四川省成都市高新区2019届高三上学期“一诊”模拟考试数学(文)试题PDF版含答案
- 格式:pdf
- 大小:275.55 KB
- 文档页数:1
高考数学精品复习资料2019.5四川省成都市高三一诊模拟考试文科数学试题(考试时间: 12月27日 总分:150分)一、选择题(每小题5分,共50分) 1.不等式223x x -≤+的解集是( ) A (,8](3,)-∞-⋃-+∞ B (,8][3,)-∞-⋃-+∞ C .[3,2]- D (3,2]-2.若复数(,i 为虚数单位)是纯虚数,则实数a 的值为( ) A -2B 4C 6D -63.公差不为零的等差数列第2,3,6项构成等比数列,则这三项的公比为( ) A .1 B .2 C .3 D .44.已知平面向量a ,b 满足||1,||2a b ==,a 与b 的夹角为60︒,则“m=1”是“()a mb a -⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.关于命题p :A φφ⋂=,命题q :A A φ=,则下列说法正确的是( ) A .()p q ⌝∨为假B .()()p q ⌝∧⌝为真C .()()p q ⌝∨⌝为假D .()p q ⌝∧为真6.设函数)(|,3sin |3sin )(x f x x x f 则+=为 ( )A .周期函数,最小正周期为23π B .周期函数,最小正周期为3π C .周期函数,最小正周期为π2D .非周期函数7.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):( )①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”; ②“若a ,b ,c ,d ∈R ,则复数a +bi =c +di ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d”;③“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”. 其中类比得到的结论正确的个数是( )A .0B .1C .2D .3 8.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则1BB 与平面11AB C 所成的角为( )A.6π B. 4π C. 3π D. 2π9.设集合11[0,),[,1]22A B ==,函数1,()()22(1),()x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩00[()]x A f f x A ∈∈且,则0x 的取值范围是( ) A .(10,4] B .(11,42] C .(11,42) D .[0,38] 10.定义在(1,1)-上的函数()()()1x yf x f y f xy--=-;当(1,0)()0x f x ∈->时,若111()(),(),(0),,,5112P f f Q f R f P Q R =+==则的大小关系为( )A .R Q P >> B. R P Q >> C. P R Q >> D.Q P R >> 二、填空题(每小题5分,共25分) 11.若24log 3,(22)x x x -=-=则12.某程序的框图如图所示,若执行该程序,则输出的i 值为 13.在正方体!111D C B A ABCD -中,Q P N M 、、、分别是1111CC D C AA AB 、、、的中点,给出以下四个结论:①1AC MN ⊥; ②1AC //平面MNPQ ; ③1AC 与PM 相交; ④1NC 与PM 异面其中正确结论的序号是 .14已知函数()321f x x x =---,则其最大值为 。
2019届四川省成都市高三上学期第一次诊断性检测数学(文)试题(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2A x x=->,{}1B x x=?,则A B?()A. {}2x x-> B. {}21x x-?<C. {}2x x? D. {}1x x³【答案】A2.复数2(iz ii+=为虚数单位)在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D3.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为()A. 4B. 8C. 16D. 24【答案】B4.设实数,x y满足约束条件121010xx yx yì£ïï-+?íï+-?ïî,则3z x y=+的最小值为()A. 1B. 2C. 3D. 6【答案】A5.执行如图所示的程序框图,则输出的n值是()A. 5B. 7C. 9D. 11 【答案】C6.设n S 为等差数列{}n a 的前n 项和,且5632a a a +=+,则7S =( ) A. 28 B. 14 C. 7 D. 2 【答案】B7.下列判断正确的是( )A. “2x -<”是“()ln 30x +<”的充分不必要条件B. 函数()f x =的最小值为2C. 当,R a b Î时,命题“若a b =,则sin sin a b =”的逆否命题为真命题D. 命题“0x ">,201920190x +>”的否定是“00x $?,020*******x +?” 【答案】C8.已知函数()32cos f x x x =+,若a f =,(2)b f =,2(log 7)c f =,则,,a b c 的大小关系是( ) A. a b c << B. c a b << C. b a c << D. b c a << 【答案】D9.在各棱长均相等的直三棱柱111ABC A B C -中,已知M 是棱1BB 的中点,N 是棱AC 的中点,则异面直线1A M 与NB 所成角的正切值为( )D. 2【答案】C10.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为( ) A.49 B. 59 C. 23 D. 79【答案】C11.已知定义在R 上的函数()f x 的图像关于直线(0)x a a =>对称,且当x a ³时,2()x a f x e =-.过点(,0)P a 作曲线()y f x =的两条切线,若这两条切线相互垂直,则函数()f x 的最小值为( )A. 12e- B. 1e - C. 32e-D. 2e -【答案】B12.设椭圆2222:1(0)x y C a b a b+=>>的左,右顶点为,A B 。
成都市2016级高中毕业班第一次诊断性检测数学(文科)一、选择题:本大题共2小题,每小题5分,共60分.1.已知集合2Ax x >,1B x x ,则A B ( ) A. 2x x > B. 21x x <C. 2x xD. 1x x【答案】A 【解析】 【分析】直接利用集合并集的定义求解即可. 【详解】因为2Ax x >,1B x x ,所以,根据集合并集的定义可得2A Bx x >,故选A.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的集合. 2.复数2(izi i为虚数单位)在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】D 【解析】 【分析】利用复数代数形式的乘除运算化简复数2izi,求出z 在复平面内对应点的坐标即可得结果. 【详解】22ii2+i 12i iiz,复数2+iiz在复平面内对应的点的坐标为1,2,位于第四象限,故选D . 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为()A. 4B. 8C. 16D. 24【答案】B【解析】【分析】根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【详解】由三视图知三棱锥的侧棱AO与底OCB垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,6OA,棱锥的体积11246832V,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4.设实数,x y满足约束条件121010xx yx y,则3z x y的最小值为()A. 1B. 2C. 3D. 6【答案】A【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】作出实数,x y满足约束条件121010xx yx y表示的平面区域(如图所示:阴影部分),由21010x yx y得0,1A,由3z x y得3y x z,平移3y x z,直线3y x z过点A时,直线在y轴上截距最小,min 3011z,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.执行如图所示的程序框图,则输出的n值是()A. 5B. 7C. 9D. 11 【答案】C 【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的n 的值. 【详解】执行程序框图,1n 时,11133S;3n 时,11213355S; 5n 时,11131335577S; 7n 时,11114133557799S, 9n ,满足循环终止条件,退出循环,输出的n 值是9,故选C.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.设n S 为等差数列n a 的前n 项和,且5632a a a ,则7S ( )A. 28B. 14C. 7D. 2 【答案】B 【解析】 【分析】由等差数列的性质求得42a ,利用等差数列的前n 项和公式结合等差的性质可得结果.【详解】因为563542a a a a a ,所以42a177477142a a S a ,故选B.【点睛】本题主要考查等差数列的性质、等差数列的前n 项和公式,属于中档题.求解等差数列有关问题时,要注意应用等差数列的性质2p q m n r a a a a a (2p qm n r )与前n 项和的关系.7.下列判断正确的是( )A. “2x <”是“ln 30x <”的充分不必要条件B. 函数22199f xx x的最小值为2C. 当,R 时,命题“若,则sinsin ”的逆否命题为真命题D. 命题“0x >,201920190x >”的否定是“00x ,020*******x ”【答案】C 【解析】 【分析】利用特殊值判断A ;利用基本不等式的条件 “一正二定三相等”判断B ,利用原命题与逆否命题的等价性判断C ;利用全称命题的否定判断D . 【详解】当4x 时,2x <成立,ln 30x <不成立,所以A 不正确;对221929f xx x 22199x x 291x 293x ,所以221929f xx x,22199x x的最小值不为2,所以B 不正确;由三角函数的性质得 “若,则sin sin ”正确,故其逆否命题为真命题,所以C 正确;命题“0x >,201920190x >”的否定是“00x ,020*******x ”,所以D 不正确,故选C.【点睛】本题主要通过对多个命题真假的判断,主要考查充分条件与必要条件、基本不等式的性质、原命题与逆否命题的等价性、全称命题的否定,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的、自己掌握熟练的知识点入手、结合特殊值的应用,最后集中精力突破较难的命题. 8.已知函数()32cos f x x x ,若2(3)af ,(2)b f ,2(log 7)cf ,则,,a b c 的大小关系是( )A. ab c B. c a b C. b a c D. b c a【答案】D 【解析】 【分析】求出函数的导数,由导函数的符号可得f x 在R 上为增函数,由2222log 4log 733,利用单调性可得结果.【详解】因为函数32cos f x x x ,所以导数函数'32f x sinx ,可得'320f xsinx 在R 上恒成立,所以f x 在R 上为增函数, 又因为2222log 4log 733,所以bc a ,故选D.【点睛】本题主要考查利用导数判断函数的单调性,以及利用单调性比较函数值的大小.函数的单调性常用判断方法有定义法,求导法,基本函数的单调性法,复合函数的单调性法,图象法等.9.在各棱长均相等的四面体A BCD 中,已知M 是棱AD 的中点,则异面直线BM 与AC 所成角的余弦值为( ) A.2 B. 2 C.3 D. 2【解析】 【分析】取CD 中点N ,连结,MN BN ,则//MN AC ,从而BMN 是异面直线BM 与AC 所成角(或所成角的补角),利用余弦定理能求出异面直线BM 与AC 所成角的余弦值.【详解】各棱长均相等的四面体A BCD 中棱长为2, 设取CD 中点N ,连结,MN BN ,M 是棱AD 的中点,//MN AC ,BMN 是异面直线BM 与AC 所成角(或所成角的补角), 413,1AM BN MN ,2223133cos 26231BM MN BN BMNBM MN, 异面直线BM 与AC 3C. 【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.10.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为( ) A.49 B. 59 C. 23 D. 79【答案】C【分析】现从双方的马匹中随机各选一匹进行一场比赛 ,利用列举法求出基本事件有9种,齐王的马获胜包含的基本事件有6种,利用古典概型概率公式可求出齐王的马获胜的概率.【详解】设齐王上等、中等、下等马分別为,,A B C ,田忌上等、中等、下等马分别为,,a b c , 现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:,,,,,,,,,,,,,,,,,A a A b A c B a B b B c C a C b C c ,共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:,,,,,,,,,,,A a A b A c B b B c C c ,共 6种, 齐王的马获胜的概率为6293P,故选C. 【点睛】本题主要考查古典概型概率公式的应用,属于中档题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生.11.已知定义在R 上的函数()f x 的图像关于直线(0)x a a >对称,且当x a 时,2()xa e f x e,过点(,0)P a 作曲线()y f x 的两条切线,若这两条切线互相垂直,则该函数()f x 的最小值为( )A. 12eB. 1e C. 32eD. 2e【答案】B 【解析】 【分析】 当xa 时,22x xaae f xe e ,可得函数f x 在,a 为增函数,结合函数的对称性可得函数的最小值为f a ,进而分析可得点,0P a 作曲线y f x 的两条切线的斜率1k,设x a 右侧的切点为2,mam e ,求出函数的导数,由导数的几何意义可得2'1maf m e ,即20m a ,结合两点间连线的斜率公式可得201m a e m a ,即11m a,联立两式求出a 的值,代入函数的解析式可得结果.【详解】根据题意,分析可得当x a 时,22xxaae f xe e ,则函数f x 在,a 为增函数,又由函数f x 的图象关于直线x a 对称,函数f x 在,a 为减函数,所以函数的最小值为f a , 点,0P a 作曲线yf x 的两条切线,则两条切线的关于直线xa 对称,即两条切线的斜率互为相反数,若两条切线互相垂直,切线的斜率1k ,设xa 右侧的切点为2,,mam e m a ,因为2xaf x e ,所以导数2'xaf xe ,则有2'1maf me ,即20m a ,①又由切线过点,0a ,可得201m a e m a,即11m a,解可得1m a ,②联立①②可得1a , 则函数f x 的最小值为21aaf ae e ,故选B.【点睛】本题主要考查导数的几何意义以及直线的斜率公式,属于中档题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点00,A x f x 求斜率k ,即求该点处的导数0kfx ;(2) 己知斜率k 求切点11,,A x f x 即解方程1fx k ;(3) 巳知切线过某点11,M x f x (不是切点)求切点, 设出切点00,,A x f x 利用1010f x f x kfx x x 求解.12.设椭圆2222:1(0)x y C a b a b >>的左,右顶点为,,A B P 是椭圆上不同于,A B 的一点,设直线,AP BP 的斜率分别为,m n ,则当ln ln am n b取得最小值时,椭圆C 的离心率为( ) A.15 B. 22 C. 45D. 3【答案】D 【解析】 【分析】设00(,)P x y ,利用斜率公式求得,m n ,结合00(,)P x y 在椭圆上,化简可得22b mna ,令1at b,则12ln f tt t ,利用导数求得使f t 取最小值的t ,可得2a tb时,ln ln am n b取得最小值,根据离心率定义可得结果. 【详解】由椭圆方程可得,0,,0Aa B a ,设00,P x y ,则2220202b a x y a,则0000,y y mnx ax a,2202220y b mnx a a, ln ln ln 2ln a a a b m n mn b b b a , 令1a t b ,则12ln f t t t, 22'1t f t t t , 12ln f t t t在,2上递减,在2,上递增, 可知当2t 时,函数f t 取得最小值1222ln 22ln 22f ,2ab, 2222312c a b b eaa a,故选D. 【点睛】本题主要考查椭圆的几何性质、直线的斜率公式的应用,以及椭圆的离心率,利用导数求函数的最值,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.二、填空题:本大题共4个小题,满分20分13.已知双曲线22:1C x y 的右焦点为F ,则点F 到双曲线C 的一条渐近线的距离为_____.【答案】1 【解析】 【分析】 由221x y 可得焦点坐标与渐近线方程,利用点到直线的距离公式可得结果.【详解】双曲线22:1C x y 的1,a b ,所以2,2,0cF ,设双曲线的一条渐近线方程为y x ,则F 到渐近线的距离为2111d,故答案为1 .【点睛】本题主要考查双曲线的方程、双曲线的渐近线方程,以及点到直线的距离公式的应用,属于中档题. 若双曲线方程为22221x y ab ,则渐近线方程为b yx a. 14.已知函数42()3x af x x 是奇函数,则实数a 的值为_____. 【答案】2 【解析】 【分析】 由函数423x af x x 是奇函数可得00f ,求出a 的值,再验证所求函数的奇偶性即可.【详解】f x 的定义域为R ,且f x 是奇函数,2003a f ,2a ,此时,43x f xx是奇函数,符合题意,故答案为2.【点睛】本题主要考查函数的奇偶性,属于中档题. 已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由+0f x fx 恒成立求解,(2)偶函数由0f x f x 恒成立求解;二是利用特殊值:奇函数一般由00f 求解,偶函数一般由110f f求解,用特殊法求解参数后,一定要注意验证奇偶性.15.设n S 为数列n a 的前n 项和,且14a ,1,n n a S n N ,则5a _____.【答案】32 【解析】 【分析】 由1nn a S 可得1n n a S ,2n,两式相减可化为12n na a ,可得242n na (首项不符合通项),从而可得结果.【详解】n S 为数列n a 的前n 项和,且14a ,*1,n n a S nN ,①则当2n 时,1nn a S ,②-②得1n n n a a a ,所以12n na a (常数), 则数列n a 是从第二项起,公比2的等比数列, 求得214a S ,242n na (2n), 故241422n n n a n , 当5n时,54832a ,故答案为32.【点睛】本题主要考查数列的通项公式与前n 项和公式之间的关系,属于中档题. 已知数列前n 项和,求数列通项公式,常用公式11,1,2nn n S n a S S n ,将所给条件化为关于前n 项和的递推关系或是关于第n 项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等差数列求通项公式. 在利用n S 与通项n a 的关系求n a 的过程中,一定要注意验证1n 的情况.16.已知G 为ABC 的重心,过点G 的直线与边,AB AC 分别相交于点,P Q ,若35APAB ,则ABC 与APQ 的面积之比为_____.【答案】209【解析】 【分析】 设AQx AC , 1AG AP AQ ,利用三角形重心的性质以及平面向量的运算法则可得1131335AB AC AB xAC ,利用向量相等列方程组解得34x ,可得34AQ AC ,结合35AP AB ,利用三角形面积公式可得结果.【详解】设AQx AC ,,,P G Q 三点共线,可设1AGAPAQ ,315AGAB xAC ,G 为ABC 的重心,13AGAB AC , 1131335AB AC AB xAC ,1335113x,解得5934x, 34AQAC , 1sin 20219sin 2ABC APQAB AC A S SAP AQ A ,故答案为209. 【点睛】本题主要考查向量的几何运算及三角形面积公式的应用,属于难题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).三、解答题+选做题:7小题70分17.在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知3A ,22233b c abc a .(1)求a 的值;(2)若1b ,求ABC 的面积. 【答案】(13(2)32. 【解析】 【分析】 (1)由22233b c abc a ,利用余弦定理可得32cos 3bc Aabc ,结合3A 可得结果;(2)由正弦定理1sin 2B,π6B , 利用三角形内角和定理可得π2C ,由三角形面积公式可得结果. 【详解】(1)由题意,得22233b c a abc . ∵2222cos b c a bc A .∴32cos 3bc Aabc ,∵π3A,∴23cos 3a A .(2)∵3a ,由正弦定理sin sin a bA B ,可得1sin 2B. ∵a>b ,∴π6B ,∴ππ2C A B .∴13sin 22ABCSab C . 【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos abcbc A ;(2)222cos 2b c a A bc,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用. 18.如图,四棱锥PABCD 的底面ABCD 是边长为2的菱形,3ABC,PA平面ABCD ,点M 是棱PC 的中点.(1)证明://PA 平面BMD ; (2)当3PA时,求三棱锥M PAD 的体积.【答案】(1)证明见解析;(2)12. 【解析】 【分析】(1)连接AC 交BD 于点O ,连接O M ,则M ,O 分别为PC ,AC 中点,由三角形中位线定理可得//O PA M ,从而可得结论;(2)取线段BC 的中点H ,先证明AH 垂直于平面PAD ,则点H 到平面PAD的距离即为AH 的长度. 结合//BC A D ,可得点C 到平面PAD 的距离即为AH 的长度. 由M 为PC 的中点,可得点M 到平面PAD 的距离即为12AH 的长度,利用1132M PADPADV S AH 即可得结果. 【详解】(1)如图,连接AC 交BD 于点O ,连接MO. ∵M,O 分别为PC ,AC 中点, ∴PA ∥MO ,∵PA 不在平面BMD 内,MO 平面BMD. ∴PA∥平面BMD.(2)如图,取线段BC 的中点H ,连结AH. ∵ABCD 是菱形,π3ABC,∴AH ⊥AD.∵PA⊥平面ABCD ,∴AH⊥PA. 又PA∩AD=A,PA ,AD 平面PAD.AH⊥平面PAD.∴点H 到平面PAD 的距离即为AH 的长度. ∴BC∥AD,∴点C 到平面PAD 的距离即为AH 的长度. ∵M 为PC 的中点,∴点M 到平面PAD 的距离即为12AH 的长度.111111323322322MPADPADV S AH . 【点睛】本题主要考查线面平行的判定定理、棱锥的体积,属于中档题. 证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.19.在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x 与销售单价y 之间的关系,经统计得到如下数据: 等级代码数值x384858687888销售单价y (元/)kg 16.8 18.8 20.8 22.8 24 25.8(1)已知销售单价y 与等级代码数值x 之间存在线性相关关系,求y 关于x 的线性回归方程(系数精确到0.1);(2)若莫斯科某餐厅销售的中国小龙虾的等级代码数值为98,请估计该等级的中国小龙虾销售单价为多少元?参考公式:对一组数据11(,)x y ,22(,)x y ,····(,)n n x y ,其回归直线y bx a 的斜率和截距最小二乘估计分别为:12211ˆni i i n i x y nxybx nx ,ay bx .参考数据:618440i ii x y ,61225564i i x .【答案】(1)0.2.9ˆ8y x ;(2)28.5. 【解析】 【分析】(1)根据所给的数据,做出变量,x y 的平均数,根据最小二乘法所需要的数据做出线性回归方程的系数b ,再根据样本中心点一定在线性回归方程上,求出a 的值,可得线性回归方程; (2)根据上一问做出的线性回归方程,将98x代入线性回归方程求出对应的y 的值,即可估计该等级的中国小龙虾销售单价.【详解】(1)由题意得,1384858687888636x,116.818.820.822.82425.821.56y ,844066321.50.225664663ˆ63b ,21.50ˆˆ.2638.9ay bx.所以回归方程为0.2.9ˆ8y x ;(2)由(1)知当98x时,0.2988.928.5y ,故估计该等级的中国小龙虾销售单价为28.5元.【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,n n ii i i i x y x x y 的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆy bxa ; 回归直线过样本点中心,x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势. 20.已知点(,0)A m 和(0,)B n ,且2216m n ,动点P 满足3BP PA ,记动点P 的轨迹为曲线C .(1)求曲线C 的方程; (2)设不经过点0,1H 的直线2y x t 与曲线C 相交于两点,M N ,若直线HM 与HN 的斜率之和为1,求实数t 的值.【答案】(1)2219x y ;(2)3. 【解析】 【分析】(1)设(,)P x y ,由3BP PA ,可得434mx n y,代入2216m n ,整理即可得结果;(2)设1122,,,M x y N x y .联立22219y x t x y ,可得2237369(1)0x tx t ,根据直线HM 与HN 的斜率之和为1,利用斜率公式,结合韦达定理可得4411tt ,从而可得结果.【详解】(1)设(,)P x y .∵3BP PA ,∴(,)3(,)(33,3)x y n m x y m x y ,即333x m xy n y∴434mxn y.∵2216mn,∴221616169x y ∴曲线C 的方程2219x y(2)设M (x 1,y 1),N (x 2,y 2).联立22219yx t x y ,消去y ,得2237369(1)0x tx t .由22(36)4379(1)0t ,可得3737t .又直线y=2x+t 不经过点H (0,1),且直线HM 与HN 的斜率存在,1t ,则3737t 且1t ,212123699,3737tt x x x x , 由121212121241114411HM HNx x t x x y y tk k x x x x t , 解得3t,t 的值为3.【点睛】本题主要考查轨迹方程的求解方法,以及直线与椭圆的位置关系,属于难题. 求轨迹方程的常见方法有:①直接法,设出动点的坐标,x y ,根据题意列出关于,x y 的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把,x y 分别用第三个变量表示,消去参数即可;④逆代法,将00x g xy h x代入00,0f x y .21.已知函数()ln ,xe f x a xax a R x.(1)当0a <时,讨论函数()f x 的单调性; (2)当1a 时,若不等式1()()0xf x bx be x x在(1,)x 时恒成立,求实数b 的取值范围.【答案】(1)f x 在0,1上单调递增,在1,上单调递减;(2)1,e.【解析】 【分析】(1)求出'f x ,在定义域内,分别令'0f x求得x 的范围,可得函数f x 增区间,'0f x求得x 的范围,可得函数f x 的减区间;(2)当1a 时,不等式10xf x bx be xx在1x 时恒成立,等价于ln 10xx b x e 在(1,+∞)上恒成立,令ln 1x h xx b x e ,先证明当0b 时,不合题意,再分两种情况讨论即可筛选出符合题意的实数b 的取值范围. 【详解】(1)由题意,知221xx xax e x axe e f xaxx x,∵当a<0,x>0时,有0x ax e .∴x>1时,0fx ;当0<x<1时,0f x .∴函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减. (2)由题意,当a=1时,不等式10xf x bx be x x在x∈(1,+∞)时恒成立.整理,得ln 10x x b x e 在(1,+∞)上恒成立.令ln 1x h xx b x e .易知,当b≤0时,0h x ,不合题意.∴b>0 又1x h x bxe x ,11h be .①当b≥1e时,110h be .又1x h xbxe x在[1,+∞)上单调递减.∴0h x 在[1,+∞)上恒成立,则h(x)在[1,+∞)上单调递减. 所以h 10xh ,符合题意;②10be时,110h be ,1110h e bb, 又1x h xbxe x在[1,+∞)上单调递减, ∴存在唯一x 0∈(1,+∞),使得00h x .∴当h(x)在(1,x 0)上单调递增,在(x 0,+∞)上单调递减.又h(x)在x=1处连续,h(1)=0,∴h(x)>0在(1,x 0)上恒成立,不合题意. 综上所述,实数b 的取值范围为[1e,+∞ ). 【点睛】本题主要考查利用导数求函数的单调区间与最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数a f x 恒成立(maxa f x即可)或a f x 恒成立(minaf x即可);② 数形结合(yf x 图象在yg x 上方即可);③ 讨论最值min0f x 或max0f x 恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.选做题:10分22.在平面直角坐标系xOy 中,已知直线l 的参数方程为12312xt yt (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是22sin4.(1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)设点0,1P .若直l 与曲线C 相交于两点,A B ,求PA PB 的值.【答案】(1310x y ,22(1)(1)2x y ;(2)31. 【解析】 【分析】(1)利用代入法消去参数方程中的参数可求直线l 的普通方程,极坐标方程展开后,两边同乘以,利用222,cos,sin x y x y ,即可得曲线C 的直角坐标方程;(2)直线l 的参数方程代入圆C 的直角坐标方程,利用韦达定理、直线参数方程的几何意义即可得结果. 【详解】(1)将直线l 的参数方程消去参数t 并化简,得 直线l 310xy .将曲线C 的极坐标方程化为22222sin cos 22.即22sin 2cos .∴x 2+y 2=2y+2x.故曲线C 的直角坐标方程为22112x y .(2)将直线l 的参数方程代入22112x y 中,得221312222t t .化简,得212330t t .∵Δ>0,∴此方程的两根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2. 由根与系数的关系,得12231t t ,123t t ,即t 1,t 2同正.由直线方程参数的几何意义知,1212231PA PBt t t t .【点睛】本题主要考查参数方程和普通方程的转化、极坐标方程和直角坐标方程的转化以及直线参数方程的应用,属于中档题. 消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只要将cos 和sin 换成x 和y 即可. 23.已知函数2112xf xx . (1)求不等式30f x <的解集;(2)若关于x 的方程252-04f x m m 无实数解,求实数m 的取值范围.【答案】(1)26()35,;(2)2,0.【解析】 【分析】(1)对x 分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)由(1)知函数f x 的最小值为为54,若关于x 的方程25204f x m m无实数解,解不等式220m m ,即可得结果.【详解】(1)由题意,知52231211222225122xx x xf xx x x x ,,,, 由f(x)-3<0,可得25302xx,或12232302xx,或125302xx.解得2132x,或1625x. ∴不等式的解集为2635, . (2)由(1)知函数f (x)的值域为[54,+∞). 若关于x 的方程2524f x m m 无实数解,则m 2+2m<0,解得-2<m<0,∴实数m 的取值范围为(-2,0).【点睛】绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
2019届高三第一次诊断性检测数学(文)试题(考试时间:120分钟 试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2A x x =->,{}1B x x =?,则A B ?( )A. {}2x x ->B. {}21x x -?< C. {}2x x ? D. {}1x x ³ 【答案】A 【解析】 【分析】直接利用集合并集的定义求解即可.【详解】因为{}2A x x =->,{}1B x x =?, 所以,根据集合并集的定义可得{}2A Bx x ?->,故选A.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的集合. 2.复数2(iz i i+=为虚数单位)在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D 【解析】 【分析】利用复数代数形式的乘除运算化简复数2iz i+=,求出z 在复平面内对应点的坐标即可得结果. 【详解】()()22i i 2+i 12i i iz +-===--, \复数2+iiz =在复平面内对应的点的坐标为()1,2-,位于第四象限,故选D .【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为()A. 4B. 8C. 16D. 24【答案】B【解析】【分析】根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【详解】由三视图知三棱锥的侧棱AO与底OCB垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,6OA\=,\棱锥的体积11246832V=创创=,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4.设实数,x y满足约束条件121010xx yx yì£ïï-+?íï+-?ïî,则3z x y=+的最小值为()A. 1B. 2C. 3D. 6【答案】A【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】作出实数,x y满足约束条件121010xx yx yì£ïï-+?íï+-?ïî表示的平面区域(如图所示:阴影部分),由21010x yx yì-+=ïí+-=ïî得()0,1A,由3z x y=+得3y x z=-+,平移3y x z=-+,直线3y x z=-+过点A时,直线在y轴上截距最小,min 3011z\=?=,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.执行如图所示的程序框图,则输出的n值是()A. 5B. 7C. 9D. 11 【答案】C 【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的n 的值. 【详解】执行程序框图,1n =时,11133S ==´; 3n =时,11213355S =+=创;5n =时,11131335577S =++=创?;7n =时,11114133557799S =+++=创创,9n =,满足循环终止条件,退出循环,输出的n 值是9,故选C.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 6.设n S 为等差数列{}n a 的前n 项和,且5632a a a +=+,则7S =( ) A. 28 B. 14 C. 7 D. 2 【答案】B 【解析】【分析】由等差数列的性质求得42a =,利用等差数列的前n 项和公式结合等差的性质可得结果. 【详解】因为563542a a a a a +=+=+, 所以42a =177477142a a S a +=?=,故选B.【点睛】本题主要考查等差数列的性质、等差数列的前n 项和公式,属于中档题.求解等差数列有关问题时,要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系. 7.下列判断正确的是( )A. “2x -<”是“()ln 30x +<”的充分不必要条件 B. 函数()2299f x x x =++的最小值为2C. 当,R a b Î时,命题“若a b =,则sin sin a b =”的逆否命题为真命题D. 命题“0x ">,201920190x +>”的否定是“00x $?,020*******x +?” 【答案】C 【解析】 【分析】利用特殊值判断A ;利用基本不等式的条件 “一正二定三相等”判断B ,利用原命题与逆否命题的等价性判断C ;利用全称命题的否定判断D .【详解】当4x =-时,2x -<成立,()ln 30x +<不成立,所以A 不正确; 对()22929f x x x +?+2299x x +=+291x +=293x +?,所以()229f x x >+,2299x x ++的最小值不为2,所以B 不正确;由三角函数的性质得 “若a b =,则sin sin a b =”正确,故其逆否命题为真命题,所以C 正确; 命题“0x ">,201920190x +>”的否定是“00x $>,020*******x +?”,所以D 不正确,故选C. 【点睛】本题主要通过对多个命题真假的判断,主要考查充分条件与必要条件、基本不等式的性质、原命题与逆否命题的等价性、全称命题的否定,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的、自己掌握熟练的知识点入手、结合特殊值的应用,最后集中精力突破较难的命题.8.已知函数()32cos f x x x =+,若2(3a f =,(2)b f =,2(log 7)c f =,则,,a b c 的大小关系是( ) A. a b c << B. c a b << C. b a c << D. b c a << 【答案】D 【解析】 【分析】求出函数的导数,由导函数的符号可得()f x 在R 上为增函数,由2222log 4log 733=<<<利用单调性可得结果.【详解】因为函数()32cos f x x x =+, 所以导数函数()'32f x sinx =-, 可得()'320f x sinx =->在R 上恒成立, 所以()f x 在R 上为增函数, 又因为2222log 4log 733=<<< 所以b c a <<,故选D.【点睛】本题主要考查利用导数判断函数的单调性,以及利用单调性比较函数值的大小.函数的单调性常用判断方法有定义法,求导法,基本函数的单调性法,复合函数的单调性法,图象法等.9.在各棱长均相等的直三棱柱111ABC A B C -中,已知M 是棱1BB 的中点,N 是棱AC 的中点,则异面直线1A M 与NB 所成角的正切值为( )62【答案】C 【解析】 【分析】以A 为原点,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1A M 与NB 所成角的正切值 .【详解】解:各棱长均相等的直三棱柱111ABC A B C -中,棱长为 2,以A 为原点,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则)1(00,2A ,,)M ,)B ,)(01,0N ,, 1(3,1AM =,1)-,)(BN =-,设异面直线1A M 与BN 所成角为q,则11·cos 5?3·A M BN A M BNq ===, 6tanq \=.\异面直线1A M 与BN 6.故选:C .【点睛】本题考查异面直线所成角的正切值的求法,考查空间中线线、线面,面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题 .10.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为( ) A.49 B. 59 C. 23 D. 79【答案】C 【解析】 【分析】现从双方的马匹中随机各选一匹进行一场比赛 ,利用列举法求出基本事件有9种,齐王的马获胜包含的基本事件有6种,利用古典概型概率公式可求出齐王的马获胜的概率.【详解】设齐王上等、中等、下等马分別为,,A B C ,田忌上等、中等、下等马分别为,,a b c , 现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:()()()()()()()()(),,,,,,,,,,,,,,,,,A a A b A c B a B b B c C a C b C c ,共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:()()()()()(),,,,,,,,,,,A a A b A c B b B c C c ,共 6种,\齐王的马获胜的概率为6293P ==,故选C. 【点睛】本题主要考查古典概型概率公式的应用,属于中档题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生.11.已知定义在R 上的函数()f x 的图像关于直线(0)x a a =>对称,且当x a ³时,2()x a f x e =-.过点(,0)P a 作曲线()y f x =的两条切线,若这两条切线相互垂直,则函数()f x 的最小值为( ) A. 12e- B. 1e - C. 32e-D. 2e -【答案】B 【解析】 【分析】根据两条切线垂直可知,其中一条切线的倾斜角为π4,斜率为1.对函数求导后,利用斜率和切线方程,求得a 的值,再根据单调性求得函数的最小值.【详解】由于函数关于直线x a =对称,且过点(),0P a 的函数切线相互垂直,根据对称性可知,一条切线的倾斜角为π4,斜率为1.设切点为()020,e x a x -,()2e x a f x -=¢,故()020e x a f x -=,故切线方程为()00220e e x a x a y x x ---=-.依题意可知,斜率02e 1x a -=①,将(),0P a 代入切线方程得()00220e e x a x a a x ---=-②,联立①②解得02,1x a ==.故函数为()2e x f x -=,导数为()2e 0x f x -=¢>,函数在1x ³时单调递增,且函数关于1x =对称,故在1x =处取得最小值为121e e --=.故选B.【点睛】本小题主要考查利用切线方程求函数的解析式,考查利用导数求函数的最小值,属于中档题.12.设椭圆2222:1(0)x y C a b a b+=>>的左,右顶点为,A B 。
2019年四川省成都市高考数学一诊试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x>﹣2},B={x|x≥1},则A∪B=()A.{x|x>﹣2}B.{x|﹣2<x≤1}C.{x|x≤﹣2}D.{x|x≥1}2.(5分)复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A.4B.8C.16D.244.(5分)设实数x,y满足约束条件,则z=3x+y的最小值为()A.1B.2C.3D.65.(5分)执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.116.(5分)设S n为等差数列{a n}的前n项和,且2+a5=a6+a3,则S7=()A.28B.14C.7D.27.(5分)下列判断正确的是()A.“x<﹣2”是“ln(x+3)<0”的充分不必要条件B.函数的最小值为2C.当α,β∈R时,命题“若α=β,则sinα=sinβ”的逆否命题为真命题D.命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”8.(5分)已知函数f(x)=3x+2cos x,若,b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.b<a<c D.b<c<a9.(5分)在各棱长均相等的四面体A﹣BCD中,已知M是棱AD的中点,则异面直线BM 与AC所成角的余弦值为()A.B.C.D.10.(5分)齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.B.C.D.11.(5分)已知定义在R上的函数f(x)的图象关于直线x=a(a>0)对称,且当x≥a 时,.过点P(a,0)作曲线y=f(x)的两条切线,若这两条切线互相垂直,则该函数f(x)的最小值为()A.B.e﹣1C.D.e﹣212.(5分)设椭圆C:=1(a>b>0)的左,右顶点为A,B.P是椭圆上不同于A,B的一点,设直线AP,BP的斜率分别为m,n,则当+ln|m|+ln|n|取得最小值时,椭圆C的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分。
第七中学2019届高三一诊模拟考试数学(文)试题(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设是虚数单位,则复数()A. B. C. D.【答案】C【解析】【分析】直接展开多项式乘多项式化简得答案.【详解】=3-2i-i2=4-2i.故选:C.【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.2.设集合,,则()A. B. C. D.【答案】A【解析】【分析】求出A与B中不等式的解集确定出A与B,从而求出两集合的交集即可.【详解】∵集合A=,解得x>-1,B={x|(x+1)(x﹣2)0且x}={x|﹣1x<2},则A∩B={x|<x<2},故选:A.【点睛】本题考查了集合的运算,考查解指数不等式及分式不等式问题,是一道基础题.3.函数的图象大致是()A. B.C. D.【答案】D【解析】【分析】先判断函数为偶函数,再根据特殊点的函数值即可判断.【详解】因为满足偶函数f(﹣x)=f(x)的定义,所以函数为偶函数,其图象关于y轴对称,故排除B,又x=0时,y=0,排除A、C,故选D.【点睛】本题考查了函数的图象的识别,一般常用特殊点的函数值、函数的奇偶性和函数的单调性来排除,属于基础题.4.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两个等径正贯的圆柱体的侧面围成,其直视图如图(其中四边形是为体现直观性而作的辅助线).当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为()A. B.C. D.【答案】B【解析】【分析】相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).根据三视图看到方向,可以确定三个识图的形状,判断答案.【详解】∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).∴其正视图和侧视图是一个圆,俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,∴俯视图是有2条对角线且为实线的正方形,故选:B.【点睛】本题很是新颖,三视图是一个常考的内容,考查了空间想象能力,属于中档题.5.执行下边的算法程序,若输出的结果为120,则横线处应填入()A. B. C. D.【答案】C【解析】【分析】由题意知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得结果.【详解】模拟执行算法程序,可得:S=1,k=1,不满足条件,S=1,k=2,不满足条件,S=2,k=3,不满足条件,S=6,k=4,不满足条件,S=24,k=5,不满足条件,S=120,k=6,此时i满足条件,退出循环,输出S的值为120;所以横线处应填写的条件为,故选C.【点睛】本题考查了程序框图的应用问题,属于直到型循环结构,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6.设实数满足,则的最大值是()A. -1B.C. 1D.【答案】D【解析】【分析】由约束条件确定可行域,由的几何意义,即可行域内的动点与定点P(0,-1)连线的斜率求得答案.【详解】由约束条件,作出可行域如图,联立,解得A(),的几何意义为可行域内的动点与定点P(0,-1)连线的斜率,由图可知,最大.故答案为:.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.7.“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】利用对数函数的单调性即可判断出结论.【详解】⇒a>b>0 ⇒,但满足的如a=-2,b=-1不能得到,故“”是“”的充分不必要条件.故选A.【点睛】本题考查了对数函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.已知向量,,则在方向上的投影为()A. 2B. -2C.D.【答案】B【解析】【分析】根据平面向量的数量积运算与向量投影的定义,写出对应的运算即可.【详解】向量,,∴,∴(•==-10,||==5;∴向量在向量方向上的投影为:||cos<(,>===﹣2.故选:B.【点睛】本题考查了平面向量的数量积运算与向量投影的定义与应用问题,是基础题.9.设抛物线的焦点为,准线为,点在上,点在上,且,若,则的值()A. B. 2 C. D. 3【答案】D【解析】【分析】过M向准线l作垂线,垂足为M′,根据已知条件,结合抛物线的定义得==,即可得出结论.【详解】过M向准线l作垂线,垂足为M′,根据已知条件,结合抛物线的定义得==,又∴|MM′|=4,又|FF′|=6,∴==,.故选:D.【点睛】本题考查了抛物线的定义标准方程及其性质、向量的共线,考查了推理能力与计算能力,属于中档题.10.设分别是的内角的对边,已知,则的大小为()A. B. C. D.【答案】C【解析】【分析】利用三角形内角和定理可得.由正弦定理可得b2+c2﹣a2=-bc,由余弦定理可得cosA=,结合范围A∈(0,π)可得A的值.【详解】∵,,∴由正弦定理可得:,整理可得:b2+c2﹣a2=-bc,∴由余弦定理可得:cosA=,∴由A∈(0,π),可得:A=.故选C.【点睛】本题主要考查了正弦定理、余弦定理在三角形中的应用,属于基础题.11.已知正三棱锥的高为6,内切球(与四个面都相切)表面积为,则其底面边长为()A. 18B. 12C.D.【答案】B【解析】【分析】过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,AE是BC边上的高和中线,D 为△ABC的中心,D、M为其中两个切点,利用直角△PDE中的数量关系计算结果.【详解】如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.此时球与四个面相切,如图D、M为其中两个切点,∵S球=16π, ∴球的半径r=2.又∵PD=6,OD=2,∴OP=4,又OM=2,∴=∴ DE=2,AE=6, ∴ AB=12,故选B.【点睛】本题考查球与棱锥的组合体问题,考查球的表面积公式,找切点利用直角三角形是解决此类问题的关键,解题时要认真审题,注意空间思维能力的培养.12.已知函数(其中)的最小正周期为,函数,若对,都有,则的最小正值为()A. B. C. D.【答案】B【解析】【分析】将函数表达式展开合并,再用辅助角公式化简,得f(x)=sin(2x+)-.再根据正弦函数对称轴的公式,求出f (x)图象的对称轴方程.【详解】由函数的最小正周期为,可求得=2∴f(x)=,===2sin(+),∴又,∴x=是g(x)的一条对称轴,代入+中,有+=(k,解得=(k,k=1时,,故选B.【点睛】本题考查了三角函数的化简与三角函数性质,运用了两角和差的正余弦公式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.【答案】12【解析】【分析】利用分层抽样中的比例,可得工会代表中男教师的总人数.【详解】∵高中部女教师与高中部男教师比例为2:3,按分层抽样方法得到的工会代表中,高中部女教师有6人,则男教师有9人,工会代表中高中部教师共有15人,又初中部与高中部总人数比例为2:3,工会代表中初中部教师人数与高中部教师人数比例为2:3,工会代表中初中部教师总人数为10,又∵初中部女教师与高中部男教师比例为7:3,工会代表中初中部男教师的总人数为10×30%=3;∴工会代表中男教师的总人数为9+3=12,故答案为12.【点睛】本题考查对分层抽样的定义的理解,考查识图能力与分析数据的能力,考查学生的计算能力,比较基础.14.已知圆与轴相切,圆心在轴的正半轴上,并且截直线所得的弦长为2,则圆的标准方程是________. 【答案】【解析】【分析】由圆心在在轴的正半轴上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【详解】设圆心为(t,0),且t>0,∴半径为r=|t|=t,∵圆C截直线所得的弦长为2,∴圆心到直线的距离d==∴t2-2t-3=0,∴t=3或t=-1(舍),故t=3,∴.故答案为【点睛】此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.15.已知均为锐角,且,则的最小值是________.【答案】【解析】【分析】利用余弦的和与差公式打开,“弦化切”的思想求得tanαtanβ=,再将展开利用基本不等式即可求解.【详解】由cos(α-β)=3cos(α+β),可得cosαcosβ+sinαsinβ=3cosαcosβ-3sinαsinβ,同时除以cosαcosβ,可得:1+tanαtanβ=3-3tanαtanβ,则tanαtanβ=,又=2=.故答案为:.【点睛】本题考查了余弦、正切的和与差公式和同角三角函数的运用,“弦化切”的思想,结合了基本不等式求最值,属于中档题.16.若函数有三个不同的零点,则实数的取值范围是________.【答案】【解析】【分析】由题意可将函数有三个不同的零点转化为函数y=a与有三个不同的交点,结合图象求出实数a的取值范围.【详解】由题意可将函数有三个不同的零点转化为函数y=a与有三个不同的交点,如图所示:当时,的图象易得,当时,函数g(x)=,==0,x=1,在区间(0,1)上单调递减,在区间(1,)上单调递增,如图所示:有三个不同的交点,a≤4故答案为:【点睛】本题主要考查函数的零点与方程的根的关系,体现了化归与转化、数形结合的数学思想,属于中档题.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生依据要求作答.17.正项等比数列中,已知,.求的通项公式;设为的前项和,,求.【答案】221【解析】【分析】利用等比数列通项公式列出方程组,求出a1=1,q=2,由此能求出{a n}的通项公式.(2)由(1)求出{a n}的前项和,代入中,直接利求出{b n}的通项,利用等差数列求和公式求得结果.【详解】设正项等比数列的公比为,则由及得,化简得,解得或(舍去).所以的通项公式为.由得,.所以.【点睛】本题考查等比数列通项公式、等差数列的前n项和的求法,考查运算求解能力,是中档题.18.“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南镇2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:“梅实初黄暮雨深”.请用样本平均数估计镇明年梅雨季节的降雨量;“江南梅雨无限愁”.镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?(完善列联表,并说明理由).(参考公式:,其中)【答案】乙【解析】【分析】由频率分布直方图可求出第四组的频率,利用频率分布直方图中平均数的计算公式求得结果.根据题意,列出列联表,计算,与甲品种的百分数作比较得出结论.【详解】频率分布直方图中第四组的频率为.所以用样本平均数估计镇明年梅雨季节的降雨量为.根据频率分布直方图可知,降雨量在200~400之间的频数为.进而完善列联表如图..故认为乙品种杨梅的亩产量与降雨量有关的把握不足75%.而甲品种杨梅降雨量影响的把握超过八成,故老李来年应该种植乙品种杨梅.【点睛】本题考查频率分布直方图的应用,考查了列联表及的知识,考查了计算能力与推理能力.19.已知椭圆的离心率为,且经过点.求椭圆的标准方程;过点的动直线交椭圆于另一点,设,过椭圆中心作直线的垂线交于点,求证:为定值.【答案】4,证明见解析【解析】【分析】(1)利用椭圆C:的离心率为,且经过点M(2,0),可求椭圆的几何量,从而可求椭圆方程;(2)直线方程与椭圆方程联立,利用韦达定理,求得B点坐标,再结合条件求出C的坐标,计算,得出定值4.【详解】因为椭圆的离心率,且,所以.又.故椭圆的标准方程为.设直线的方程为(一定存在,且).代入,并整理得.解得,于是.又,所以的斜率为.因为,所以直线的方程为.与方程联立,解得.故为定值.【点睛】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查定值问题,正确运用韦达定理是关键.20.如图,在多面体中,和交于一点,除以外的其余各棱长均为2.作平面与平面的交线,并写出作法及理由;求证:;若平面平面,求多面体的体积.【答案】见解析见解析 2【解析】【分析】由题意可得平面,由线面平行的性质作出交线即可.取的中点,连结,.由条件可证得平面,故.又.平面.从而.将多面体分割成两个三棱锥,再利用等体积法求得结果.【详解】过点作(或)的平行线,即为所求直线.和交于一点,四点共面.又四边形边长均相等.四边形为菱形,从而.又平面,且平面,平面.平面,且平面平面,.证明:取的中点,连结,.,,,.又,平面,平面,故.又四边形为菱形,.又,平面.又平面,.解:平面平面,平面.故多面体的体积.【点睛】本题考查证明线面平行、线面垂直的方法及求多面体体积的大小,不规则多面体常进行体积分割或补形,此法是解题的关键和难点.21.已知函数,其中为常数.若曲线在处的切线斜率为-2,求该切线的方程;求函数在上的最小值.【答案】【解析】【分析】(1)先利用,求出a,进而写出切点坐标,写出的切线方程.(2)对a分类讨论,易判断当或当时,在区间内是单调的,根据单调性直接可得出最小值,当时,在区间内单调递增,在区间内单调递减,故,又因为,,将两者比较大小求得结果.【详解】求导得,由解得.此时,所以该切线的方程为,即为所求.对,,所以在区间内单调递减.当时,,在区间上单调递减,故.当时,,在区间上单调递增,故.当时,因为,,且在区间上单调递增,结合零点存在定理可知,存在唯一,使得,且在上单调递增,在上单调递减.故的最小值等于和中较小的一个值. ①当时,,故的最小值为. ②当时,,故的最小值为.综上所述,函数的最小值.【点睛】本题考查导数的几何意义及利用导数研究函数的单调性以及函数的最值的求法,考查分类讨论思想以及计算能力.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. [选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线的参数标方程为(其中为参数,且),在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线的极坐标方程为.求曲线的极坐标方程;求直线与曲线的公共点的极坐标.【答案】【解析】 【分析】(1)先将曲线C 的参数标方程化为普通方程,再利用极坐标与直角坐标的互化,把普通方程化为极坐标方程; (2)将与的极坐标方程联立,求出直线l 与曲线C 的交点的极角,代入直线的极坐标方程即可求得极坐标. 【详解】消去参数,得曲线的直角坐标方程.将,代入,得.所以曲线的极坐标方程为.将与的极坐标方程联立,消去得.展开得.因为,所以.于是方程的解为,即.代入可得,所以点的极坐标为.【点睛】本题考查曲线的极坐标方程与普通方程的互化,直线的极坐标方程与曲线极坐标方程联立求交点的问题,考查计算能力.[选修4-5:不等式选讲]23.已知函数,且.若,求的最小值;若,求证:.【答案】见解析【解析】【分析】由柯西不等式将中的变为,求得的最小值.因为,又,故再结合绝对值三角不等式证得结论成立.【详解】由柯西不等式得,(当且仅当时取等号),所以,即的最小值为;因为,所以,故结论成立.【点睛】本题考查了利用柯西不等式求最值,考查了利用绝对值三角不等式证明的问题,属于中等题.。