人教版数学七年级上册第二章《整式》全章教案
- 格式:doc
- 大小:648.50 KB
- 文档页数:18
2.1 整 式第1课时 用字母表示数教学目标:1.知道现实情境中字母表示数的意义,形成初步符号感;2.会用字母表示一些简单问题情境中的数量关系和变化规律;(重点,难点)3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.教学过程:一、情境导入我们不少同学都是唱着儿歌长大的,朗朗上口、童趣横生的儿歌有的至今难以忘怀.其中有一首名叫《数蛤蟆》的儿歌,你想起来了吗?一只青蛙一张嘴,两只眼睛四条腿,一声扑通跳下水;两只青蛙两张嘴,四只眼睛八条腿,两声扑通跳下水;三只青蛙三张嘴,六只眼睛……,a 只青蛙a 张嘴,2a 只眼睛4a 条腿,由此看出a 是一个字母,它代表“很多只”的数量,用字母a 可以清楚地表示出青蛙、嘴、眼睛、腿和跳水声之间的数量关系.今天我们就学习用字母表示数.二、合作探究探究点一:含字母式子的书写要求下列各式中,符合代数式书写要求的是( )(1)134x 2y ; (2)a ×3; (3)ab ÷2; (4)a 2-b 23. A .4个 B .3个 C .2个 D .1个解析:(1)正确的书写格式是74x 2y ,不符合要求;(2)正确的书写格式是3a ,不符合要求;(3)正确的书写格式是12ab ,不符合要求;(4)符合要求.符合代数式书写要求的共1个.故选D. 方法总结:代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“·”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.探究点二:用含字母的式子表示数量关系【类型一】 用字母表示代数型的数量关系用字母表示下列问题中的数量关系:(1)为落实“阳光体育”工程,某校计划购买m 个篮球和n 个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为__________元.(2)在运动会中,一班总成绩为m 分,二班比一班总成绩的23还多5分,则二班的总成绩为________.(3)某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m 元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为______________元.解析:(1)用购买m 个篮球的总价加上n 个排球的总价表示.所以购买这些篮球和排球的总费用为(80m +60n )元. (2)二班的总成绩=23m +5. (3)根据题意得m (1+50%)(1-30%)(1-10%)=0.945m (元).方法总结:像这样的实际问题要先找出各个量之间的关系.要抓住关键词语,明确它们之间的意义及它们之间的关系,如和、差、积、商、大、小、多、少、倍、分等,注意数量关系的运算顺序,正确使用运算符号及括号.【类型二】 用字母表示几何图形中的数量关系用字母表示图中阴影部分的面积:(1) (2) 解析:(1)图中阴影部分的面积是正方形中挖去一个圆后剩下的部分,且正方形的边长是a ,圆的直径也是a ,圆的半径是a 2;(2)图中阴影部分是长方形中挖去4个小正方形后剩下的部分,且长方形的长为a,宽为b,小正方形的边长为x.解:(1)S=a2-π·(a2)2;(2)S=ab-4x2.方法总结:将不规则图形的面积转化为规则图形(如长方形、圆、三角形等)的面积的和或差是解决求阴影部分面积问题的关键.探究点三:探求规律性问题观察下列图形:它们是按一定规律排列的.(1)依照此规律,第20个图形共有几个五角星?(2)摆成第n个图案需要几个五角星?(3)摆成第2015个图案需要几个五角星?解析:通过观察已知图形可得每个图形都比其前一个图形多3个五角星,根据此规律即可解答.解:(1)根据题意得∵第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.(2)由(1)可知,摆成第n个图案需要3n个五角星.(3)摆成第2015个图案需要五角星2015×3=6045(个).方法总结:此题首先要结合图形具体数出几个值.注意由特殊到一般的分析方法.此题的规律为摆成第n个图案需要3n枚五角星.三、板书设计用字母表示数字母和数一样,可以参与运算,可以用式子把数量关系简明地表示出来.2.列式的注意事项:①数与字母、字母和字母相乘省略乘号;②数与字母相乘时数字写在前面.第2课时单项式教学目标:1.理解单项式及单项式系数、次数的概念;(重点)2.会准确迅速地确定一个单项式的系数和次数;3.能用单项式表示具体问题中的数量关系.(难点)教学过程:一、情境导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?1.思考:(1)若正方形的边长为a,则正方形的面积是________;体积是________.(2)设n表示一个数,则它的相反数是________;(3)铅笔的单价是x元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是________元.(4)一辆汽车的速度是v千米/时,行驶t小时所走过的路程为________千米.2.观察所列式子包含哪些运算,有何共同的运算特征.二、合作探究探究点一:单项式的相关概念【类型一】单项式的判断下列代数式2x,-13ab2c,x+12,πr2,4x,a2+2a,0,mn中,单项式有( )A.4个B.5个C.6个D.7个解析:2x,-13ab2c,πr2,0,都符合单项式的定义,共4个.故选A.方法总结:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式.分母中含字母的不是单项式,分子中含加、减运算的式子也不是单项式.【类型二】 确定单项式的系数和次数分别写出下列单项式的系数和次数.(1)-ab 2; (2)5ab 3c 27; (3)2πxy 23. 解析:单项式的系数就是单项式中的数字因数;单项式的次数就是单项式中所有字母指数的和,只要将这些字母的指数相加即可.解:(1)单项式的系数是-1,次数是3; (2)单项式的系数是57,次数是6; (3)单项式的系数是2π3,次数是3. 方法总结:(1)当单项式的系数是1或-1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数.单项式的系数包括前面的符号.(2)我们把常数项的次数看做0.确定单项式的次数时,单项式中单独一个字母的指数1不能忽略,如-3x 3y ,它的指数是4而不是3.(3)π是圆周率,是一个确定的数,不是字母.探究点二:单项式的应用用单项式表示下列各式,并指出其系数和次数.(1)王明同学买2本练习册花了n 元,那么买m 本练习册要花多少元?(2)正方体的棱长为a ,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n 元,得出买1本练习册花n2元,再根据买了m 本练习册,即可列出算式,再根据系数、次数的定义进行解答即可;(2)根据正方体的棱长为a 和表面积公式、体积公式列出式子,再根据系数、次数的定义进行解答.解:(1)∵买2本练习册花了n 元, ∴买1本练习册花n 2元,∴买m 本练习册要花12mn 元,∴它的系数是12,次数是2; (2)∵正方体的棱长为a ,∴它的表面积是6a 2,系数是6,次数是2;它的体积是a3,系数是1,次数是3.方法总结:此题考查了列代数式,用到的知识点是系数、次数、正方形的表面积公式、体积公式,根据题意列出式子是本题的关键.三、板书设计单项式由数或字母的积组成的代数式叫单项式,单独的一个数或一个字母也是单项式.单项式的系数概念:单项式中的数字因数,叫做这个单项式的系数.单项式的次数概念:一个单项式中,所有字母的指数的和叫做这个单项式的次数.第3课时多项式教学目标:1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数;3.能正确区分单项式和多项式.(重点)教学过程:一、情境导入列代数式:(1)长方形的长与宽分别为a、b,则长方形的周长是________;(2)图中阴影部分的面积为________;(3)某班有男生x人,女生21人,则这个班的学生一共有________人.观察我们所列出的代数式,是我们所学过的单项式吗?若不是,它又是什么代数式?二、合作探究探究点一:多项式的相关概念【类型一】单项式、多项式与整式的识别指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x2+y2,-x,a+b 3,10,6xy+1,1x,17m2n,2x2-x-5,2x2+x,a7.解析:根据整式、单项式、多项式的概念和区别来进行判断.解:2x2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有:-x,10,17m2n,a7;多项式有:x2+y2,a+b3,6xy+1,2x2-x-5;整式有:x2+y2,-x,a+b3,10,6xy+1,17m2n,2x2-x-5,a7.方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】确定多项式的项数和次数写出下列各多项式的项数和次数,并指出是几次几项式.(1)23x2-3x+5;(2)a+b+c-d;(3)-a2+a2b+2a2b2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x2-3x+5的项数为3,次数为2,二次三项式;(2)a+b+c-d的项数为4,次数为1,一次四项式;(3)-a2+a2b+2a2b2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.【类型三】根据多项式的概念求字母的取值已知-5x m+104x m-4x m y2是关于x、y的六次多项式,求m的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m+2=6,解得m=4,进而可得此多项式.解:由题意得m+2=6,解得m=4,此多项式是-5x4+104x4-4x4y2.方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】与多项式有关的探究性问题若关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,求m、n的值.解析:多项式不含二次项和一次项,则二次项和一次项系数为0.解:∵关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,∴m=0,n-1=0,则m=0,n=1.方法总结:多项式不含哪一项,则哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影部分面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.2.2 整式的加减第1课时合并同类项教学目标:1.使学生理解多项式中同类项的概念,会识别同类项;(重点)2.使学生掌握合并同类项法则,能进行同类项的合并.(重点,难点)教学过程:一、情境导入周末,你和爸爸妈妈要外出游玩,中午决定在外面用餐,爸爸、妈妈和你各自选了要吃的东西,爸爸选了一个汉堡和一杯可乐,妈妈选了一个汉堡和一个冰淇淋,你选了一对蛋挞和一杯可乐,买的时候你该怎么向服务员点餐?生活中处处有数学的存在.可以把具有相同特征的事物归为一类,在多项式中也可以把具有相同特征的单项式归为一类.自主探索:把下列单项式归归类,并说说你的分类依据.-7ab、2x、3、4ab2、6ab.二、合作探究探究点一:同类项【类型一】同类项的识别指出下列各题的两项是不是同类项,如果不是,请说明理由.(1)-x2y与12x2y; (2)23与-34;(3)2a3b2与3a2b3; (4)13xyz与3xy.解析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,对各式进行判断即可.解:(1)是同类项,因为-x2y与12x2y都含有x和y,且x的指数都是2,y的指数都是1;(2)是同类项,因为23与-34都不含字母,为常数项.常数项都是同类项;(3)不是同类项,因为2a3b2与3a2b3中,a的指数分别是3和2,b的指数分别为2和3,所以不是同类项;(4)不是同类项,因为13xyz与3xy中所含字母不同,13xyz含有字母x、y、z,而3xy中含有字母x、y.所以不是同类项.方法总结:(1)判断几个单项式是否是同类项的条件:所含字母相同;相同字母的指数分别相同.(2)同类项与系数无关,与字母的排列顺序无关.(3)常数项都是同类项.【类型二】已知两个单项式是同类项,求字母指数的值若-5x2y m与x n y是同类项,则m+n的值为( )A.1 B.2 C.3 D.4解析:∵-5x2y m和x n y是同类项,∴n=2,m=1,m+n=1+2=3,故选C.方法总结:注意掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,解题时易混淆,因此成了中考的常考点.探究点二:合并同类项将下列各式合并同类项.(1)-x-x-x;(2)2x2y-3x2y+5x2y;(3)2a2-3ab+4b2-5ab-6b2;(4)-ab3+2a3b+3ab3-4a3b.解析:逆用乘法的分配律,再根据合并同类项的法则“把同类项的系数相加,所得结果作为系数,字母和字母的指数不变”进行计算.解:(1)-x-x-x=(-1-1-1)x=-3x;(2)2x2y-3x2y+5x2y=(2-3+5)x2y=4x2y;(3)2a2-3ab+4b2-5ab-6b2=2a2+(4-6)b2+(-3-5)ab=2a2-2b2-8ab;(4)-ab3+2a3b+3ab3-4a3b=(-1+3)ab3+(2-4)a3b=2ab3-2a3b.方法总结:合并同类项的时候,为了不漏项,可用不同的符号(如直线、曲线、圆圈)标记不同的同类项.探究点三:化简求值化简求值:2a2b-2ab+3-3a2b+4ab,其中a=-2,b=1 2 .解析:原式合并同类项得到最简结果,把a与b的值代入计算即可求出值.解:2a2b-2ab+3-3a2b+4ab=(2-3)a2b+(-2+4)ab+3=-a2b+2ab+3.将a=-2,b=12代入得原式=-(-2)2×12+2×(-2)×12+3=-1.方法总结:对多项式化简求值时,一般先化简,即先合并同类项,再代入值计算结果,在算式中代入负数时,要注意添加负号.探究点四:合并同类项的应用有一批货物,甲可以3天运完,乙可以6天运完,若共有x吨货物,甲乙合作运输一天后还有________吨没有运完.解析:甲每天运货物的13,乙每天运货物的16,则两个人合作运输一天后剩余的货物为x-1 3x-16x=12x吨,故填12x.方法总结:体现了数学在生活中的运用.解决问题的关键是读懂题意,找到所求的量之间的关系.三、板书设计合并同类项1.同类项:所含字母相同,并且相同的字母指数也分别相同.判断同类项的条件:两相同,两无关2.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.第2课时去括号教学目标:1.在具体情境中体会去括号的必要性,能运用运算律去括号;(重点)2.掌握去括号的法则,并能利用法则解决简单的问题.(难点)教学过程:一、情境导入还记得用火柴棒像如图那样搭x个正方形时,怎样计算火柴的根数吗?方法1:第一个正方形用四根,以后每增加一个正方形火柴棒就增加三根,那么搭x个正方形需要火柴棒________根.方法2:把每个正方形都看成是用四根火柴棒搭成的,然后再减多余的根数,那么搭x个正方形需要火柴棒________根.方法3:第一个正方形可以看成是一根火柴棒加3根火柴棒搭成的,此后每增加一个正方形就增加3根,搭x个正方形共需____________根.二、合作探究探究点一:去括号下列去括号正确吗?如有错误,请改正.(1)+(-a-b)=a-b; (2)5x-(2x-1)-xy=5x-2x+1+xy;(3)3xy-2(xy-y)=3xy-2xy-2y; (4)(a+b)-3(2a-3b)=a+b-6a+3b.解析:先判断括号外面的符号,再根据去括号法则选用适当的方法去括号.解:(1)错误,括号外面是“+”号,括号内不变号,应该是:+(-a-b)=-a-b;(2)错误,-xy没在括号内,不应变号,应该是:5x-(2x-1)-xy=5x-2x+1-xy;(3)错误,括号外是“-”号,括号内应该变号,应该是:3xy-2(xy-y)=3xy-2xy+2y;(4)错误,有乘法的分配律使用错误,应该是:(a+b)-3(2a-3b)=a+b-6a+9b.方法总结:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.探究点二:去括号化简【类型一】 去括号后进行整式的化简先去括号,后合并同类项:(1)x +[-x -2(x -2y )]; (2)12a -(a +23b 2)+3(-12a +13b 2); (3)2a -(5a -3b )+3(2a -b ); (4)-3{-3[-3(2x +x 2)-3(x -x 2)-3]}.解析:去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.解:(1)x +[-x -2(x -2y )]=x -x -2x +4y =-2x +4y ; (2)原式=12a -a -23b 2-32a +b 2=-2a +b 23; (3)2a -(5a -3b )+3(2a -b )=2a -5a +3b +6a -3b =3a ;(4)-3{-3[-3(2x +x 2)-3(x -x 2)-3]}=-3{9(2x +x 2)+9(x -x 2)+9}=-27(2x +x 2)-27(x -x 2)-27=-54x -27x 2-27x +27x 2-27=-81x -27.方法总结:解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.【类型二】 与绝对值、数轴相结合,代数式去括号的化简有理数a ,b ,c 在数轴上的位置如图所示,化简|a +c |+|a +b +c |-|a -b |+|b +c |.解析:根据数轴上的数,右边的数总是大于左边的数,即可确定a ,b ,c 的符号,进而确定式子中绝对值内的式子的符号,根据正数的绝对值是本身,负数的绝对值是它的相反数,即可去掉绝对值符号,对式子进行化简.解:由图可知:a >0,b <0,c <0,|a |<|b |<|c |,∴a +c <0,a +b +c <0,a -b >0,b +c <0,∴原式=-(a +c )-(a +b +c )-(a -b )-(b +c )=-3a -b -3c .方法总结:本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的符号,去掉绝对值符号.探究点三:含括号的整式的化简求值【类型一】 化简求值先化简,再求值:已知x =-4,y =12,求5xy 2-[3xy 2-(4xy 2-2x 2y )]+2x 2y -xy 2.解析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=5xy2-3xy2+4xy2-2x2y+2x2y-xy2=5xy2,当x=-4,y=12时,原式=5×(-4)×(12)2=-5.方法总结:解决本题是要注意去括号,去括号要注意顺序,先去小括号,再去中括号,最后去大括号.负数代入求值时,要加上括号.【类型二】整体思想在整式求值中应用已知式子x2-4x+1的值是3,求式子3x2-12x-1的值.解析:若从已知条件出发先求出x的值,再代入计算,目前来说是不可能的.因此可把x2-4x看作一个整体,采用整体代入法,则问题可迎刃而解.解:因为x2-4x+1=3,所以x2-4x=2,所以3x2-12x-1=3(x2-4x)-1=3×2-1=5.方法总结:在整式的加减运算中,运用整体思想对某些问题进行整体处理,常常能化繁为简,解决一些目前无法解决的问题.探究点四:含括号整式的化简应用某商店有一种商品每件成本a元,原来按成本增加b元定出售价,售出40件后,由于库存积压,调整为按售价的80%出售,又销售了60件.(1)销售100件这种商品的总售价为多少元?(2)销售100件这种商品共盈利多少元?解析:(1)求出40件的售价与60件的售价即可确定出总售价;(2)由利润=售价-成本列出关系式即可得到结果.解:(1)根据题意得40(a+b)+60(a+b)×80%=88a+88b(元),则销售100件这种商品的总售价为(88a+88b)元;(2)根据题意得88a+88b-100a=-12a+88b(元),则销售100件这种商品共盈利(-12a +88b)元.方法总结:解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.三、板书设计去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.注意:①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值.第3课时整式的加减教学目标:1.知道整式加减运算的法则,熟练进行整式的加减运算;(重点)2.能用整式加减运算解决实际问题;(难点)3.能在实际背景中体会进行整式加减的必要性.教学过程:一、情境导入1.某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?(1)让学生写出答案:n+(n+1)+(n+2)+(n+3);(2)提问:以上答案能进一步化简吗?如何化简?我们进行了哪些运算?2.化简:(1)(x +y )-(2x -3y );(2)2(a 2-2b 2)-3(2a 2+b 2).提问:以上的化简实际上进行了哪些运算?怎样进行整式的加减运算?二、合作探究探究点一:整式的加减【类型一】 整式的化简化简:3(2x 2-y 2)-2(3y 2-2x 2).解析:先运用去括号法则去括号,然后合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:3(2x 2-y 2)-2(3y 2-2x 2)=6x 2-3y 2-6y 2+4x 2=10x 2-9y 2.方法总结:去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.【类型二】 整式的化简求值 化简求值:12a -2(a -13b 2)-(32a +13b 2)+1,其中a =2,b =-32. 解析:原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.解:原式=12a -2a +23b 2-32a -13b 2+1=-3a +13b 2+1,当a =2,b =-32时,原式=-3×2+13×(-32)2+1=-6+34+1=-414. 方法总结:化简求值时,一般先将整式进行化简,当代入求值时,要适当添上括号,否则容易发生计算错误,同时还要注意代数式中同一字母必须用同一数值代替,代数式中原有的数字和运算符号都不改变.【类型三】 利用“无关”进行说理或求值有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3的值”,马小虎做题时把a =2错抄成a =-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.解析:先通过去括号、合并同类项对多项式进行化简,然后代入a,b的值进行计算.解:3a3b3-12a2b+b-(4a3b3-14a2b-b2)+(a3b3+14a2b)-2b2+3=(3-4+1)a3b3+(-12+14+14)a2b+(1-2)b2+b+3=b-b2+3.因为它不含有字母a,所以代数式的值与a的取值无关.方法总结:解答此类题的思路就是把原式化简,得到一个不含指定字母的结果,便可说明该式与指定字母的取值无关.探究点二:整式加减的应用如图,小红家装饰新家,小红为自己的房间选择了一款窗帘(阴影部分表示窗帘),请你帮她计算:(1)窗户的面积是多大?(2)窗帘的面积是多大?(3)挂上这种窗帘后,窗户上还有多少面积可以射进阳光.解析:(1)窗户的宽为b+b2+b2=2b,长为a+b2,根据长方形的面积计算方法求得答案即可;(2)窗帘的面积是2个半径为b2的14圆的面积和一个直径为b的半圆的面积的和,相当于一个半径为b2的圆的面积;(3)利用窗户的面积减去窗帘的面积即可.解:(1)窗户的面积是(b+b2+b2)(a+b2)=2b(a+b2)=2ab+b2;(2)窗帘的面积是π(b2)2=14πb2;(3)射进阳光的面积是2ab+b2-14πb2=2ab+(1-14π)b2.方法总结:解决问题的关键是看清图意,正确利用面积计算公式列式即可.三、板书设计整式的加减运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.。
第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。
人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。
本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。
通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。
二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。
但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。
三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。
四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。
六. 教学准备教师准备教案、PPT、练习题等教学资源。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。
2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。
例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。
同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。
3.操练(15分钟)教师布置一些练习题,让学生独立完成。
例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。
人教版七年级数学上册2.1《整式》教案一. 教材分析人教版七年级数学上册2.1《整式》是学生在学习了有理数、四则运算、及数轴等知识的基础上,进一步学习代数知识的重要章节。
整式是代数表达式的基础,对于学生理解和掌握代数知识体系具有重要意义。
本节课的主要内容有整式的定义、分类和基本运算,通过学习,使学生能理解和运用整式进行简单的数学问题求解。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数、四则运算等概念有一定的了解。
但是,对于整式这一概念,学生可能较为抽象,难以理解。
因此,在教学过程中,需要借助具体的例子,帮助学生理解和掌握整式的概念和运算规律。
三. 教学目标1.理解整式的定义,能正确识别各种整式。
2.掌握整式的基本运算规律,能进行整式的加减乘除运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.整式的定义和分类。
2.整式的基本运算规律。
五. 教学方法采用“问题驱动”的教学方法,通过设置一系列问题,引导学生思考和探索,从而达到理解和掌握整式的目的。
同时,结合具体例子,进行讲解和操作,使学生能直观地理解和运用整式。
六. 教学准备1.准备相关的教学PPT,包括整式的定义、分类和运算规律等内容。
2.准备一些实际的数学问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引入整式的概念。
例如:已知两个一次函数的图像分别为y=2x+1和y=3x-2,求这两个函数的交点坐标。
2.呈现(10分钟)介绍整式的定义、分类和基本运算规律。
通过PPT展示相关的例子,使学生能直观地理解和掌握整式。
3.操练(10分钟)让学生进行一些整式的运算练习,巩固所学知识。
可以设置一些填空题、选择题等,检验学生对整式的理解和掌握程度。
4.巩固(10分钟)通过一些具体的例子,让学生运用整式解决实际问题。
例如:计算一道购物优惠的问题,需要学生运用整式进行计算。
5.拓展(10分钟)引导学生思考和探索整式的应用领域,例如物理中的运动方程、化学中的反应方程等。
第二章 整式的加减2.1 整式第1课时 用字母表示数1.在现实情境中进一步理解用字母表示数的意义,让学生在探索现实世界数量关系的过程中,建立符号意识.(重点)2.领会用字母表示数时数量关系的一种抽象化,是代数的一个重要特点.(难点)阅读教材P 54~56,思考下列问题.如何用字母表示数.自学反馈1.我们常用字母 t 表示行驶的时间,在小学列方程解应用题时,用字母 x 表示未知数. 2.用字母表示:(1)有理数减法法则:a -b =a +(-b); (2)有理数除法法则:a÷b =a·1b(b ≠0). 3.客车每小时行v 千米,t 小时行的路程为vt 千米.4.一本名著有a 页,王红读了b 天,还剩c 页未读,王红平均每天读了a -c b页.活动1 小组讨论例1 用字母表示加法的结合律和乘法的分配律.解:加法结合律:(a +b)+c =a +(b +c);乘法分配律:(a +b)c =ac +bc.例2 为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼比赛”.如图所示:按照上面的规律,摆n 条“金鱼”需用火柴棒的根数为(A )A .2+6nB .8+6nC .4+4nD .8n活动2 跟踪训练1.今天中午气温为18 ℃,晚上下降了a ℃,则晚上气温为(18-a)℃.2.衬衫原价每件x 元,若按6折出售,则现在的售价为每件0.6x 元.3.七年级一班全班同学合影,第1排站b 个人,以后每排都比前一排多2人,那么第3排站(b +4)人,第n 排站b +2(n -1)人.4.一个两位数,十位数为m ,个位数为2,则这个两位数为10m +2 .5.如图,下面图形的周长是2a +2b .6.找规律,填一填.摆1个这样的三角形需要3根小棒,摆2个这样的三角形需要5根小棒,摆3个这样的三角形需要7跟小棒,摆4个这样的三角形需要9根小棒,……摆11个这样的三角形需要23根小棒, 摆n 个这样的三角形需要(2n +1)根小棒. 活动3 课堂小结 如何用字母表示数,用字母表示数时需要注意些什么. 第2课时 单项式1.理解单项式、单项式的系数、单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数.2.初步学会观察、对比、归纳的方法;发展学生的观察能力、思维能力及分析能力.阅读教材P 56~57,思考下列问题.1.单项式、单项式的系数及单项式的次数的概念.2.区别单项式的系数和次数.知识探究1.由数与字母或字母与字母相乘组成的代数式叫单项式.2.单项式中的数字因数叫单项式的系数.3.单项式中所有字母的指数的和叫单项式的次数.自学反馈1.在式子1,a 2,a -b ,y ,15x ,1x 中,是单项式的有1,a 2,y ,15x . 2.(1)-a 的系数是-1,次数是1;(2)单项式-3x 2的系数是-3,次数是2;(3)2ab 3c 3的系数是23,次数是5. 3.下列说法正确的是(C )A .x 不是单项式B .x +2y 是单项式C .-x 的系数是-1D .0不是单项式(1)当一个单项式的系数是1或-1时,通常省略不写,如a 2bc ,-abc 等;(2)单项式的系数是带分数时,通常写成假分数,如134x 2y 写成74x 2y.活动1 小组讨论例1 用单项式表示下列各式.(1)边长为x 的正方形的周长为4x ;(2)一辆汽车的速度是v 千米∕时,行驶t 小时所走过的路程为vt 千米.(3)王洁同学买2本练习本花了n 元,那么买m 本练习本要mn 2元. (4)如图所示,边长为a 的正方体的表面积为6a 2,体积为a 3.例2 找出下列各式中的单项式,并写出各单项式的系数和次数. 23a ,5a +2b ,-y ,z 5x 7,a bc ,-18a 2b ,-x 2yz 2bc. 解:23a ,-y ,z 5x 7,-18a 2b. 其中23a 的系数为23,次数为1; -y 的系数为-1,次数为1;z 5x 7的系数为1,次数为12;-18a 2b 的系数为-18,次数为3.活动2 跟踪训练1.如果单项式-xy m z n 和5a 4b n 都是五次单项式,那么m 、n 的值分别为(D )A .2,3B .3,2C .4,1D .3,12.下列说法中正确的是(D )A .0不是单项式B .-3abc 2的系数是-3 C .-23x 2y 23的系数是-13 D .πab 2的次数是2 4.同时含有a 、b 、c 且系数为1的5次单项式是哪些?解:a 2b 2c ,a 2bc 2,ab 2c 2,a 3bc ,ab 3c ,abc 3.5.球的表面积等于π与球半径的平方的积的4倍;球的体积等于π与球半径的立方的积的43.(用单项式表示) 解:4πr 2,43πr 3. 3.下列各式:①123ab ;②x·2;③30%a ;④m -2;⑤3x 2-y 2.其中不符合代数式书写要求的有(D ) A .5个 B .4个 C .3个 D .2个活动3 课堂小结1.字母表示数.2.单项式的概念.3.单项式的系数及次数的概念.第3课时 多项式及整式1.使学生理解多项式、整式的概念,会准确确定一个多项式的项和次数.2.通过实例列整式,培养学生分析问题、解决问题的能力.3.培养学生积极思考的学习态度、合作交流的意识,了解整式的实际背景,进一步感受字母表示数的意义.阅读教材P 57~58,思考下列问题.1.多项式及有关概念.2.准确确定多项式的次数和项.知识探究1.几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数叫做多项式的次数,不含字母的项叫做多项式的常数项.2.单项式和多项式统称为整式.自学反馈1.多项式3x 2y -4xy -1由单项式3x 2y ,-4xy ,-1组成,它是三次三项式,其中二次项是-4xy ,常数项是-1.2.多项式-m 2n 2+m 3-2n -3是四次四项式,最高次项的系数为-1,常数项是-3.3.多项式3a 3-14中,常数项是(D ) A .1 B .-1 C .14 D .-144.多项式13a 2b -16是(B ) A .二次二项式 B .三次二项式C .一次二项式D .三次三项式活动1 小组讨论例1 先填空,再分析写出的式子有什么特点?与你的同伴交流.(1)减肥后,体重由80千克下降了n 千克,是(80-n)千克;(2)买一本练习本需要x 元,买一支中性笔需要y 元,买一块橡皮需要z 元,买4本练习本,5支中性笔,2块橡皮共需要(4x +5y +2z)元.例2 指出下列多项式的次数与项:(1)23xy -14; (2)a 2+2a 2b +ab 2-b 2;(3)2m 3n 3-3m 2n 2+53mn. 解:(1)2次,23xy ,-14. (2)3次,a 2,2a 2b ,ab 2,-b 2.(3)6次,2m 3n 3,-3m 2n 2,53mn. 活动2 跟踪训练1.下列说法中正确的有(A )①单项式-12πx 2y 的系数是-12; ②多项式a +3b +ab 是一次多项式;③多项式3a 2b 3-4ab +2的第二项是4ab ;④2x 2+1x-3是多项式. A .0个 B .1个 C .2个 D .3个2.把下列各式填在相应的集合里.①0.②x 2;③-x 2-2x +5;④94;⑤xy.⑥8+b 7;⑦-5;⑧x +y 5. 整式:{①②③④⑤⑥⑦⑧…}多项式:{③⑥⑧…}单项式:{①②④⑤⑦…}3.指出下列多项式的项和次数.(1)a 3-a 2b +ab 2-b 3; (2)3n 4-2n 2+1.解:(1)a 3,-a 2b ,ab 2,-b 3,3次.(2)3n 4,-2n 2,1,4次.4.指出下列多项式是几次几项式:(1)x 3-x +1; (2)x 3-2x 2y 2+3y 2.解:(1)三次三项式.(2)四次三项式.活动3 课堂小结1.多项式的概念.2.项、常数项、多项式的次数.。
第二章 整式的加减2.1 整式整式 (1)教课目的1 .知识与技术( 1)能用代数式表示实质问题中的数目关系.( 2)理解单项式、单项式的次数,系数等观点,会指出单项式的次数和系数. 重、难点与要点1 .要点:单项式的相关观点.2 .难点:负系数确实定以及正确确立一个单项式的次数.教课过程 一、新授6a 2,a 3, 2.5x , vt , -n .察看上边各式中运算有什么共同特色?上边各式中,数字与字母之间,字母与字母之间都是乘法运算, ?它们都是数字与字母的积,比如: 6a 2 表示 6×a 2, a 3 表示 1×a 3, 2.5x 表示 2.5 × x , vt 表示 1×v × t , -n? 表示 -1 ×n .像上边这样,只含有数与字母的积的式子叫做单项式.独自的一个数或一个字母也是单项式.如: -2 , a , 1 ,都是单项式,而1, 1+x 都不是单项.3a6a 2 的系数是 6,a 3的系数是单项式中的数字因数叫做这个单项式的系数,比如:1,-n 的系数是 -1 , -ab的系数是 - 1.55单项式表示数字与字母相乘时,往常把数字写成前方, 当一个单项式的系数是 1 或 -1 时往常省略不写.一个单项式中,全部字母的指数的和叫做这个单项式的次数.比如,2.5x? 中字母 x 的指数是 1,2.5x 是一次单项式; vt 中字母 v 与 t 的指数和是2,vt 是二次单项式, -a b 2c 中字母 a 、b 、c 的指数和是4, -a b 2c 是 4 次单项式.二、典范学习例 1.用单项式填空,并指出它们的系数和次数.( 1)每包书有 12 册,n 包书有 _______册.( 2)底边长为 a ,高为 h 的三角形的面积是 ______.( 3)一个长方体的长和宽都是a ,高是 h ,它的体积是 _______.( 4)一台电视机原价 a 元,现按原价的 9 折销售,这台电视机此刻售价为 _____元.( 5)一个长方形的长为 0.9 ,宽是 a ,这个长方形的面积是 _________.三、稳固练习1 .以下各式能否是单项式?为何?( 1)x-2y ; ( 2) - x;(3)4;(4)a b; ( 5) -1 .5m52 .判断以下各说法能否正确,错误的更正过来.( 1)单项式 -xy 2 的系数是 0,次数是 2. ( 2)单项式 27a 2的系数是 2,次数是 9.( 3)单项式 -2x n y的系数是 -2,次数是 n+1.333 .请你写出系数为 - ,含有 x 、 y ,次数为4 的全部单项式. 4.课本第 56 页练习 1、 2 题.四、讲堂小结1 .什么叫单项式?举例说明.2 .独自的一个数或一个字母是单项式吗?x是单项式吗?为何?a3 .什么叫单项式的系数?什么叫单项式的次数?举例说明.五、作业部署 1 .课本第 59 页至第 60 页,习题 2. 1 第 1、 2、 8 题. 2.采用课时作业设计.作业设计一、判断题.(对的打“∨” ,错的打“×” )1 . x 是单项式.( )2. 6 不是单项式.()3 .m 的系数是 0,次数也是 0.( )4.单项式xy 的系数是,次数是 2.( )44二、填空题.527ab 3 .x yz 的系数是 ________,次数是 ________.6.-的系数是 ______ ,次数是 _______.27 .假如单项式 -2 x 2y n与单项式 a 4b 的次数相同,则n=________.8 .写出系数为 5,含有 x 、y 、z?三个字母且次数为 4?的全部单项式, ?它们分别是 _______.三、选择题. 9.以下各式中单项式的个数是(). 3 , x+1, -2 1 ,- a,0 .72xy, x 1 .x2 42A .2个B .3个 C. 4 个D .5个10.单项式 -x 2yz 2 的系数、次数分别是().A . 0.2 B.0.4 C.-1 ,5D .1,4四、解答题.11.苹果的价钱比梨贵 35%,假如梨的价钱是每千克m 元,那么苹果的价钱是多少?假如梨的价钱比苹果廉价 10%,梨的价钱还是每千克 m 元,那么苹果的价钱是多少?12 .买一级肉 5 千克和买二级肉6 千克用的钱相同多,假如一级肉每千克 a 元,那么二级肉每千克多少元?假如用买 b 千克一级肉的钱去买二级肉,能够买多少千克?整式(2)教课目的使学生理解多项式、整式的观点,会正确确立一个多项式的项数和次数.重、难点与要点1.要点:多项式以及相关观点.2.难点:正确确立多项式的次数和项.教课过程一、复习发问2 .如何确立一个单项式的系数和次数?- 3ab2c的系数、次数分别是多少?73.列式表示以下问题:( 1)一个数比数 x 的 2 倍小 3,则这个数为 ________.( 2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买球, 5 个排球, 2 个足球共需 ________元.( 3)如图 1,三角尺的面积为________.( 4)如图 2 是一所住所的建筑平面图,这所住所的建筑面积是________平方米.3 个篮(1)(2)上边列出的式子2x-3 , 3x+5y+2z ,1ab-r2, x2+2x+18 ,它们是单项式吗?这些式子有什2么共同特色?与单项式有什么关系?2x-3可看作2x与 -3的和:3x+5y+2z能够看作单项式3x、 5y与2z的和;相同1ab-r 2看2作1ab 与 - r2的和, x2+2x+18 能够 x2、 2x、 18 的和.2二、新授请同学们阅读课本第 57页相关内容,并回答以下问题.1.几个单项式的和叫做_________;2 .在多项式中,每个单项式叫做_________ ;3.在多项式中,不含字母的项叫做_________;4.在多项式中, _____________________ ,叫做这个多项式的次数.5.多项式的次数与单项式的次数有什么差别?6 ( 1)多项式的次数与单项式的次数观点不一样,但又有联系,?第一求出此多项式各项(单项式)的次数,次数最高的就是这个多项式的次数.(2)一个多项式的最高次项能够不独一,次高项也能够不独一, ?如,?多项式1.什么叫单项式?举例说明.3x 2y-1xy 2+x 2-xy-5中,最高次项为3x 2y和 -1xy 2,二次项也有2 项, x 2 和 -xy ,?这个多项式为22二次五项式.单项式和多项式统称为整式,比如: 100t , 6a 3,vt , -n ,2x-3 , 3x+5y+2z 等都是整式.三、典范学习例 1.用多项式填空,并指出它们的项和次数.( 1)温度由 t ℃降落5℃后是 _______℃.( 2)甲数x 的 1与乙数y 的1的差能够表示为32_________.( 3)如课本图 2.1-3 ,圆环的面积为 ________.( 4)如课本图 2.1-4 ,钢管的体积是 ________.例 2.一条河流的水流速度为2.5 千米 / 时,假如已知船在静水中的速度,那么船在这条河流中顺流行驶和逆水行驶的速度分别如何表示?假如甲、?乙两条船在静水中的速度分别是20 千米/ 时和 35 千米 / 时, ?则它们在这条河流中的顺流行驶和逆水行驶的速度各是多少? 四、稳固练习1 .以下式子中,哪些是单项式?哪些是多项式?哪些是整式? 3x, 2x-1 ,m1, -ab , -5 ,2-1 , 3m-4n+m 2n .3 x2.鉴别正误: (1)多项式 -x 2y+2x 2-y 的次数 2.( )( 2)多项式 - 1-a+3a 2的一次项系数是 1.( )(3) -x-y-z 是三次三项式. ( )23.课本第 59 页练习. 4 .课本第 61 页第 10 题.五、讲堂小结1 .什么叫做多项式?多项式是整式吗?整式是多项式吗?2 .什么叫多项式的项?什么叫做常数项?举例说明?3 .什么叫做多项式的次数? 六、作业部署1 .课本第 60 页,习题 2. 1 第 2、 3、4、 5、 6、7 题作业设计一、填空题.2 1.式子 - 3 ab ,2x y ,x9 2 3, 3 , 1+1 中,单项式的是 ______,多项, -a bc ,1,x -2x+353 2ax式的是 _______.2 .多项式 -x 2 y +2x-3 是 _______ 次 _______ 项式,最高次项的系数是 ______ ,常数项是3________.3 . 2x 2-3x y 2+x-1 的各项分别为 ________.二、选择题.4.一个五次多项式,它任何一项的次数().A .都小于 5B.都等于 5C.都不小于 5 D .都不大于 55.以下说法正确的选项是().A.x2+x 3是五次多项式 B .a b不是多项式 C.x2-2 是二次二项式 D .xy 2-1 是二次二项3式三、列式表示.6.n 为整数,不可以被 3 整除的整数表示为 ________.7.一个三位数,十位数字为x,个位数字比十位数字少3,?百位数字是个位数字的 3 倍,则这个三位数可表示为________.8.某班有学生 a 人,若每 4 人分红一组,有一组少 2 人,则所分组数是 ________.9.以下图,暗影部分的面积表示为________.10.用火柴棒按图 4 的方式搭塔式三角形.(1)察看填表:一条边火柴棒根数 1 2 34小三角形个数火柴棒总根数( 2)照这样下去,搭起的大三角形一条边用了n 根火柴棒,这样的小三角形有多少个?整式(3)教课目的和要求:1.理解多项式的升(降 )幂摆列的观点,会进行多项式的升(降 )幂摆列。
七年级上册数学第二章整式教案•相关推荐人教版七年级上册数学第二章整式教案(精选10篇)作为一位无私奉献的人民教师,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。
我们应该怎么写教案呢?以下是小编精心整理的人教版七年级上册数学第二章整式教案,希望能够帮助到大家。
七年级上册数学第二章整式教案篇1一、教材分析本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。
因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。
通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:(一)知识技能目标:1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:合并同类项五、教学关键:同类项的概念六、教学准备:教师:1、筛选数学题目,精心设置问题情境。
初中七年级上册数学《整式》教案优质范文五篇三人行,必有我师焉择其善者而从之,其不善者而改之。
今天为大家带来的是初中七班级上册数学《整式》教案教案优质(范文),希望可以帮助到大家。
初中七班级上册数学《整式》教案教案优质范文一教学目标:1、理解用字母表示数的意义,会用字母表示简单的数量关系与规律,渗透符号化数学思想,培育符号感。
2、让学生经历自主探索、合作沟通的过程,提高分析、解决问题的能力,培育用数学的意识。
3、创设各种情景,增强学生学习的爱好,培育学生良好的意志品质,进一步提高创新和实践能力。
教学过程:1、创设情景,揭示课题老师活动:我们已经学习了26个英文字母,这些英文字母除了能组成(英语单词)外,你们知道在我们现实生活中还有哪些作用吗?学生活动:学生沉思一会儿,不敢举手发言老师活动:大家一起看题:填一填(1)、小A和小B周末到电影院去看《阿Q正传》,问这里的字母A、B、Q等表示________。
(2)、国庆长假期间,小明游玩了A城市与B城市,问这里面的字母A、B表示________。
(3)、扑克牌中有K牌、Q牌等,问这里的字母K、Q表示_______。
学生活动:生1:第一题表示人名;生2:第二题表示地名;生3:第三题表示数字;生4:老师,我还能举出一些例子,如质量中的CE认证,音乐中的C大调等。
老师活动:用肯定的、赞赏的语气表扬了生4,同时指出在数学中字母可以表示数,然后出示课题:用字母表示数走进代数世界。
通过创设问题情境,调动学生的生活(阅历),初步体会字母在日常生活中的广泛应用,激发学生的学习爱好,明确本堂课的学习目的。
2、动手操作,探索规律老师活动:让学生动手用火柴搭一搭如图所示的正方形,问搭建1个、2个、3个、4个、及n个这样的正方形各需要多少根火柴?学生活动:学生分4人小组共同搭建,观察、讨论、探索、猜想、沟通所需火柴根数,回答n个正方形所需火柴数时答案有3n+1,4+3(n-1),4n-(n-1)等。
人教版七年级数学上册:2.1《整式》教学设计一. 教材分析《整式》是人教版七年级数学上册第二章的第一节内容,主要介绍了整式的概念、性质和运算。
本节内容是学生从小学数学过渡到初中数学的重要环节,对于培养学生抽象思维能力、逻辑推理能力以及初步解决实际问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号、运算规则等有一定的了解。
但同时,他们对于整式的概念和性质可能还比较陌生,需要通过具体的例子和实际操作来逐步理解和掌握。
此外,学生的学习习惯、思维方式和学习动机等方面也存在差异,因此在教学过程中需要关注学生的个体差异,因材施教。
三. 教学目标1.了解整式的概念、性质和运算规则;2.培养学生抽象思维能力、逻辑推理能力以及解决实际问题的能力;3.培养学生合作交流、积极参与的学习态度和良好习惯。
四. 教学重难点1.整式的概念和性质;2.整式的运算规则;3.运用整式解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究整式的概念和性质;2.使用案例分析法,让学生通过具体例子理解整式的运算规则;3.运用练习法,巩固学生对整式的掌握程度;4.采用小组合作学习法,培养学生合作交流的能力。
六. 教学准备1.准备相关案例和练习题;2.制作多媒体课件,辅助讲解和展示;3.安排适当的时间进行课堂讨论和练习。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些实际问题,引导学生思考如何用数学方法来解决这些问题。
通过让学生观察和分析这些问题,引出整式的概念。
2.呈现(15分钟)讲解整式的定义和性质,引导学生理解整式的概念。
通过示例和讲解,让学生掌握整式的基本性质,如系数、次数等。
3.操练(10分钟)让学生分组讨论,分析给出的案例,运用整式的性质进行分析和解答。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生进行课堂练习,运用所学的整式知识解决实际问题。
教师及时批改和反馈,帮助学生巩固所学知识。
第二章整式的加减第1课时:整式(1)教学内容:教科书第54—56页,2.1整式:1.单项式。
教学重点和难点:重点:难点:教学方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1、 列代数式(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方形棱长,则正方形的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。
让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)2、 请学生说出所列代数式的意义。
3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
然后教师补充,单独一个数或一个字母也是单项式,如a ,5。
2.练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
以四个单项式31a 2h ,2πr ,a bc ,-m 为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
4.例题:例1:判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②x 1; ③πr 2; ④-23a 2b 。
答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x 的商;③是,它的系数是π,次数是2; ④是,它的系数是-23,次数是3。
例2:下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2;④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。
通过其中的反例练习及例题,强调应注意以下几点:①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;③单项式次数只与字母指数有关。
5.游戏:规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。
)6.课堂练习:课本p56:1,2。
三、课堂小结:①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、课堂作业: 课本p59:1,2。
板书设计:教学后记:本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。
为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。
第2课时:整式(2)教学内容:教科书第56—59页,2.1整式:2.多项式。
教学目标和要求:教学重点和难点:重点:难点:教学方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1.列代数式:(1)长方形的长与宽分别为a 、b ,则长方形的周长是 ;(2)某班有男生x 人,女生21人,则这个班共有学生 人;(3)图中阴影部分的面积为_________;(4)鸡兔同笼,鸡a 只,兔b 只,则共有头 个,脚 只。
(由于本课的主题是多项式,通过列代数式引入多项式,既是对前面知识的回顾,又由此导入新课,既符合学生的认知水平,又能为学生学习新知提供丰富的素材。
)2.观察以上所得出的四个代数式与上节课所学单项式有何区别。
(1)2(a +b) ; (2)21+x ; (3)a +b ; (4)2a +4b 。
(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力。
通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充。
)二、讲授新课:1.多项式:板书由学生自己归纳得出的多项式概念。
上面这些代数式都是由几个单项式相加而成的。
像这样,几个单项式的和叫做多项式(polynomi a l)。
在多项式中,每个单项式叫做多项式的项(term)。
其中,不含字母的项,叫做常数项(const a nt term)。
例如,多项式5232+-x x 有三项,它们是23x ,-2x ,5。
其中5是常数项。
一个多项式含有几项,就叫几项式。
多项式里,次数最高项的次数,就是这个多项式的次数。
例如,多项式5232+-x x 是一个二次三项式。
注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号。
(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。
)2.例题:例1:判断:①多项式a 3-a 2b+a b 2-b 3的项为a 3、a 2b、a b 2、b 3,次数为12;②多项式3n 4-2n 2+1的次数为4,常数项为1。
(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a 2b 、-b 3,而往往很多同学都认为是a 2b 和b 3,不把符号包括在项中。
另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。
)例2:指出下列多项式的项和次数:(1)3x -1+3x 2; (2)4x 3+2x -2y 2。
解:略。
例3:指出下列多项式是几次几项式。
(1)x 3-x +1; (2)x 3-2x 2y 2+3y 2。
解:略。
例4:已知代数式3x n -(m -1)x +1是关于x 的三次二项式,求m 、n 的条件。
解:略。
(让学生口答例2、例3,老师在黑板上规范书写格式。
讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数。
在例3讲完后插入整式的定义: 单项式与多项式统称整式(integr a l expression)。
例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力。
)通过其中的反例练习及例题,强调应注意以下几点:6.课堂练习:课本p59:1,2。
①填空:-45a 2b -34a b +1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。
②已知代数式2x 2-mnx 2+y 2是关于字母x 、y 的三次三项式,求m 、n 的条件。
三、课堂小结:①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几。
②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。
(让学生小结,师生进行补充。
)四、课堂作业: 课本p60:3板书设计:教学后记:从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点。
掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性。
最后列举几个例子,与学生一起完成。
教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成。
要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识。
第3课时:整式(3)教学内容:补充内容,课本64页提到这个内容教学目的和要求:1.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。
2.通过尝试和交流,让学生体会到多项式升(降)幂排列的可行性和必要性。
3.初步体验排列组合思想与数学美感,培养学生的审美观。
教学重点和难点:重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。
难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。
教学方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:请运用加法交换律,任意交换多项式x 2+x +1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐?(以上由学生小组讨论,得出结果后,教师可投影演示,然后与全班同学共同探讨。
充分发挥学生的主体作用,让学生成为知识的发现者,感受成功的喜悦,体验其中蕴含的数学美,增强学好数学的信心。
)由讨论发现任意交换多项式x 2+x +1中各项的位置,可以得到六种不同的排列方式,在众多的排列方式中,像x 2+x +1与1+x +x 2这样的排列比较整齐。
二、讲授新课:1.升幂排列与降幂排列:这两种排列有一个共同点,那就是x 的指数是逐渐变小(或变大)的。
我们把这种排列叫做升幂排列与降幂排列。
(板书课题:升幂排列与降幂排列。
)例如:把多项式5x 2+3x -2x 3-1按x 的指数从大到小的顺序排列,可以写成-2x 3+5x 2+3x -1,这叫做这个多项式按字母x 的降幂排列。
若按x 的指数从小到大的顺序排列,则写成-1+3x +5x 2-2x 3,这叫做这个多项式按字母x 的升幂排列。