浙教版八年级数学上册2章 特殊三角形 综合测试题.docx
- 格式:docx
- 大小:274.86 KB
- 文档页数:6
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、等腰三角形一边长为4,一边长9,它的周长是()A.17B.22C.17或22D.不确定2、如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB=2,则点A的坐标为( )A.(2,)B.(1,2)C.(1,)D.(,1)3、正方形ABCD中,在AB边上有一定点E,AE=3cm,EB=1cm,在AC上有一动点P,若使得EP+BP的和最小,则EP+BP的最短距离为.A.5cmB.4 cmC.3cmD.4.8cm4、在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )A. B. C. D.5、直角三角形的两条直角边为a、b,斜边为c,斜边上的高为h,下列结论:①a2+b2=c2;②ab=ch;③ .其中正确的是()A. B. C. D.6、民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.7、已知,如图,点,在⊙ 上,直径,弦、相交于点,若,则阴影部分面积为()A. B. C. D.8、如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E。
若∠E=35°,则∠EAC的度数是( )A.40°B.65°C.70°D.75°9、如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD 相交于点D,DE⊥AB交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF; ②DE+DF=AD; ③DM平分∠EDF:④AB+AC=2AE.其中正确的有( )A.1个B.2个C.3个D.4个10、下列数据中不能作为直角三角形的三边长的是()A.1、B.C.5、12、13D.1、2、311、若x,y满足|x-3|+ =0,则以x,y的值为两边长的等腰三角形的周长为()A.12B.14C.15D.12或1512、下列四个城市的地铁标志中,既是中心对称又是轴对称图形的是()A. B.C. D.13、如图,四边形中,,,,,则四边形的面积是().A. B. C. D.14、如图,在中,,点是的中点,交于;点在上,,,,则的长为()A.12B.10C.8D.615、如图,△ABC中,AB=10,BC=12,AC= ,则△ABC的面积是().A.36B.C.60D.二、填空题(共10题,共计30分)16、如图,在中,AB=AC,∠BAC=120°,点D、E都在边BC上,∠BAD=15°,∠DAE=60°.若DE=3,则AB的长为________.17、如图,在平面直角坐标系x O y中,点A在第一象限内,∠AOB=50°,AB⊥x 轴于B,点C在y轴正半轴上运动,当△OAC为等腰三角形时,顶角的度数是________.18、△ABC中,∠C=90°,AB=10cm,它的两个锐角的正弦值是一元二次方程m (x2﹣2x)+5(x2+x)+12=0的两根,则Rt△ABC的两直角边的长为________.19、如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,若PA=6,PB=8,PC=10,则∠APB=________°.20、如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=,BE与AD相交于点F,连接DE,则下列结论:①∠AFE=60°;②DE⊥AC;③CE2=DF·DA;④AF·BE=AE·AC,其中正确的是________(填序号)21、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边BC上的一个动点,EG=EF,且∠GEF=60°,则GB+GC的最小值为________.22、如图,学校位于小亮家北偏东35°方向,距离为300m,学校位于大刚家南偏东85°方向,距离也是300m,则大刚家相对于小亮家的位置是________。
第二章特殊三角形单元测试一、单选题(共10题;共30分)1、已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里2、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,2)3、如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A、27B、18C、18D、94、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A、AC=ADB、AB=ABC、∠ABC=∠ABDD、∠BAC=∠BAD5、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、75°B、60°C、45°D、30°6、对于命题“如果a>b>0,那么a2>b2.”用反证法证明,应假设()A、a2>b2B、a2<b2C、a2≥b2D、a2≤b27、图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A、0B、1C、D、8、用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A、假定CD∥EFB、已知AB∥EFC、假定CD不平行于EFD、假定AB不平行于EF9、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M 是OP的中点,则DM的长是()A、2B、C、D、10、在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A、a2+b2=c2B、b2+c2=a2C、a2+c2=b2D、c2﹣a2=b2二、填空题(共8题;共24分)11、用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12、在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ .(只添加一个)13、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15、如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2.17、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三、解答题(共5题;共40分)19、已知直线m、n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20、在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22、如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四、综合题(共1题;共6分)24、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一、单选题1、【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。
第1页 共6页第二章 特殊三角形综合测试一、选择题1.如果等腰三角形一个底角是30o,那么顶角是( )(A )60o. (B )150o. (C )120o. (D )75o.2、已知等腰三角形的周长为40cm,以一腰为边作等边三角形,其周长为45cm,则等腰三角形的底边长是( )A 、5cm B 、10cm C 、15cm D 、20cm3.下列说法中,正确的是( )(A )一个钝角三角形一定不是等腰三角形.(B )一个等腰三角形一定是锐角三角形. (C )一个直角三角形一定不是等腰三角形.(D )一个等边三角形一定不是钝角三角形. 4、若△ABC 的三边a、b、c满足那么△ABC 的形状是( ) A 、等腰三角形 B 、直角三角形 C 、等边三角形 D 、锐角三角形 5、等腰△ABC 中,AC =AB ,两腰中线交于一点O ,则AO 与BC 的关系是( ) A 、相等 B 、互相垂直 C 、AO 垂直平分BC D 、AO 、BC 互相垂直 6.在等腰三角形中,AB 的长是BC 的2倍,周长为40,则AB 的长为( ) (A )20. (B )16. (C )16或20. (D )以上都不对. 7.等腰三角形一腰上的高与另一腰的夹角为30o,则顶角的度数为( ) (A )60o. (B )120o. (C )60o或150o. (D )60o或120o. 8.等腰三角形一腰上的高与底边夹角为45o,则这个三角形是( )(A )锐角三角形. (B )钝角三角形. (C )等边三角形. (D )等腰直角三角形. 9.两根木棒的长度分别是5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒的长为偶数,那么第三根木棒长的取值情况有( ) (A )3种. (B )4种. (C )5种. (D )6种. 10.已知△ABC 中,AB =AC ,且∠B =,则的取值范围是( )(A )≤45o. (B )0o<<90o.(C )=90o. (D )90o<<180o.11.等腰三角形一腰上的高与底边的夹角等于( )(A )顶角.(B )顶角的一半 .(C ) 顶角的2倍. (D )底角的一半. 12、如图∠BCA=90,CD ⊥AB ,则图中与∠A 互余的角有( )个 A .1个 B 、2个 C 、3个 D 、4个()()()0a b b c c a ---=ααααααDCBA第2页 共6页FE DC BAABC二、填空13.(1)等腰三角形 、 、 互相重合. (2)△ABC 中,∠A=∠B=2∠C ,那么∠C= 。
单元测试(二)特殊三角形题号一二三总分合分人复分人得分一.1.(泰安中考)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1B.2C.3D.42.(荆门中考)已知一个等腰三角形的两边长分别2和4,则该等腰三角形的周长为( C )A.8或10B.8C.10D.6或123.下列说法中,正确的是( A )A.每个命题都有逆命题B.假命题的逆命题一定是假命题C.每个定理都有逆定理D.假命题没有逆命题4.如图,字母B所代表的正方形的面积是( C )A.12B.13C.144D.194第4题图第5题图第7题图第8题图5.(内江中考)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB 的延长线于点E,若∠E=35°,则∠BAC的度数为( A )A.40°B.45°C.60°D.70°6.下列说法中,正确的个数是( C )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1B.2C.3D.47.(萧山区期中)如图,已知△ABC是等边三角形,点D.E分别在A C.BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为( A )A.60°B.45°C.75°D.70°8.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为( C )A.6B.7C.8D.99.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AD=AE,则∠EDC的度数为( B )A.15°B.25°C.30°D.50°第9题图第10题图10.(下城区校级期中)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D.E为BC边上的两点,且∠DAE=45°,连结EF.BF,则下列结论:①△AED≌△AEF;②△AED为等腰三角形;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有( B )A.4个B.3个C.2个D.1个二.填空题(每小题4分,共24分)11.若等腰三角形的顶角为50°,则它的一个底角为65°.12.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为96.13.如图,已知∠BAC=130°,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=50°.14.小明想测量教学楼的高度.他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了2 m,当他把绳子的下端拉开6 m后,发现绳子下端刚好接触地面,则教学楼的高为8m.15.(萧山区期中)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.16.做如下操作:在等腰△ABC中,AB=AC,AD平分∠BAC,交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的像与△ACD重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线.底边上的中线和高互相重合.由上述操作可得出的是②③(将正确结论的序号都填上).三.解答题(共66分)17.(6分)如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的痕迹.(1)(2)解:(1)如图所示:或(2)如图所示:18.(8分)(杭州中考)如图,在△ABC 中,AB =AC ,点E ,F 分别在AB ,AC 上,AE =AF ,BF 与CE 相交于点P .求证:PB =PC .并直接写出图中其他相等的线段.证明:在△ABF 和△ACE 中,⎩⎨⎧AB =AC ,∠BAF =∠CAE ,AF =AE ,∴△ABF ≌△ACE (SAS ). ∴∠ABF =∠ACE . ∵AB =AC ,∴∠ABC =∠ACB .∴∠ABC -∠ABF =∠ACB -∠ACE ,即∠PBC =∠PCB .∴PB =PC .图中相等的线段还有:PE =PF ,BF =CE ,BE =CF .19.(8分)(丽水中考)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =37°,求∠CAD 的度数.解:(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点). (2)∵在Rt △ABC 中,∠B =37°, ∴∠CAB =53°.∵AD =BD ,∴∠BAD =∠B =37°.∴∠CAD =53°-37°=16°.20.(10分)如图,在等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试证明你的结论.解:△APQ 是等边三角形.证明: ∵△ABC 为等边三角形, ∴AB =AC .又∵∠ABP =∠ACQ ,BP =CQ , ∴△ABP ≌△ACQ (SAS ).∴AP =AQ ,∠BAP =∠CAQ .∵∠BAC =∠BAP +∠P AC =60°,∴∠P AQ =∠CAQ +∠P AC =∠BAP +∠P AC =∠BAC =60°. ∴△APQ 是等边三角形.21.(10分)如图,AB =AC ,∠BAC =90°,BD ⊥AE 于D ,CE ⊥AE 于E ,且BD >CE .求证:BD =EC +ED .证明:∵∠BAC =90°,CE ⊥AE ,BD ⊥AE ,∴∠ABD +∠BAD =90°,∠BAD +∠EAC =90°,∠BDA =∠E =90°. ∴∠ABD =∠EAC .在△ABD 和△CAE 中,⎩⎨⎧∠ABD =∠EAC ,∠BDA =∠E ,AB =AC ,∴△ABD ≌△CAE (AAS ). ∴BD =AE ,AD =EC . ∵AE =AD +DE ,∴BD =EC +ED .22.(12分)如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中∠BAC 与平面展开图中∠B ′A ′C ′的大小关系? 解:(1)在平面展开图中可画出最长的线段长为10.如图2中的A ′C ′,在Rt △A ′C ′D ′中,∵C ′D ′=1,A ′D ′=3,由勾股定理得A ′C ′=C′D′2+A′D′2=1+9=10.这样的线段可画4条.(2)∵立体图中∠BAC 为等腰直角三角形的一锐角,∴∠BAC =45°.在平面展开图中,连结B′C′,由勾股定理可得A′B′=5,B′C′= 5.又∵A′B′2+B′C′2=A′C′2,由勾股定理的逆定理可得△A′B′C′为直角三角形.又∵A′B′=B′C′,∴△A′B′C′为等腰直角三角形.∴∠B′A′C′=45°.∴∠BAC与∠B′A′C′相等.23.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,若∠BAC=90°,则∠BCE=90°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.图1图2解:(2)①α+β=180°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△ABD≌△ACE.∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB=∠BCE=β.∵α+∠B+∠ACB=180°,∴α+β=180°.②当点D在射线BC上时,α+β=180°;当点D在CB延长线上时,α=β.第二章特殊三角形单元测试一.单选题(共10题;共30分)1.已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里2.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)3.如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A.27B.18C.18D.94.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.AC=ADB.AB=ABC.∠ABC=∠ABDD.∠BAC=∠BAD5.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°6.对于命题“如果a>b>0,那么a2>b2 . ”用反证法证明,应假设()A.a2>b2B.a2<b2C.a2≥b2D.a2≤b27.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A.B在围成的正方体中的距离是()A.0B.1C.D.8.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A.假定CD∥EFB.已知AB∥EFC.假定CD不平行于EFD.假定AB不平行于EF9.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.10.在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2二.填空题(共8题;共24分)11.用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12.在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ . (只添加一个)13.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15.如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2 .17.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2 .18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三.解答题(共5题;共40分)19.已知直线m.n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20.在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21.如图,在B港有甲.乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23.如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四.综合题(共1题;共6分)24.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一.单选题1.【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。
特殊三角形单元测试一、选择题(每题3分,共30分)1.等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°2.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或203.下列各组数中,能组成直角三角形三边的是()A.1,2,3 B.4,5,6 C.3,4,5 D.7,8,94.边长为2的等边三角形的高为()A.1 B.2 C.2 D 35.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点D,过点D作直线EF∥BC,交AB于E,交AC于F,图中等腰三角形的个数共有()A.3个B.4个C.5个D.6个7.如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AM=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个(第5题) (第6题) (第7题)8.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CD E的周长为()A.20 B.12 C.14 D.139.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m10.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A .1个B .2个C .3个D .4个(第8题) (第9题) (第10题)二、填空题(每题4分,共24分)11.等腰三角形的一个外角是100°,则它的底角是_______.12.等腰三角形有 条对称轴. 13.已知△ABC ,AB=2,BC=2,AC=22,则△ABC 是 三角形.14. 如图,在△ABC中,AB=AC ,∠A=40°,则△ABC的外角∠BCD= °15.长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE= .16. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 2的边长为6cm ,正方形B 的边长为5cm ,正方形C 的边长为5cm ,则正方形D 的面积是 cm 2.(第14题) (15 题)三、简答题(共46分)17. (6分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个边长都是无理数的直角三角形;在图2中画出一条长度等于(第16题)13的线段.18.(6分)如图所示,已知:Rt △ABC 中,∠C=90°,AC=BC ,AD 是∠A 的平分线. 求证:AC+CD=AB ..cB AD C 20.(8分)在一次数学课上,苏老师在黑板上画出图,如图,并写下了四个等式:①AB=DC ,②BE=CE ,③∠B=∠C ,④∠BAE=∠CDE .要求同学从这四个等式中选出两个作为条件,推出△AED 是等腰三角形.请你试着完成苏老师提出的要求,并说明理由.(写出一种即可)我选择:理由如下:21.(8分)已知BD ,CE 是△ABC 的两条高,M 、N 分别为BC 、DE 的中点(1)请写出线段EM 与DM 的大小关系,并说明理由。
浙教版八年级上册数学第二章特殊三角形一、选择题1.下列关于体育运动的图标是轴对称图形的为( )A.B.C.D.2.已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是( )A.∠A=∠C-∠B B.a2=b2-c2C.a:b:c=2:3:4D.a=34,b=54,c=13.等腰三角形的顶角是50°,则这个三角形的底角的大小是( )A.50°B.65°或50°C.65°D.80°4.在锐角△ABC中,AB=15,AC=13,高AD=12,则BC的长度为( )A.16B.15C.14D.135.下列命题的逆命题是真命题的是( )A.直角都相等B.全等三角形的对应角相等C.在Rt△ABC中,30°角所对的边是斜边的一半D.在△ABC中,a、b、c为三角形三边的长,若a2=(b+c)(b―c),则△ABC是直角三角形6.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于( )A.5B.4C.3D.27.如图,在△ABC中,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CD的长为( )A .1cmB .43cmC .53cmD .2cm8.《九章算术》中记录了这样一则“折竹抵地”问题:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)如果我们假设折断后的竹子高度为x 尺,根据题意,可列方程为( )A .x 2+42=102B .(10―x)2+42=102C .(10―x)2+42=x 2D .x 2+42=(10―x)29.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于 12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .1B .2C .3D .410.如图,在△ABC 中,AB =2,∠B =60°,∠A =45°,点D 为BC 上一点,点P 、Q 分别是点D 关于AB 、AC 的对称点,则PQ 的最小值是( )A.6B.8C.4D.2二、填空题11.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为 .12.命题“两直线平行,同位角相等.”的逆命题是 .13.小明同学将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件是 .14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC= °.15.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,P是直线MN上一动点,点H 为BC中点.若BC=5,△ABC的面积是30,则PB+PH的最小值为 .16.如图,等边△ABC中,BF是AC边上中线,点D为BF上一动点,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,则∠CFE的大小是 .三、解答题17.如图,AB⊥BC于点B,AD⊥DC于点D,BC=DC.求证:∠1=∠2.18.如图,在△ABC中,AD⊥BC于D,AC=5,BC=9,AD=4,求AB的长.19.如图,△ABC中,CA=CB,D是AB的中点,∠B=42°,求∠ACD的度数.20.如图所示,若MP和NQ 分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ 的度数.21.如图,在△ABC中,AB=AC=5,BC=6,点D在AC边上,BD=AB.(1)求△ABC的面积;(2)求AD的长.22.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE (2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F,.若BF=BC,求证:EH=EC.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动,设点P的运动时间为t,连接AP.(1)当t=3秒时,求AP的长度;(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E,连接PD,在点P的运动过程中,当PD平分∠APC时,直接写出t的值.答案解析部分1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】D10.【答案】A11.【答案】2612.【答案】同位角相等,两直线平行13.【答案】∠A=60°(答案不唯一)14.【答案】3015.【答案】1216.【答案】90°17.【答案】证明:∵AB⊥BC,AD⊥DC∴∠B=∠D=90°又∵在Rt△ABC和Rt△ADC中AC=AC BC=DC,∴Rt△ABC≌Rt△ADC(HL).∴∠1=∠2.18.【答案】21319.【答案】48°20.【答案】(1)12;(2)30°.21.【答案】(1)解:过点A作AM⊥BC于点M,如图所示:∵AB =AC ,AM ⊥BC ,∴M 是BC 的中点,∵AB =5,BC =6,∴BM =CM =3,∴AM =AB 2―BM 2=52―32=4,∴△ABC 的面积=12BC•AM =12×6×4=12;(2)解:过点B 作BN ⊥AC 于点N ,如图所示:∵BD =AB ,∴AN =DN =12AD ,∵△ABC 的面积=12AC•BN =12×5•BN =12;∴BN =245,AN =AB 2―BN 2=75∴AD =2AN =145.22.【答案】(1)证明:∵△ABC 是等边三角形,∴AB=BC=AC ,∠A=∠ABC=∠BCA.∴在△AEC 和△CDB 中AE =CD ∠EAC =∠DCB AC =CB∴△AEC ≌△CDB (SAS )∴BD=CE.(2)证明:如图:由(1)△AEC≌△CDB,∴∠ACE=∠CBD.∴60°-∠ACE=60°-∠CBD,即∠ABD=∠ECB.∵BC=CF,∴∠BCF=∠BFC,又∵∠BCF=∠ECB+∠ECH,∠BFC=∠ABD+∠H,∴∠ECH=∠H,∴EH=EC.23.【答案】(1)241(2)当△ABP为等腰三角形时,t的值为45、16、5;(3)当t的值为5或11时,PD平分∠APC.。
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,∠C=∠D=90°,若添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等,则以下给出的条件适合的是( )A.AC=ADB.AB=ABC.∠ABC=∠ABDD.∠BAC=∠BAD2、以下四家银行的行标图中,是轴对称图形的有()A.1个B.2个C.3个D.4个3、下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C. 、2、D.5、12、134、已知△ABC的三边分别长为、、,且满足++=0,则△ABC是().A.以为斜边的直角三角形B.以为斜边的直角三角形C.以为斜边的直角三角形 D.不是直角三角形5、如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC 的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.4B.5C.5.5D.66、如图,Rt△ABC中,∠A=90°,∠B=30°,CD=CA,D在BC上,∠ADE=45°,E在AB上,则∠BED的度数是()A.60°B.75°C.80°D.85°7、设直角三角形的两条直角边长及斜边上的高分别为a,b及h,则下列关系正确的是( )A. B. C. D.8、如图:△ABC中,ACB=90°,AC=BC,AB=4,点E在BC上,且BE=2,点P 在ABC的平分线BD上运动,则PE+PC的长度最小值为()A.1B.C.D.9、如图,A、B、C、D、E是⊙O上的5等分点,连接A C、CE、E B、B D、DA,得到一个五角星图形和五边形MNFGH.有下列3个结论:① AO⊥BE,② ∠CGD=∠COD+∠CAD,③ BM=MN=NE.其中正确的结论是()A.① ②B.① ③C.② ③D.① ② ③10、如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,∠CAD=30°,CD=4,则线段BF的长度为()A.6B.7C.8D.911、若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A. B. C. D.12、如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE =S△COE,其中正确结论有()A.1个B.2个C.3个D.4个13、等腰三角形的一个角是100°,则它的底角是()A. B. C. D.14、用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cmB. cm,cm,cmC.1cm,2cm,cm D.2cm,3cm,4cm15、等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是( )A.15B.15或7C.7D.11二、填空题(共10题,共计30分)16、如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是________cm.17、如图,Rt△ABC的斜边AB的中垂线MN与AC交于点M,∠A=15°,BM=2,则△AMB的面积为________.18、在△ABC中,AD为高线,若AB+BD=CD,AC=4 ,BD=3,则线段BC的长度为________.19、菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为________.20、如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米。
浙教版数学八上《特殊三角形》单元测试及答案一、选择题(本大题共8小题,共32.0分)()1.等腰三角形两边长为3和6,则周长为 A. 12B. 15C. 12或15D. 无法确定△ABC AB=AC=5BC=62.如图,在中,,,AD是BC边上的中线,点E、F、M、N是AD上的四点,则()图中阴影部分的总面积是 A. 6B. 8C. 4D. 1236∘()3.有一个角是的等腰三角形,其它两个角的度数是 36∘108∘36∘72∘A. ,B. ,72∘72∘36∘108∘72∘72∘C. ,D. ,或,Rt△ABC∠C=90∘∠ABC4.如图,在中,,的平分线BD交ACD.BC=4cm BD=5cm()于点若,,则点D到AB的距离是 A. 5cmB. 4cmC. 3cmD. 2cm5.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角.()形”下列各组数据中,能作为一个智慧三角形三边长的一组是 233A. 1,2,3B. 1,1,C. 1,1,D. 1,2,△ABC6.如图,的顶点都在正方形网格的格点上,若小方格的△ABC()边长为1,则的形状是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形7.如图,已知:,点、、在射线ON 上,点、、在射∠MON =30∘A 1A 2A 3…B 1B 2B 3…线OM 上,、、均为等边三角形,若,则△A 1B 1A 2△A 2B 2A 3△A 3B 3A 4…OA 1=1的边长为 △A 6B 6A 7()A. 6B. 12C. 32D. 648.如图,和都是等腰直角三角形,△ABC △ADE ,连结CE 交AD 于点F ,连结BD∠BAC =∠DAE =90∘交CE 于点G ,连结下列结论中,正确的结论有 BE.();①CE =BD 是等腰直角三角形;②△ADC ;③∠ADB =∠AEB ;④S 四边形BCDE =12BD ⋅CE .⑤BC 2+DE 2=BE 2+CD 2A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共7小题,共28.0分)9.如图,在中,,,于D ,则△ABC AB =AC BC =6AD ⊥BC ______ .BD =10.如图,在中,CD 是斜边AB 上的中线,若Rt △ABC ,则 ______ .∠A =20∘∠BDC =11.如图,在等边中,,D 是BC 的中点,△ABC AB =6将绕点A 旋转后得到,那么线段DE△ABD △ACE 的长度为______.12.如图,中,于D ,E 是AC 的中点若,△ABC CD ⊥AB .AD =6,则CD 的长等于______.DE =513.如图,折叠长方形的一边AD ,使点D 落在BC 边上的F点处,若,,则EC 长为______ .AB =8cm BC =10cm14.如图,在中,,,AE△ABC ∠BAC =90∘AB =AC 是经过A 点的一条直线,且B 、C 在AE 的两侧,于D ,于E ,,,则BD ⊥AE CE ⊥AE CE =2BD =6DE 的长为______ .15.如图,在中,,,将其Rt △ABC ∠C =90∘AC =BC 绕点A 逆时针旋转得到,交AB15∘Rt △AB'C'B'C'于E ,若图中阴影部分面积为,则的长为23B'E ______.三、解答题(本大题共5小题,共40.0分)16.如图,在中,,分别以点A 、C为圆心,大于长为半径画Rt △ABC ∠B =90∘12AC 弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .求;直接写出结果(1)∠ADE ()当,时,求的周长.(2)AB =3AC =5△ABEDE//AB17.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且,过点EF⊥DEE作,交BC的延长线于点F.(1)∠F求的度数;(2)CD=2若,求DF的长.(1)(2)18.现在给出两个三角形,请你把图分割成两个等腰三角形,把图分割成三个.(1)(2)等腰三角形要求:在图、上分割:标出分割后的三角形的各内角的度数.19.如图,在中,D 是BC 边上一点,且,△ABC BA =BD ,求的度数.∠DAC =12∠B ∠C =50∘.∠BAC 20.已知:如图,在中,AD 是的高,作,交AD 的延长△ABC △ABC ∠DCE =∠ACD 线于点E ,点F 是点C 关于直线AE 的对称点,连接AF .求证:;(1)CE =AF 若,,且,求的度数.(2)CD =1AD =3∠B =20∘∠BAF答案1. B2. A3. D4. C5. D6. B7. C8. C9. 310. 40∘11. 3312. 813. 3cm14. 415. 23‒2(1)∵16. 解:由题意可知MN是线段AC的垂直平分线,∴∠ADE=90∘;(2)∵Rt△ABC∠B=90∘AB=3AC=5在中,,,,∴BC=52‒32=4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE=AB+(AE+BE)=AB+BC=3+4=7的周长.(1)∵△ABC17. 解:是等边三角形,∴∠B=60∘,∵DE//AB,∴∠EDC=∠B=60∘,∵EF⊥DE,∴∠DEF=90∘,∴∠F=90∘‒∠EDC=30∘;(2)∵∠ACB=60∘∠EDC=60∘,,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90∘∠F=30∘,,∴DF=2DE=4.18. 解:如图所示:19. 解:设,则,.∠DAC =x ∘∠B =2x ∘∠BDA =∠C +∠DAC =50∘+x ∘,∵BD =BA ,∴∠BAD =∠BDA =50∘+x ∘,∵∠B +∠BAD +∠BDA =180∘即,2x +50+x +50+x =180解得.x =20,∴∠BAD =∠BDA =50∘+20∘=70∘.∴∠BAC =∠BAD +∠DAC =70∘+20∘=90∘20. 证明:是的高,(1)∵AD △ABC ,,∴∠ADC =∠EDC =90∘∠DCE =∠ACD 为等腰三角形,∴△ACE ,∴AC =CE 又点F 是点C 关于AE 的对称点,∵,∴AF =AC ;∴CE =AF 解:在中,,,根据勾股定理得到:(2)Rt △ACD CD =1AD =3,AC =AD 2+CD 2=2,∴CD =12AC .∴∠DAC =30∘同理可得,∠DAF =30∘在中,,Rt △ABD ∠B =20∘. ∴∠BAF =90∘‒∠B ‒∠DAF =40∘。
浙教版数学八上第2章特殊三角形优生综合题特训一、综合题1.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l 的对称点P′的坐标为(不必证明);(3)运用与发现:已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.2.如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.3.如图,在△ABC中,AB=AC,∠B=50°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=50°,DE交线段AC于点E.(1)当∠BDA=100°时,∠BAD= °,∠DEC= °;(2)当DC=AB时,△ABD和△DCE是否全等?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数,若不存在,请说明理由.4.如图1,中,,,,点D为斜边上动点.(1)如图2,过点D作交CB于点E,连接AE,当AE平分时,求CE;(2)如图3,在点D的运动过程中,连接CD,若为等腰三角形,直接写出AD的值.5.在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.6.如图所示,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.7.如图1,在Rt△ABC中,∠A=90°,∠B=30°,D,G分别是AB,BC上的点,连接GD,且GD=GB.以点D为顶点作等边△DEF,使点E,F分别在AC,GC上.(1)求∠DGF的大小;(2)求证:△FDG≌△EFC;(3)如图2,当DE//BC时,若△DEF的面积为2,请直接写出△ABC的面积.8.如图1,已知在Rt△ABC中,∠ACB=90°,将Rt△ABC绕C点顺时针旋转α(0°<α<90°)得到Rt△DCE(1)当α=15°,则∠ACE= °;(2)如图2,过点C作CM⊥BF于M,作CN⊥EF于N,证明:CF平分∠BFE(3)求Rt△ABC绕C点顺时针旋转,当旋转角α(0°<α<90°)为多少度时,△CFG为等腰三角形9.如图1,点P为等腰Rt△ABC斜边AB下侧一个动点,连AP、BP,且∠APB=45°,过C作CE⊥AP于点E,AB=12.(1)若∠ACE=15°,求△ABP的面积;(2)求的值;(3)如图2,当△APC为等腰三角形时,则其面积为 .10.在中,若最大内角是最小内角的倍(为大于1的整数),则称为倍角三角形.例如:在中,,,,则称为6倍角三角形.(1)在中,,,则为倍角三角形;(2)若一个等腰三角形是4倍角三角形,求最小内角的度数;(3)如图,点在上,交于点,,,,.找出图中所有的倍角三角形,并写出它是几倍角三角形.11.如图,已知.(1)与全等吗?请说明理由;(2)若,垂足为F,请说明线段;(3)在(2)的基础上,猜想线段存在的数量关系,并直接写出结论.12.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B 呢?分析:把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C'处,即AC=AC',据以上操作,易证明△ACD≌△AC'D,所以∠AC'D=∠C,又因为∠AC'D>∠B,所以∠C>∠B.感悟与应用:(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,①求证:∠B+∠D=180°;②求AB的长.13.问题探究(1)如图①,已知,,,则的大小为;(2)如图②,在四边形中,,,对角线,求四边形的面积;小明这样来计算,延长,使得,连接,通过证明,从而可以计算四边形的面积,请你将小明的方法完善,并计算四边形的面积;(3)如图③,四边形是正在建设的城市花园,其中,,,米,米,请计算出对角线的长度.14.在四边形ABCD中,对角线AC平分∠BAD.(1)(探究发现)如图①,若∠BAD=,∠ABC=∠ADC=.求证:AD+AB=AC;(2)(拓展迁移)如图②,若∠BAD=,∠ABC+∠ADC=.①猜想AB、AD、AC三条线段的数量关系,并说明理由;②若AC=10,求四边形ABCD的面积.15.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,四边形的顶点,,在网格格点上,请你在的网格中分别画出3个不同形状的等邻边四边形,要求顶点在网格格点上.(2)如图2,,,平分,求证:四边形为“等邻边四边形”.(3)如图3,在(2)的条件下,,,是的中点,点是边上一点,当四边形是“等邻边四边形”时,求的长.16.将一副直角三角尺按如图方式叠放,与交于点,,,,.(1)如图1,点在上,过点作直线,求的度数;(2)图中含的三角尺固定不动,将含三角尺绕顶点顺时针转动.①如图2,当时,求的度数;②若将含的三角尺绕顶点顺时针继续转动,使两块三角尺至少有一组边互相平行,直接写出符合条件的()的度数为°.17.如图,铁路上A、B两点相距,C、D为两村庄,若,,于A,于B,现要在上建一个中转站E,使得C、D两村到E站的距离相等.(1)求E应建在距A多远处?(2)和垂直吗?试说明理由.18.如图,已知△OMN为等腰直角三角形,∠MON=90°,点B为NM延长线上一点,OC⊥OB,且OC=OB,连接CN.(1)如图1,求证:CN=BM;(2)如图2,作∠BOC的平分线交MN于点A,求证:AN2+BM2=AB2;(3)如图3,在(2)的条件下,过点A作AE⊥ON于点E,过点B作BF⊥OM于点F,EA,BF的延长线交于点P,请探究:以线段AE,BF,AP为长度的三边长的三角形是何种三角形?并说明理由.19.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.20.如图,中,,若点从点出发,以每秒1个单位长度的速度沿折线运动,设运动时间为秒.(1)若点在上,且满足时,求此时的值;(2)若点恰好在的平分线上,求的值.21.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:求证:(1)△ABE是等边三角形;(2)△ABC≌△EAD;(3).22.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若三边长分别是2,和4,则此三角形________常态三角形(填“是”或“不是”);(2)若是常态三角形,则此三角形的三边长之比为________(请按从小到大排列);(3)如图,中,∠ACB=90°,BC=6,AD=DB=DC,若是常态三角形,求的面积.23.如图,Rt△ABC中,∠C= Rt∠,BC=4 cm,∠ABC=30°。
2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下面说法错误的个数有()(1)全等三角形对应边上的中线相等.(2)有两条边对应相等的等腰直角三角形全等.(3)一条斜边对应相等的两个直角三角形全等.(4)两边及其一边上的高也对应相等的两个三角形全等.A.1个B.2个C.3个D.4个2.观察下面A,B,C,D四幅图,其中与如图成轴对称的是()A.B.C.D.3.如图,∠BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则∠P AQ 的大小是()A.70°B.55°C.40°D.30°4.如图案分别表示“福”“禄”“寿”“喜”,其中不是轴对称图形的是()A.B.C.D.5.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是()A.4个B.3个C.2个D.1个6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°7.如图,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C、E,再分别以点C与点E为圆心,大于CE长的一半为半径画弧,两弧交于点F,连接BF交AC于点D,若∠A=50°,则∠CBD的大小是()A.25°B.40°C.50°D.65°8.已知射线OC平分∠AOB,点P、M、N分别在射线OC、OA、OB上,且PM=PN,PE ⊥OA于点E,若∠PNO=110°,则∠EPM的度数为()A.20°B.35°C.55°D.70°9.如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E,以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当△ADE为等腰三角形时,∠BAD=20°;④当∠BAD =30°时,BD=CE.其中正确的结论的个数是()A.1B.2C.3D.410.如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是()A.∠B=∠C B.AD⊥BC C.∠BAD=∠CAD D.AB=2BC二.填空题(共6小题,满分24分)11.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有对.12.如图,在△ABC中,∠BAC=90°,AB=4,AC=3,点D是BC上一动点(点D与点B不重合),连接AD,作B关于直线AD的对称点E,当点E在BC的下方时,连接BE、CE,则CE的取值范围是;△BEC面积的最大值为.13.如图,△APT与△CPT关于直线PT对称,∠A=∠APT,延长AT交PC于点F,当∠A =°时,∠FTC=∠C.14.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)15.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出个格点三角形与△ABC成轴对称.16.如图,∠A=∠C=90°,且AB=AC=4,D,E分别为射线AC和射线CF上两动点,且AD=CE,当BD+BE有最小值时,则△BDE的面积为.三.解答题(共7小题,满分56分)17.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.18.如图,直线l1∥l2,直线l3交直线l1于点B,交直线l2于点D,O是线段BD的中点.过点B作BA⊥l2于点A,过点D作DC⊥l1于点C,E是线段BD上一动点(不与点B,D 重合),点E关于直线AB,AD的对称点分别为P,Q,射线PO与射线QD相交于点N,连接PQ.(1)求证:点A是PQ的中点;(2)请判断线段QN与线段BD是否相等,并说明理由.19.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.20.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.21.如图,△ABC在正方形网格中,已知网格的单位长度为1,点A,B,C均在格点上,按要求回答下列问题:(1)分别写出点A,B,C的坐标;(2)求△ABC的面积;(3)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称.22.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)如图(1),点D在线段BC上移动时,①角α与β之间的数量关系是;②若线段BC=2,点A到直线BC的距离是3,则四边形ADCE周长的最小值是;(2)如图(2),点D在线段BC的延长线上移动时,①请问(1)中α与β之间的数量关系还成立吗?如果成立,请说明理由;②线段BC、DC、CE之间的数量是.23.如图,在△ABC中,AB=AC,∠A=2∠ABD,当△BDC是等腰三角形时,求:∠DBC 的度数.参考答案一.选择题(共10小题,满分40分)1.解:(1)全等三角形对应边上的中线相等.正确;(2)有两条边对应相等的等腰直角三角形一定全等.正确;(3)一条斜边对应相等的两个直角三角形不一定全等.错误;(4)两边及其一边上的高也对应相等的两个三角形一定全等.错误;故选:B.2.解:与已知图形成轴对称的图形是选项C:.故选:C.3.解:∵∠BAC=110°,∴∠B+∠C=70°,∵A,B关于直线MP对称,A,C关于直线NQ对称,又∵MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠P AQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:C.4.解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,故选:A.5.解:∵△ABD和△ACE是△ABC的轴对称图形,∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,∴∠EAD=3∠BAC﹣360°=3×150°﹣360°=90°,故①正确;∴∠BAE=∠CAD=(360°﹣90°﹣150°)=60°,由翻折的性质得,∠AEC=∠ABD=∠ABC,又∵∠EPO=∠BP A,∴∠BOE=∠BAE=60°,故②正确;∵△ACE≌△ADB,∴S△ACE=S△ADB,BD=CE,∴BD边上的高与CE边上的高相等,即点A到∠BOC两边的距离相等,∴OA平分∠BOC,故③正确;只有当AC=AB时,∠ADE=30°,才有EA=ED,故④错误;在△ABP和△AEQ中,∠ABD=∠AEC,AB=AE,∠BAE=60°,∠EAQ=90°,∴BP<EQ,故⑤错误;综上所述,结论正确的是①②③共3个.故选:B.6.解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,此时BE+EF最小.∵AD是△ABC的角平分线,∴∠BAD=∠B′AD=25°,∴∠AE′F′=65°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,∵AG=AG,∴△ABG≌△AB′G(ASA),∴BG=B′G,∠ABG=∠AB′G,∴AD垂直平分BB′,∴BE=BE′,∴∠E′B′G=∠E′BG,∵∠BAC=50°,∴∠AB′F′=40°,∴∠ABE=40°,∴∠BE′F′=50°,∴∠AE′B=115°.故选:B.7.解:∵AB=AC,∠A=50°,∴∠ACB=(180°﹣50°)÷2=65°,由题意可知,BC=BE,∴∠BEC=∠ACB=65°,∴∠CBE=180°﹣65°×2=50°,∴∠CBD=∠CBE=25°.故选:A.8.解:连接MN,∵射线OC平分∠AOB,PM=PN,∴OP⊥MN,∠MOP=∠NOP,∴∠MPO=∠NPO,在△MOP与△NOP中,,∴△MOP≌△NOP(ASA),∴∠OMP=∠PNO=110°,∴∠EPM=∠OMP﹣∠OEP=110°﹣90°=20°.故选:A.9.解:①∵AB=AC,∴∠B=∠C=40°,∴∠BAD=180°﹣40°﹣∠ADB,∠CDE=180°﹣40°﹣∠ADB,∴∠BAD=∠CDE;故①正确;②∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴DE⊥AC,故②正确;③∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE,∴∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,或∵△ADE为等腰三角形,∴AD=DE,∴∠DAE=∠AED=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=30°,故③错误,④∵∠BAD=30°,∴∠CDE=30°,∴∠ADC=70°,∴∠CAD=180°﹣70°﹣40°=70°,∴∠DAC=∠ADC,∴CD=AC,∵AB=AC,∴CD=AB,∴△ABD≌△DCE(ASA),∴BD=CE;故④正确;故选:C.10.解:A.∵AB=AC,∴∠B=∠C,故A不符合题意;B.∵AB=AC,点D是BC边中点,∴AD⊥BC,故B不符合题意;C.∵AB=AC,点D是BC边中点,∴∠BAD=∠CAD,故C不符合题意;所以排除A,B,C,故选:D.二.填空题(共6小题,满分24分)11.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB(AAS);∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD(AAS);∴BE=CD,∴AD=AE,∵AO=AO,∴Rt△AOD≌Rt△AOE(HL);∵∠DOC=∠EOB,∴△COD≌△BOE(AAS);∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF(SSS),△COF≌△BOF(SSS),综上所述,共有6对全等的直角三角形.故答案是:6.12.解:∵B、E关于AD对称,∴AE=AB=4,则可知E点在以A点为圆心、AE为半径的圆上,如图,在Rt△ABC中,AB=4,AC=3,则BC=5,当E点与B点重合时,有CE最长,即为5;又∵B、E不重合,∴CE<5,当E点移动到F点时,使得A、C、F三点共线,此时CF最短,且为CF=AF﹣AC=4﹣3=l,即CE最短为l,即CE的取值范围为:1≤CE<5;当点E移动到使得AE⊥BC时,A点到BC的距离最短,则E点到BC的距离最大,则此时△BCE的面积最大,设AE交BC于点G点,利用面积可知AB×AC=BC×AG,∴AG=2.4,∵AE=AB=4,∴EG=4﹣2.4=1.6,∴△BCE的面积最大值为:1.6×5×=4,∴△BCE的面积的最大值为4;故答案为:1≤CE<5;4.13.解:∵△APT与△CPT关于直线PT对称,∴∠A=∠C,TA=TC,∠APT=∠CPT,∵∠A=∠APT,∴∠A=∠C=∠APT=∠CPT,∵∠FTC=∠C,∴∠AFP=∠C+∠FTC=2∠C=2∠A,∵∠A+∠APF+∠AFP=180°,∴5∠A=180°,∴∠A=36°,故答案为:36°.14.解:AD=CD,理由:在△ABD与△CBD中,,∴△ABD≌△CBD,∴四边形ABCD是一个轴对称图形,故答案为:AD=CD.15.解:如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.16.解:过点B作BE⊥CF于点N,∵∠A=∠C=90°,且AB=AC=4,∴四边形ACNB是正方形,∴AC=CN,∵AD=CE,∴CD=NE△BEN≌△NDC,∴BE=DN,延长BA到M.使得AM=AB,则B,M关于AC对称,∴BD=MD,∴BD+BE=MD+DN,最小时,M,N,D三点共线,此时D为AC的中点,△BDE的面积为:0.5×(2+4)×4﹣0.5×4×2﹣0.5×2×2=6.故答案为:6.三.解答题(共7小题,满分56分)17.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形,∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴OB=OC,∴△OBC是等腰三角形.18.(1)证明:连接AE.∵点E关于直线AB,AD的对称点分别为P,Q,∴AP=AE,AQ=AE,∠1=∠2,∠3=∠4,∴AP=AQ,∵AB⊥l2,∴∠2+∠3=90°,∴∠1+∠2+∠3+∠4=180°,∴P,A,Q三点在同一条直线上,∴点A是PQ的中点.(2)解:结论QN=BD,理由如下:连接PB.∵点E关于直线AB,AD的对称点分别为P,Q,∴BP=BE,DQ=DE,∠5=∠6,∠7=∠8,∵l1∥l2,DC⊥l1,∴DC⊥l2,∴∠7+∠9=90°,∴∠8+∠10=90°,∴∠9=∠10,又∵AB⊥l2,DC⊥l2,∴AB∥CD,∴∠6=∠9,∴∠5+∠6=∠9+∠10,即∠OBP=∠ODN,∵O是线段BD的中点,∴OB=OD,又∠BOP=∠DON,在△BOP和△DON中,∴△BOP≌△DON(AAS),∴BP=DN,∴BE=DN,∴QN=DQ+DN=DE+BE=BD.19.解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)(1)中结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.20.解:如下图所示:(答案不唯一).21.解:(1)由图知,A(0,3)、B(﹣4,4)、C(﹣2,1);(2)△ABC的面积为3×4﹣×2×2﹣×1×4﹣×2×3=5,答:△ABC的面积为5;(3)如图所示,△A1B1C1即为所求.22.解:(1)①α+β=180°;理由如下:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC∴∠CAE=∠BAD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°,故答案为:α+β=180°;②由①知,△ABD≌△ACE,∴BD=CE,AD=AE,∴CD+CE=BD+CD=BC=2,当AD⊥BC时,AD最短,即四边形ADCE周长的值最小,∵点A到直线BC的距离是3,∴AD=AE=3,∴四边形ADCE周长的最小值是2+3+3=8,故答案为:8;(2)①成立,理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∴∠BAC+∠BCE=∠DCE+∠BCE=180°,即α+β=180°;②∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,∵BD=BC+CD,∴CE=BC+CD,故答案为:CE=BC+CD.23.解:∵AB=AC,∴∠ABC=∠C.①当BD=CD时,∠C=∠CBD<∠ABC,故不成立;②当BD=BC时,∠C=∠BDC=∠A+∠ABD,∵∠A+∠ABC+∠C=180°,∴∠A+∠A+∠ABD+∠A+∠ABD=180°,∴3∠A+2∠ABD=180°,4∠A=180°,∴∠A=45°,∴∠ABD=22.5°,∴∠ABC=(180°﹣45°)=67.5°,∴∠DBC=∠ABC﹣∠ACD=45°;③当CB=CD时,∠CBD=∠CDB=∠A+∠ABD,设∠ABD=x,∴∠A=2x,∴∠CBD=∠CDB=3x,∴∠ABC=∠C=4x,∵∠A+∠ABC+∠C=180°,∴2x+4x+4x=180°,∴x=18°,∴∠DBC=54°;综上所述:∠DBC的度数为54°或45°.。
第2章 特殊三角形 综合测试题
班级 姓名 学号 得分
一、选择题
1.等腰三角形的一边长为6,另一边长为13,则它的周长为( )
A. 25
B. 25或32
C. 32
D. 19
2.下列学习用具中,不是轴对称图形的是( )
(A ) (B ) (C ) (D )
3.下列四个艺术字中,不是..
轴对称的是( ▲ )
A B C D
4.如图,将ABC △沿直线DE 折叠后,使得点B 与点A 重合,已知5cm AC =,ADC △的周长为17cm ,则BC 的长为( ).
(A )7cm (B )10cm
(C )12cm (D )22cm
5.如图,在Rt △ABC 中,90ACB ∠=°,25A ∠=°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B '处,则ADB '∠等于( ).
(A )25° (B )30° (C )35° (D )40°
6.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的
度数是( )
A .18°
B .24°
C .30°
D .36°
7.如图,∠BAC=∠DAF=90°,AB =AC ,AD =AF ,点D 、E 为BC 边上的两点,且∠DAE =45°,连接EF 、BF ,则下列结论:①△AED ≌△AEF ②△ABE ∽△ACD ③BE +DC >DE ④BE 2+DC 2=DE 2
,其中正确的有()个
A .1
B .2
C .3
D .4
8.如图,在Rt ABC △中,9031C AC BC ===∠°
,,,D 在AC 上,将ADB △沿直线BD 翻折后,点A 落在点E 处.如果AD ED ⊥,那么ABE △的面积是( )
(A )1 (B )32 (C )333+ (D )1234
+
9.正三角形ABC 的边长为3,依次在边AB 、BC 、CA 上取点1A 、1B 、1C ,使1111AA BB CC ===,则111A B C △的面积是
(A )34 (B )334 (C )94
(D )934 10.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )
A .(0,0)
B .(0,1)
C .(0,2)
D .(0,3)
二、填空题
11. 若等腰三角形的一个内角为50°,则它的顶角为 .
12. 在ABC △中,22AB =,145BC ABC =∠=,°,以AB 为一边作等腰直角三角形ABD ,使90ABD ∠=°,连接CD ,则线段CD 的长为 .
13. 如图,AD BC ⊥于点D ,D 为BC 的中点,连结AB ,ABC ∠的平分线交AD 于点O ,
连结OC .若125AOC ∠=°,则ABC ∠= °.
14. 已知ABC △为等边三角形,BD 为中线,延长BC 至E ,使 1.CE CD ==连接DE ,则DE = .
15. 如图,ABC △中,AB AC =,54BAC ∠=°,BAC ∠的平分线与AB 的垂直平分线交于点O ,将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则OEC ∠为 度.
16. 在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .
三、解答题
17. 请你画一个等腰三角形,使它的腰长为3cm 。
18. 在ABC ∆中,AB BC =,BAD CAD ∠=∠,6BD cm =.求BC 的长.
19. 如图,在等腰三角形ABC ∆中,顶角36A ∠=︒,请要腰AC 上找出一点P ,使连接BP 和过P 点作底边的垂线后,将原三角形分别3个等腰三角形.
20. 如图,在ABC ∆中,ABD ACD ∠=∠,AB AC =.求证:AD 是BAC ∠的平分线.
21. 点D 、E 在都在ABC ∆的边BC 上,如图,AB AC =,AD AE =,试说明BE CD =.
22. 如图,AD 是ABC ∆的高,点E 在AC 边上,BE 交AD 于点F ,且B F A C =,AD BD =.试问BE 与AC 的位置关系怎样?请说明理由.
23. 如图,在ABC △中,28AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形ABD ∆和ACE ∆,使90BAD CAE ∠=∠=°.
(1)求DBC ∠的度数;
(2)连接BE 、CD ,求证:CD BE =.
24. 如图,BAC ABD ∠=∠,AC BD =,点O 是AD 、BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.
初中数学试卷
鼎尚图文**整理制作。