工方法,广泛应用于制造业中。
了解金属切削的基础原理对于合理选择切削工艺和工具,提高加工效率和质量非常重要。
本文将解析金属切削的基础知识,包括切削原理、切削力、毛坯形状与切削刃的几何形状以及金属切削中常用的切削材料。
1. 切削原理金属切削是指通过刀具对金属工件进行机械加工,从而使工件形状发生改变的过程。
在切削过程中,刀具通过对工件施加切削力,使工具切削刃与工件产生相对运动,将工件上的金属层削除或形成所需形状。
2. 切削力切削力是指切削过程中刀具作用在工件上的力。
切削力的大小与材料的物理性质、切削刃的几何形状、切削速度等因素有关。
通常,切削力可分为切削力、切向力和法向力。
切削力的准确计算可以帮助选择合适的刀具、预测工具寿命以及优化切削工艺。
3. 毛坯形状与切削刃的几何形状切削和加工形状的选择取决于所需产品的要求。
毛坯形状的设计决定了切削刃的几何形状。
常见的切削刃形状包括直角切削刃、圆弧切削刃和锥形切削刃。
不同形状的切削刃适用于不同的切削操作,可以获得不同的切削效果。
4. 切削材料在金属切削过程中,刀具与工件之间会产生高温、高压和强大的切削力。
因此,切削工具需要具备较高的硬度、耐磨性和热稳定性。
常用的切削材料包括高速钢(HSS)、硬质合金和陶瓷等。
每种材料都有其适用的加工范围和特点,根据加工要求和具体情况选择合适的切削材料可以提高加工效率和工具寿命。
综上所述,金属切削是一种重要的加工方法,对于提高加工效率和产品质量至关重要。
了解金属切削的基础知识,包括切削原理、切削力、毛坯形状与切削刃的几何形状以及切削材料,可以帮助选择合适的切削工艺和工具,提高加工效率和质量。
在实际应用中,根据具体的加工要求和材料性质选择合适的刀具和切削参数,可以更好地发挥金属切削的功能。
金属切削原理及其应用领域解析金属切削是一项广泛应用于工业制造领域的加工方法,包括机械加工、制造工程等领域。
本文将探讨金属切削的原理及其在不同应用领域的应用。
金属切削原理:金属切削是通过运用切削工具对金属材料进行切削、磨削或抛光的一种加工处理技术。
切削工具通常采用硬质材料制成,比如钢、硬质合金等。
金属切削主要通过应用切削工具对金属工件进行剪切、切割、连续切削以及排屑等操作,切削工具在金属工件上施加力量形成切削力,将工件上的金属层切下来或切割成所需的形状。
金属切削可以分为两个主要的原理:单一切削原理和多点切削原理。
1. 单一切削原理:单一切削原理是在切削过程中,只有一个切削齿刃与工件接触并切削,通过旋转切削工具,将工件上的金属物质切削掉。
单一切削原理的常见切削工具有铣刀、车刀、刨刀等。
这种切削原理常用于对平面、曲线、斜面以及不同形状的表面进行切削加工。
2. 多点切削原理:多点切削原理是在切削过程中,多个切削齿刃同时与工件接触并切削,提高了切削效率和加工精度。
常见的多点切削工具有铣刀、钻头、切削刃等。
这种切削原理可用于进行孔加工、螺纹加工、齿轮加工等。
金属切削应用领域:金属切削技术在工业制造领域具有广泛的应用。
下面将介绍几个主要的应用领域:1. 汽车制造:金属切削技术在汽车制造中起着至关重要的作用。
通过金属切削技术,可以对汽车零部件进行精确加工,包括发动机零部件、车体零部件、变速器零部件等。
金属切削技术可以提高零部件的质量和精度,确保汽车的性能和安全。
2. 航空航天:航空航天领域对金属切削技术的需求非常高。
金属切削被广泛应用于制造飞机引擎零部件、飞行控制系统、主轴承等关键部件。
金属切削技术在航空航天领域的应用也要求具有高精度和高性能。
3. 电子设备制造:金属切削技术在电子设备制造中扮演着重要的角色。
通过金属切削技术,可以对电子设备的外壳、散热器、连接器等进行加工。
金属切削能够满足电子设备对精度和尺寸要求,确保电子设备的可靠性和性能。
金属切削原理的基本原理与应用探析金属切削是指在机械加工过程中,通过刀具对金属材料进行切削加工的一种方法。
切削加工是现代工业生产中非常重要的一环,广泛应用于制造业的各个领域,如汽车制造、航空航天、机械制造等。
本文将探析金属切削原理的基本原理和应用。
一、金属切削原理的基本原理1. 切削力与材料性质的关系切削力是刀具和工件之间产生的力,它直接影响到切削加工的效率和质量。
切削力与金属材料的性质有密切关系,例如硬度、韧性和塑性等特性。
一般来说,材料硬度越高,切削力越大。
2. 切削热的生成与影响在切削过程中,由于刃口与工件接触产生摩擦,会产生大量的切削热。
切削热的大小和分布对切削加工有着重要影响。
过高的切削热可能导致刀具磨损加剧、工件变形,甚至热裂纹的产生。
因此,有效控制切削热对于提高切削加工质量至关重要。
3. 切削液的作用切削液在切削过程中起到冷却、润滑和防腐的作用。
通过降低切削热,它可以有效地控制切削加工过程中的温度,减少工件表面的热变形,提高切削加工质量和效率。
4. 切削刃部分的结构与刀具磨损切削刃是切削工具的重要部分,其结构设计直接影响到切削加工的效果。
一般来说,切削刃的设计要使切削力分布均匀,降低切削热和切削力,延长切削工具的寿命。
此外,选择合适的材料和硬度对切削刃的寿命也有很大影响。
二、金属切削的应用探析1. 汽车制造汽车制造是金属切削应用的重要领域之一。
在汽车制造中,金属切削广泛应用于发动机、底盘、车身等零部件的加工。
通过金属切削,可以精确加工出复杂形状的零部件,提高汽车的质量和性能。
2. 航空航天工业航空航天工业对金属切削的要求更为严格。
在航空航天工业中,金属切削应用于航空发动机、机翼、航天器等部件的加工。
金属切削技术的发展和应用,推动了航空航天工业的进步和发展。
3. 机械制造金属切削在机械制造领域中扮演着重要角色。
在机械制造中,金属切削应用于制造各种机床、工具以及零部件等。
通过金属切削技术,可以提高机械制造的精度和效率,满足不同行业和领域的生产需求。
金属切削原理的基本概述金属切削是一种常见的金属加工技术,广泛应用于制造业和机械加工领域。
金属切削的原理是通过切削工具对金属材料施加力量,以去除材料表面的金属层,实现工件的加工和成形。
金属切削原理可以分为以下几个方面:1. 切削力:在金属切削过程中,切削工具施加力量以去除金属材料。
切削力是指切削工具对工件施加的力的大小和方向。
切削力的大小取决于刀具的几何形状、切削速度、切削深度、切削角度等因素。
在金属切削中,通常会产生切向力(与切削方向垂直的力)和径向力(指向工件中心的力)。
2. 切削削角:切削削角是切削刀具与工件表面之间的夹角。
切削削角的大小和形状会影响切削力的大小、切削刃的寿命和切削表面的质量。
常见的切削削角有前角、主削角、副削角等。
3. 切削速度:切削速度是指切削工具和工件相对运动的线速度。
切削速度的选择会影响切削力、切削表面的质量和刀具的寿命。
过低的切削速度可能导致刀具与工件之间产生太多的摩擦热,使刀具磨损加快;而过高的切削速度则可能导致工件表面粗糙、切削力过大。
4. 切削深度:切削深度是指切削工具将金属材料削除的深度。
切削深度的选择取决于工件的要求和切削工具的强度。
过大的切削深度可能导致切削力过大,增加切削工具的磨损和变形的风险;而过小的切削深度则可能导致加工效率低。
5. 切削热效应:切削过程中,因为摩擦和形变,切削区域会产生热量。
切削热效应可能对切削工具和工件产生不良影响,如切削刃磨损、加工表面质量下降等。
因此,在金属切削过程中,需要采取适当的切削冷却液和润滑剂等措施来降低切削热效应。
总结起来,金属切削原理是通过切削工具施加力量,削除金属材料表面的方法。
切削力、切削削角、切削速度、切削深度和切削热效应是决定切削过程中刀具寿命、工件表面质量和加工效率的重要因素。
掌握金属切削原理,对于提高金属加工的质量和效率具有重要意义。
金属切削原理解析本文档由深圳机械展SIMM整理,详细介绍金属切削原理。
金属切削原理并不是一两句话可以精炼概括的,是一个复杂的知识体系,这个知识体系也是机械制造工艺及设备专业的专业基础课,庞丽君写的《金属切削原理》可作为高等院校机械类及有关专业本科、专科的教材,也可供机械类和相近专业的其他类型学校的师生和工程技术人员参考透彻理解金属切削原理需要了解切削运动、加工表面和切削用量三要素,刀具几何角度及其选择,刀具工作角度,切削层参数,切削方式,还包括金属切削过程,切削力,切削热与切削温度,刀具磨损和使用寿命,工件材料的切削加工性,已加工表面质量,刀具合理几何角度和切削用量的选择,磨削,以及刀具材料的分析及选择、车刀的结构分析与应用、孔加工过程分析、刀具的结构分析与应用、拉刀的结构特点与使用、铣削过程分析与铣刀的选择和其他刀具的结构与应用。
以下为一些重要知识的整理:基面:切削刃上任意一点的基面是通过这一点并与这一点的切削速度相垂直的平面。
切削原理:金属切削必须具备两种运动,车削时的切削运动是工件的旋转运动;进给运动,使新的金属不断的投入切削的运动。
也就是使切削过程在所需要的方向继续下去的运动,进给运动可能有一个以上,车削时的进给运动是刀具的连续移动。
1、切削用量的选择原则粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。
具体数值应根据机床说明书、切削用量手册,并结合经验而定。
从刀具的耐用度出发,切削用量的选择顺序是:先确定背吃刀量,其次确定进给量,最后确定切削速度。
2、背吃刀量的确定背吃刀量由机床、工件和刀具的刚度来决定,在刚度允许的条件下,应尽可能使背吃刀量等于工件的加工余量,这样可以减少走刀次数,提高生产效率。
确定背吃刀量的原则:(1)在工件表面粗糙度值要求为Ra12.5μm~25μm时,如果数控加工的加工余量小于5mm~6mm,粗加工一次进给就可以达到要求。
但在余量较大,工艺系统刚性较差或机床动力不足时,可分多次进给完成。
(2)在工件表面粗糙度值要求为Ra3.2μm~12.5μm时,可分粗加工和半精加工两步进行。
粗加工时的背吃刀量选取同前。
粗加工后留0.5mm~1.0mm余量,在半精加工时切除。
(3)在工件表面粗糙度值要求为Ra0.8μm~3.2μm时,可分粗加工、半精加工、精加工三步进行。
半精加工时的背吃刀量取1.5mm~2mm.精加工时背吃刀量取0.3mm~0.5mm.3、进给量的确定进给量主要根据零件的加工精度和表面粗糙度要求以及刀具、工件的材料选取。
最大进给速度受机床刚度和进给系统的性能限制。
确定进给速度的原则:1)当工件的质量要求能够得到保证时,为提高生产效率,可选择较高的进给速度。
一般在100~200m/min范围内选取。
2)在切断、加工深孔或用高速钢刀具加工时,宜选择较低的进给速度,一般在20~50m/min 范围内选取。
3)当加工精度,表面粗糙度要求高时,进给速度应选小些,一般在20~50m/min范围内选取。
4)刀具空行程时,特别是远距离"回零"时,可以选择该机床数控系统设定的最高进给速度。
4、主轴转速的确定主轴转速应根据允许的切削速度和工件(或刀具)直径来选择。
其计算公式为:n=1000v/πDv----切削速度,单位为m/min,由刀具的耐用度决定;n-- -主轴转速,单位为r/min;D----工件直径或刀具直径,单位为mm.计算的主轴转速n最后要根据机床说明书选取机床有的或较接近的转速。
总之,切削用量的具体数值应根据机床性能、相关的手册并结合实际经验用类比方法确定。
同时,使主轴转速、切削深度及进给速度三者能相互适应,以形成最佳切削用量。
背吃刀量(切削深度)ap工件已加工表面与待加工表面间的垂直距离称为背吃刀量。
背吃刀量是通过切削刃基点并垂直于工作平面的方向上测量的吃刀量,是每次进给时车刀切入工件的深度,故又称为切削深度。
根据此定义,如在纵向车外圆时,其背吃刀量可按下式计算:a p = (d w - d m )/2式中a p——背吃刀量(mm );d w --工件待加工表面直径(mm );dm --工件已加工表面直径(mm )。
积屑瘤在用低、中速连续切削一般钢材或其他塑性材料时,切屑同刀具前面之间存在着摩擦,如果切屑上紧靠刀具前面的薄层在较高压强和温度的作用下,同切屑基体分离而粘结在刀具前面上,再经层层重叠粘结,在刀尖附近往往会堆积成一块经过剧烈变形的楔状切屑材料,叫做积屑瘤。
积屑瘤的硬度较基体材料高一倍以上,实际上可代替刀刃切削。
积屑瘤的底部较稳定,顶部同工件和切屑没有明显的分界线,容易破碎和脱落,一部分随切屑带走,一部分残留在加工表面上,从而使工件变得粗糙。
所以在精加工时一定要设法避免或抑制积屑瘤的形成。
积屑瘤的产生、成长和脱落是一个周期性的动态过程(据测定,它的脱落频率为30~170次/秒),它使刀具的实际前角和切削深度也随之发生变化,引起切削力波动,影响加工稳定性。
在一般情况下,当切削速度很低或很高时,因没有产生积屑瘤的必要条件(较大的切屑与刀具前面间的摩擦力和一定的温度),不产生积屑瘤。
切削力切削时刀具的前面和后面上都承受法向力和摩擦力,这些力组成合力F,在外圆车削时,一般将这个切削合力F分解成三个互相垂直的分力:切向力Fv──它在切削速度方向上垂直于刀具基面,常称主切削力;径向力Fp──在平行于基面的平面内,与进给方向垂直,又称推力;轴向力Ff──在平行于基面的平面内,与进给方向平行,又称进给力。
一般情况下,Fv最大,Fp和Ff较小,由于刀具的几何参数、刃磨质量和磨损情况的不同和切削条件的改变,Fp、Ff对Fv的比值在很大的范围内变化。
切削过程中实际切削力的大小,可以利用测力仪测出。
测力仪的种类很多,较常用的是电阻丝式和压电晶体式测力仪。
测力仪经过标定以后就可测出切削过程中各个分力的大小。
车削时的切削功率:金属切削原理主要为主切削力Fv所消耗,可用下式计算式中Fv为主切削力(牛);v为切削速度(米/分)。
切削热切削金属时,由于切屑剪切变形所作的功和刀具前面、后面摩擦所作的功都转变为热,这种热叫切削热。
使用切削液时,刀具、工件和切屑上的切削热主要由切削液带走;不用切削液时,切削热主要由切屑、工件和刀具带走或传出,其中切屑带走的热量最大,传向刀具的热量虽小,但前面和后面上的温度却影响着切削过程和刀具的磨损情况,所以了解切削温度的变化规律是十分必要的。
切削温度切削过程中切削区各处的温度是不同的,形成一个温度场(图4), 这个温度场影响切屑变形、积屑瘤的大小、加工表面质量、加工精度和刀具的磨损等,还影响切削速度的提高。
一般说来,切削区的金属经过剪切变形以后成为切屑,随之又进一步与刀具前面发生剧烈摩擦,所以温度场中温度分布的最高点不是在正压力最大的刃口处,而是在前面上距刃口一段距离的地方。
切削区的温度分布情况,须用人工热电偶研究金属切削加工过程中刀具与工件之间相互作用和各自的变化规律的一门学科。
在设计机床和刀具、制订机器零件的切削工艺及其定额、合理地使用刀具和机床以及控制切削过程时,都要利用金属切削原理的研究成果,使机器零件的加工达到经济、优质和高效率的目的。
刀具磨损刀具在切削时的磨损是切削热和机械摩擦所产生的物理作用和化学作用的综合结果。
刀具磨损表现为在刀具后面上出现的磨损带、缺口和崩刃等,前面上常出现的月牙洼状的磨损,副后面上有时出现的氧化坑和沟纹状磨损等(图5)当这些磨损扩展到一定程度以后就引起刀具失效,不能继续使用。
刀具逐渐磨损的因素,通常有磨料磨损、粘着磨损、扩散磨损、氧化磨损、热裂磨损和塑性变形等。
在不同的切削条件下,尤其是在不同切削速度的条件下,刀具受上述一种或几种磨损机理的作用。
例如,在较低切削速度下,刀具一般都因磨料磨损或粘着磨损而破损;在较高速度下,容易产生扩散磨损、氧化磨损和塑性变形。
刀具寿命刀具由开始切削达到刀具寿命判据以前所经过的切削时间叫做刀具寿命(曾称刀具耐用度),刀具寿命判据一般采用刀具磨损量的某个预定值,也可以把某一现象的出现作为判据,如振动激化、加工表面粗糙度恶化,断屑不良和崩刃等。
达到刀具寿命后,应将刀具重磨、转位或废弃。
刀具在废弃前的各次刀具寿命之和称为刀具总寿命。
泰勒提出的刀具寿命和切削速度之间相互制约的经验公式为:vTn=c公式中T为刀具寿命(分);v为切削速度(米/分);n和c为常数(与切削条件有关)。
生产中常根据加工条件按最低生产成本或最高生产率的原则,来确定刀具寿命和拟定工时定额。
切削加工性指零件被切削加工成合格品的难易程度。
它根据具体加工对象和要求,可用刀具寿命的长短、加工表面质量的好坏、金属切除率的高低、切削功率的大小和断屑的难易程度等作为判据。
在生产和实验研究中,常以vT作为某种材料的切削加工性的指标,它的含义是:当刀具寿命为T分钟时,切削该材料所允许的切削速度。
vT越高,表示加工性越好,T一般取60、30、20或10分钟。
加工表面质量通常包括表面粗糙度、加工硬化、残余应力、表面裂纹和金相显微组织变化等。
切削加工中影响加工表面质量的因素很多,例如刀具的刀尖圆弧半径、进给量和积屑瘤等是影响表面粗糙度的主要因素;刀具的刃口钝圆半径和磨损及切削条件是影响加工硬化和残余应力的主要因素。
因此,生产中常通过改变刀具的几何形状和选择合理的切削条件来提高加工表面质量。
切削振动切削过程中,刀具与工件之间经常会产生自由振动、强迫振动或自激振动(颤振)等类型的机械振动。
自由振动是由机床零部件受到某些突然冲击所引起,它会逐渐衰减。
强迫振动是由机床内部或外部持续的交变干扰力(如不平衡的机床运动件、断续切削等)所引起,它对切削产生的影响取决于干扰力的大小及其频率。
自激振动是由于刀具与工件之间受到突然干扰力(如切削中遇到硬点)而引起初始振动,使刀具前角、后角和切削速度等发生变化,以及产生振型耦合等,并从稳态作用的能源中获得周期性作用的能源,促进并维持振动。
通常,根据切削条件可能产生各种原生型自激振动,从而在加工表面上留下的振纹,又会产生更为常见的再生型自激振动。
上述各种振动通常都会影响加刀表面质量,降低机床和刀具的寿命,降低生产率,并引起噪声,极为有害,必须设法消除或减轻。
切屑控制指控制切屑的形状和长短。
通过控制切屑的卷曲半径和排出方向,使切屑碰撞到工件或刀具上,而使切屑的卷曲半径被迫加大,促使切屑中的应力也逐渐增加,直至折断。
切屑的卷曲半径可以通过改变切屑的厚度、在刀具前面上磨制卷屑槽或断屑台来控制,其排出方向则主要靠选择合理的主偏角和刃倾角来控制。
现代人们已能用两位或三位数字编码的方式来表示各种切屑的形状,通常认为短弧形切屑是合理的断屑形状。