新北师大版初中八年级数学上册4.2一次函数与正比例函数1公开课优质课教学设计
- 格式:doc
- 大小:1.04 MB
- 文档页数:4
最新北师大版八年级数学上册《一次函数与正比例函数》教学设计(精品教案)1.探究:引导学生观察生活中的实例,探究变量之间的关系,初步感受函数的概念。
2.归纳:通过多个实例,引导学生总结一次函数和正比例函数的概念和特点。
3.巩固和反馈:通过练和讨论,巩固学生的知识点,及时反馈学生的问题和疑惑。
2.研究方法:学生需要积极参与探究和讨论,注重归纳总结,勤于练和思考,及时反馈自己的问题和困惑。
五、教学内容分析本节课的主要内容是一次函数和正比例函数的概念和特点,以及如何根据已知条件写出简单的一次函数表达式。
教学重点是理解一次函数和正比例函数的概念,教学难点是能根据所给条件写出简单的一次函数表达式,需要发展学生的抽象思维能力。
六、教学过程设计1.引入新知识:通过一些实例引导学生思考变量之间的关系,初步感受函数的概念。
2.讲解一次函数和正比例函数的概念和特点,引导学生总结归纳。
3.演示如何根据已知条件写出简单的一次函数表达式,让学生进行练。
4.讨论和解决学生的问题和疑惑,及时给予反馈。
5.巩固练:让学生通过实例练,巩固所学知识。
6.总结归纳:让学生总结一次函数和正比例函数的概念和特点,及如何根据已知条件写出简单的一次函数表达式。
七、教学资源准备教师需要准备课件、实例、练题等教学资源,以及黑板、白板、笔等教学工具。
八、教学评估方法教师可以通过学生的课堂表现、练成绩、小组讨论等方式进行评估,及时发现学生的问题和困惑,做好及时反馈和指导。
同时,教师可以通过课后作业和考试等方式进行综合评估。
教学过程设计本节课设计了七个环节:复引入、新课讲述、巩固练、知识提高、反馈练、课堂小结和布置作业。
复引入在这个环节,教师提出了三个问题,分别是什么是函数、函数有哪些表示方式和在现实生活中有哪些问题可以归结为函数问题。
这个环节的意图是为了激发学生的求知欲望,吸引同学们的注意力,采用了“复旧知识,诱导新内容”的引入方法。
问题(1)(2)复上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识。
第四章一次函数4.2 一次函数与正比例函数教学设计一、教学目标1.经历一次函数概念的抽象过程,体会模型思想,发展符号意识。
2.理解正比例函数和一次函数的概念,能根据所给条件写出正比例函数和简单的一次函数表达式。
二、教学重点及难点重点:1.一次函数、正比例函数的概念.2.一次函数、正比例函数的关系.3.会根据已知信息写出一次函数的表达式.难点:一次函数知识的运用.三、教学用具多媒体课件四、相关资源《弹簧》动画,《汽车行驶耗油》动画.五、教学过程【情境导入】【探究新知】身边的数学:你会选择哪种收费方式呢?移动通信公司推出两种收费标准:A类收费标准:不管通话时间多长,每部手机每月必须缴月租费12元,另外,通话费按0.2元/min计算.B类收费标准:没有月租费,但通话费按0.25元/min计算.1.写出每月应缴费用y(元)与通话时间x(min)之间的解析式.2.如果每月平均通话时间为300 min,你会选择哪类收费方式?[说明与建议] 说明:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了学生熟悉的情景,既复习旧知识,又为学习新知识作好铺垫.建议:提示学生应分别写出A、B两类收费标准下应缴费用与通话时间之间的解析式.对于问题2,学生现在完成还有些难度,教师可只提出问题不做解释,从而引出本节课内容.一次函数,正比例函数的概念上面的两个函数关系式为y =0.2x +12,y =0.25x ,都是左边是因变量y ,右边是含自变量x 的代数式.并且自变量和因变量的指数都是一次.一般地,如果2个变量x 与y 之间的函数关系式,可以表示为y =kx +b (k ,b 为常数,且k ≠0)的形式,那么称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当b =0时,称y 是x 的正比例函数.注意:1.自变量的指数为一次.2.含自变量的式子为整式.3.k ≠ 0【典例精讲】例1 下列函数中,y 是x 的一次函数的是( )①y =x -6;②y =2x ;③y =8x ;④y =7-x A ①②③ B ①③④ C ①②③④ D ②③④分析:考察一次函数的定义:答案:B例2 写出下列各题中x 与y 之间的关系式,并判断,y 是否为x 的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y (千米)与行驶时间x (时)之间的关系式;②圆的面积y (cm 2)与它的半径x (cm )之间的关系;③一棵树现在高50厘米,每个月长高2厘米,x 月后这棵树的高度为y (厘米)解:①y =60x ,是一次函数,也是正比例函数.②2πy r ,既不是一次函数,也不是正比例函数.③y =50+2x , 是一次函数,也是正比例函数.例3 我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于5000元的部分征收3%的所得税……如某人某月收入3860元,他应缴个人工资薪金所得税为(3860-3500)×3%=10.8(元)①当月收入大于3500元而又小于5000元时,写出应缴个人工资、薪金所得税y (元)与月收入x (元)之间的关系式.②某人某月收入为4160元,他应缴个人工资、薪金所得税多少元?③如果某人本月缴个人工资、薪金所得税19.2元,那么此人本月工资、薪金是多少元? 解:①当月收入大于3500元而小于5000元时,y =(x -3500)×3%,即y =0.03x -105②当x =4160时,y =0.03×4160-105=19.8(元)③因为(5000-3500)×3%=45(元),19.2<45,所以此人本月工资、薪金收入低于5000元,设此人本月工资、薪金收入是x 元,则19.2=0.03x -105,所以解得x =4140(元)即此人本月工资、薪金收入是4140元。
北师大版数学八年级上册4.2一次函数与正比例函数公开课教案课题:一次函数与正比例函数? 教学目标:知识和技能目标:1、经历一次函数概念的抽象过程,体会模型思想,发展符合意义2.理解正比例函数和初等函数的概念,能根据给定条件写出正比例函数和简单初等函数表达式的过程和方法目标1、经历一般规律的探索过程、发展学生的抽象思维能力。
2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
情感与态度目标1.通过函数与变量的关系、初等函数与初等方程的关系培养学生的数学思维。
2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力?重点:将实际问题表示为程度的函数?困难:能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.? 教学过程:一、课前复习1.函数一般来说,在一个特定的变化过程中,有两个变量X和Y。
如果给定一个X值并相应地确定一个Y值,那么我们称Y为X.2的函数。
函数表达式:①图象法、②列表法、③分析法(关系法)二、情境引入问题1:弹簧的自然长度为3厘米。
在弹簧极限范围内,悬挂物体的质量X每增加1kg,弹簧长度y就会增加0.5cm(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:x/kgy/cm012345(2)你能写出x与y之间的关系式吗?答案(1)3、3.5、4、4.5、5、5.5;(2)y=3+0.5x.查询2:一辆车的油箱中有100升汽油,每50公里消耗9升汽油(1)填写下表:该车的行驶距离为05010150202200X/km,油箱中剩余汽油为Y/L(2)。
你能写出X和y之间的关系吗?(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?答案(1)100、91、82、73、64、46;(2)x与y之间的关系式为y=100-0.18x;(3)行驶距离x不能无限增加,因为汽油只有100升,每行驶50km耗油9l,行驶560km后,油箱就没有油了,所以x不会超过560km.y代表油箱剩余油量,所以y应该小于100但不能小于零.思考:这些函数的形式是自变量x和一个常数的K次和归纳:一次函数的定义一般来说,如果两个变量X和y之间的关系可以表示为y=KX+B(k,B是常数,k≠ 0),则y是X的主函数(X是自变量,y是因变量),尤其是当B=0时,y是X的正比例函数。
《一次函数与正比例函数》说课稿说课内容:初中北师大版课程标准实验教科书八年级(上)《一次函数与正比例函数》.下面我就从教材内容分析、学情分析、教法学法选择、教学具及教学资源利用、教学流程设计、教学反思设计等六个方面介绍我对本节课的理解与设计.一、教材内容分析(一)教材的地位和作用这节课是九年义务教育北师大版八年级上册第四章第二节,在七年级下学期学生已经探索了变量之间的关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数.函数是研究现实世界变化规律的一个重要模型,函数是初中阶段数学学习的一个重要内容.新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念.一次函数的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习奠定了基础.(二)教学目标确定根据新课标对知识、水平和情感价值目标的要求,以及学生的认知特点、心理特点及本节课的知识特点,确定以下三维教学目标.知识与技能目标:理解正比例函数和一次函数的概念,会判断正比例函数和一次函数的表达式.过程与方法目标:经历一次函数概念的抽象过程,体会模型思想,发展符号意识.情感、态度与价值观目标:体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.使学生在探索过程中体验成功的喜悦,树立学习的自信心.教学重点:从具体情境中列出相对应的一次函数表达式,从而抽象出一次函数的概念.教学难点:根据实际情景写出一次函数的表达式,发展学生的抽象思维水平.二、学情分析(一)学生的知识技能基础:学生在前面七年级下学期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数.函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容.新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念.一次函数的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习奠定了基础.(二)学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多独立思考与合作学习的过程,另外初二学生已经具备一些数学活动经验,学生在活动中会得心应手.三、教法学法选择(一)说教法鉴于教材特点及八年级学生的年龄特点、心理特征和认知水平,采用问题导学模式,用层层推动的提问,启发学生深入思考,主动探究,主动获取知识,主动参与到整个教学活动中来,充分表达学生主体地位.整个学习过程中教师扮演的角色是组织者、引导者,通过师生互动、教师点拨,逐步解决问题,发展学生思维,培养学生水平.(二)说学法:根据本节教材内容和学生的理解水平,在教学过程中,我采用问题驱动方式,层层铺垫设疑,逐层提升问题难度,让学生通过大量的生活情境问题抽象数学概念,从中体会数学学习的价值及意义。
《一次函数与正比例函数》教案一、教材分析(一)教材的地位和作用《一次函数与正比例函数》八年级上册第四章第二节的内容,一次函数是初中阶段研究的较为简单、应用较为广泛的函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标知识与技能目标:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.过程与方法目标:(1)经历一次函数概念的抽象过程,体会模型思想,从实际问题中得到函数关系式,并感受它们之间的一种依存关系。
(2)能根据所给的实际生活背景,列出简单的一次函数关系式。
情感态度与价值观目标:通过具体问题的解决,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.在探索过程中体验成功的喜悦,树立学习的自信心.教学重点、难点:重点:从具体情境中列出相应的一次函数表达式,从而抽象出一次函数的概念。
难点:根据具体情境所给的信息确定一次函数的表达式二、教法与学法:在本节课的教学中我准备采用的教学方法主要是引导——自学交流的方式。
根据学生的理解能力和生理特征,一方面运用现实生活实例,引发学生的兴趣,使他们的注意力集中到解决现实生活问题上,另一方面通过学生小组合作交流、展示,尽可能充分发挥学生的主动性。
通过本节课的学习,使学生学会在独立思考的基础上与同伴进行交流、讨论,培养学生的合作意识,感受数学源于生活有应用于生活。
三、教学过程设计下面是我说课的重点,也就是教学过程的设计,整节课我共设为六个环节:第一个环节是复习回顾:1、什么叫函数:在某个变化过程中,有两个 x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是 ,y是 .2、函数的三种表达方式有:、、。
3、已知一个长方形的面积为y,长为5,宽为x,则长方形的面积表示为y= . 设计意图:复习函数的概念及其表达方式。
关于初中数学的优质公开课获奖教案设计5篇关于初中数学的教案篇1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,—3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:5、过点(0,2)且与直线y=3x平行的直线是:6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。
8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
(2)求直线AC的解析式。
4.2 一次函数与正比例函数
1.掌握一次函数的概念,能根据条件写出一次函数的关系式;(重点)
2.掌握正比例函数的概念.(重点)
一、情境导入
生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min;旋转两圈,表示时间过了2min……
那么,秒针走过的圈数与经过的时间之间的关系如何表示呢?
二、合作探究
探究点一:一次函数与正比例函数
【类型一】一次函数与正比例函数的识别
下列函数关系式中,哪些是一次函数,哪些是正比例函数?
(1)y=-x-4; (2)y=5x2-6;
(3)y=2πx; (4)y=-x 2;
(5)y=1
x
;(6)y=8x2+x(1-8x).
解析:首先看每个函数的表达式能否变形转化为y=kx+b(k≠0,k、b是常数)的形式,如果x的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b=0,那么它是正比例函数.
解:(1)是一次函数,不是正比例函数;
(2)不是一次函数,也不是正比例函数;
(3)是一次函数,也是正比例函数;
(4)是一次函数,也是正比例函数;
(5)不是一次函数,也不是正比例函数;
(6)是一次函数,也是正比例函数.
方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零;判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.
【类型二】根据一次函数与正比例函数的定义求字母的值
已知函数y=(m-5)xm2-24+m+1.
(1)若它是一次函数,求m的值;
(2)若它是正比例函数,求m的值.
解析:(1)要使函数是一次函数,根据一次函数的定义x的指数m2-24=1,且一次项系数m-5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m+1=0这个条件.
解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-
5≠0,所以m=±5且m≠5,所以m=-5.所以当m=-5时,函数y=(m-5)xm2-24+m+1是一次函数.
(2)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0且m+1=0.所以m=±5且m≠5且m=-1,则这样的m不存在,所以函数y =(m-5)xm2-24+m+1不可能为正比例函数.
方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b=0时,一次函数为正比例函数.
探究点二:一次函数关系式的确定
某公司以每吨200元的价格购进某种矿石原料300吨,用以生产甲、乙
两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.
(1)写出m与x的关系式;
(2)写出y与x的函数关系式.(不要求写自变量的取值范围)
解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为
总利润y =甲产品的利润+乙产品的利润.
解:(1)因为4m +10x =300,所以m =150-5x 2
. (2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y =600x +1000m.将m =150-5x 2代入,得y =600x +1000×150-5x 2
,即y =-1900x +75000. 方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
三、板书设计
一次函数⎩⎪⎨⎪⎧一次函数的概念正比例函数的概念函数关系式的确定
经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到函数关系式这一过程,提升学生的数学应用能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.使学生在探索过程中体验成功的喜悦,树立学习的自信心.。