研究弦线上的驻波现象
- 格式:xls
- 大小:26.50 KB
- 文档页数:2
弦线上的驻波实验报告实验目的:本实验旨在通过弦线上的驻波实验,探究驻波现象的形成原理、规律及其对弦线振动的影响,并验证速度与频率间的关系。
实验原理:当一条细弦被两端固定在同一平面上并被同时激发振动时,产生的波将在弦线中心线形成驻波现象。
驻波是指一种波介质内相互干涉而组成的新波型,其节点为波动振幅为零的位置,而能量密集的地方则称为“腹部”。
在本实验中,采用电机定频源提供频率固定的正弦波,通过弦线与尺子固定杆相连,将激发振动的弦线的一端固定在定频源的振荡器,另一端则通过弹簧卡子连接负载挂钩。
实验步骤:1. 将弦线端点固定在振荡器上。
2. 将弦线另一端通过弹簧卡子连接负载挂钩,并将这一侧的弹簧略作松弛。
3. 调整负载挂钩的位置,使弦线尽量处于水平状态,且不接触实验台面或其他辅助器材。
4. 将电机定频源开启,并设置适当的频率和振幅。
5. 小心调整弦线的张力使其产生不同的谐波现象,用尺子测量不同谐波的长度,并记录频率和波长数据。
6. 重复以上步骤,记录不同频率的波长数据。
实验结果与分析:根据数据统计结果,可以得出以下结论:1. 弦线上的驻波现象存在多种谐波。
除基波外,第一个、第二个、第三个谐波的频率和波长分别为基频的2倍、3倍、4倍。
2. 驻波的波长与频率成反比例关系,即波长越短频率越高,波长越长频率越低。
3. 改变弦线长度对于谐波的产生和振动特征会产生影响,当弦线长度为一定值时,谐波现象最明显且出现密集的腹部。
结论:弦线上驻波的实验过程非常简单,但却蕴含着丰富的物理原理。
通过本实验,我们可以更好地掌握驻波现象的形成规律和相互关系,并得到了直观的实验数据验证。
弦线上的驻波实验实验报告实验目的:本实验的目的是通过弦线上的驻波实验,探究驻波的特性及其与弦线长度、振动频率和弦张力的关系。
同时,通过实验观察驻波现象,进一步理解波动的基本原理。
实验原理:驻波是指两个相同频率、振幅相等且沿相反方向传播的波相遇后在同一空间内定向干涉而形成的波动现象。
在弦线上,当两个反向传播的波相遇时,由于波在相接处的叠加,会产生节点和腹部。
节点是波的振动幅度为零的位置,腹部则是波的振动幅度最大的位置。
驻波的性质与弦线的长度、振动频率和弦张力密切相关。
根据弦线的特性,我们可以通过改变弦线的长度、振动频率和弦张力来观察驻波的变化情况。
实验步骤:1.准备实验装置,将一根细弦拴在平直的固定支架上,并通过转动装置与信号发生器连接。
2.设置信号发生器的频率为初始频率,并调整输出幅度使得弦线振幅合适,避免过大过小。
3.轻轻触碰弦线使其产生波动,并观察弦线上是否出现驻波现象。
如果出现驻波,继续调整信号发生器的频率,观察驻波的变化情况。
4.测量弦线上节点(振幅为零的点)的位置,并记录下来。
5.根据测得的节点位置,计算波长,并进一步计算弦线的线密度。
6.固定弦线一端的支架,并用一物体调整弦线的长度。
重复步骤3-5,记录下不同弦线长度下的节点位置,并计算波长。
7.固定弦线长度不变,调整信号发生器的频率,重复步骤3-5,记录下不同频率下的节点位置,并计算波长。
8.固定弦线长度和频率,逐渐调整弦线的张力,重复步骤3-5,记录下不同张力下的节点位置,并计算波长。
实验结果:在本次驻波实验中,我们通过改变弦线的长度、振动频率和弦张力,观察了驻波的变化情况,并记录了节点的位置,计算了波长。
实验讨论:根据实验结果可以得出以下结论:1.当弦线的长度改变时,驻波的节点位置也会发生相应的改变。
节点的位置与弦线长度成正比,即弦线长度越短,节点位置越靠近振动源。
2.频率的变化也会导致驻波节点位置的变化。
频率越大,节点位置越靠近振动源。
【精品】实验五研究弦线上的驻波现象驻波是一种有趣的物理现象,它是由细长的弦线受到压力,使弦线中的弹性能所激发的一种现象。
驻波现象在实际应用中有广泛的应用,如电缆、橡皮筋和钢琴弦等。
本实验主要是研究弦线上的驻波现象,了解它的物理原理,以便在工程上得到充分利用。
本实验采用的实验仪器为三维弦线测试仪、118型电涡流变换器和KE等加速度计、示波器和电子计等测量仪器设备。
实验在实验室室内进行,恒温恒湿,关闭门窗,防止来自外界的干扰。
弦线测试仪一端固定,另一端用直线电机使背部变换空载转子电流,使弦线产生张力和振动,从而产生驻波现象。
实验中,变速电机的转速可以通过直流电源精确控制,并通过测量转子电流来确定其张力状态。
测量弦线振动的加速度计采用的是KE-O等加速度计,它的量程依次为0 ~ 50 m/s2,精度是1%。
本实验采用的是脉冲输入法:利用示波器S-8082触发脉冲产生器,控制变速电机空载转子电流,使弦线振动,对弦线上产生的驻波现象进行测量。
实验中利用脉冲输入法激发弦线,使电压、电流和加速度同步测量,分析驻波现象,对驻波现象的特性进行了解、研究和验证。
实验结果表明,当弦线振动空载转子电流增加时,不同激振动幅度和频率的弦线振动均能产生驻波,频域结果显示弦线的驻波振动有伴有多个固定频率,其驻波曲线的峰值随着激振动参数的改变而改变,但其峰值的位置不变。
综上所述,本实验的结果验证了弦线的振动空载转子电流的变化确实可以影响弦线上的驻波现象,这有助于更深入地了解弦线上的驻波特性,从而为工程上实际应用提供一定的技术依据。
本实验尝试研究弦线上的驻波现象,获得了有效的结果。
弦线上的驻波实验报告弦线上的驻波实验报告引言:驻波是一种在波动现象中常见的现象,它是由两个相同频率、相同振幅的波在相反方向上传播时发生干涉而形成的。
驻波现象在物理学中有着广泛的应用,特别是在声学和光学领域。
本实验旨在通过实验观察和分析弦线上的驻波现象,以加深对波动现象的理解。
实验装置:我们使用了一条长而细的弦线,将其两端固定在两个支架上,并通过一个发声装置产生频率可调的波动。
在弦线上设置了多个固定点,以便观察和测量驻波的节点和腹点。
实验步骤:1. 将弦线固定在支架上,确保其张力适中。
2. 打开发声装置,调节频率,使其产生合适的波动。
3. 观察弦线上的波动图像,并记录下节点和腹点的位置。
4. 改变频率,重复观察和记录,以获得更多的数据。
5. 根据观察到的数据,分析节点和腹点的位置与波长、频率之间的关系。
实验结果:通过实验观察和记录,我们得到了一系列驻波的节点和腹点位置的数据。
根据这些数据,我们可以发现节点和腹点之间的距离是波长的一半,即λ/2。
而频率与波长之间的关系可以通过以下公式表示:v = fλ,其中v为波速,f为频率,λ为波长。
讨论与分析:通过实验结果的分析,我们可以得出以下结论:1. 驻波的节点和腹点位置与波长和频率之间存在确定的关系,即节点和腹点之间的距离为波长的一半。
2. 频率越高,波长越短,节点和腹点之间的距离越小。
3. 波速与频率和波长之间存在确定的关系,即波速等于频率乘以波长。
结论:通过这次实验,我们深入了解了弦线上的驻波现象,并通过实验数据得出了节点和腹点位置与波长、频率之间的关系。
这些结果对于进一步研究波动现象和应用驻波在实际生活中具有重要的意义。
实验的局限性和改进:在本次实验中,我们只观察了弦线上的驻波现象,没有涉及其他形式的波动。
为了更全面地了解波动现象,可以进一步研究其他类型的波动,如声波和光波。
此外,由于实验条件的限制,我们只能在有限的频率范围内进行观察和记录,为了得到更全面的数据,可以使用更高精度的实验装置。
弦线上的驻波实验实验报告
弦线上的驻波实验:目的与意义
弦线上的驻波实验是一种特殊的物理实验,旨在让学生们了解驻波现象。
驻波是指一种波在传播过程中,由于遇到了阻碍物体的振动,使得波被反射回来的现象。
在这个实验中,学生们将通过对弦线的拉力与振动,观察到驻波现象及其表现形式。
实验过程:
实验中,我们选取了一根粗细均匀的单丝线,并在其一端固定了一个小挂钟。
随着单丝线的振动,我们逐渐对它施加张力,使其与弦线之间的距离不断变化。
在实验过程中,我们发现当单丝线越接近中性位置,张力对其产生的影响越大。
现象观察:
随着张力的逐渐增加,单丝线上的波节越来越短,而波峰变得越来越长。
当张力达到一定程度时,单丝线上的波节和波峰相互叠加,形成明显的驻波现象。
此时,我们可以清楚地看到到波的振幅逐渐增大,而周期却逐渐减小。
结论分析:
弦线上的驻波实验,让我们深入了解了驻波现象及其产生的影响。
通过这一实验,我们可以更好地理解弦线上的波动,并认识到驻波现象在实际应用中的重要性。
例如,在声学领域,驻波现象被广泛应用于声卡、话筒等设备中,以保证信号的稳定传输。
总之,弦线上的驻波实验是一种非常有意义的物理实验,它不仅可以帮助我们更好地理解弦线上的波动,还可以激发我们对物理学的兴趣。
弦线上驻波实验报告心得简介弦线上驻波实验是物理学中常见的实验之一,通过在一条绷紧的弦线上产生驻波,可以观察到不同节点与腹点的位置及相应的共振频率。
通过这个实验,我们可以深入理解驻波的形成原理,并探讨弦线上不同条件下的频率变化规律。
本文将对我个人在完成弦线上驻波实验过程中的心得体会进行回顾和总结。
实验原理驻波是指在一定条件下产生的波动现象,它的形成是由于两组频率相同、振幅相等且方向相反的波在空间中迭加叠加而形成的。
在弦线上产生驻波需要保证弦线的两个端点固定,然后以恰当的频率在其上发生波动。
当波动的频率与弦线的固有频率相等时,就会形成驻波。
驻波实验中,若弦线两端固定,则会形成最基本的声学驻波实验;若弦线一端固定,另一端挂有一质点,则可以观察到机械波在弦线上的传播。
在实验中,常用驻波的模式来分析和测量,主要有两种:半波长模式和四分之一波长模式。
实验设备实验中所需的设备与器材主要包括:- 弦线- 固定的支撑架- 频率可调节的发声装置- 高频发生器- 固定的震动源- 高精度的测量工具:游标卡尺、频率计等实验过程1. 将弦线固定在实验台上的支撑架上,保证弦线垂直并且绷紧。
2. 调节发声装置的频率,让弦线产生波动,观察产生的驻波。
3. 用频率计测量并记录弦线不同节点的共振频率。
4. 引入不同的质点挂在弦线上,观察并记录不同节点的共振频率。
实验心得完成弦线上驻波实验的过程中,我深刻体会到了实验与理论之间的联系。
在实验中,我们通过调节发声装置的频率,观察驻波的形成,验证了驻波实验的基本原理。
通过频率计的测量,我们发现不同节点的共振频率与该节点的位置有密切关系,这与理论预期相符。
在实验中,我还遇到了一些挑战。
最主要的是在调节弦线的绷紧度和发声装置的频率时需要耐心和细心。
弦线的绷紧度直接影响到波动的效果,过松或过紧都会使实验结果失真;而发声装置的频率调节需要根据实验要求进行精确的控制。
这些因素都需要我们不断调试和修正,以获得准确的实验数据。
实验6 弦线上的驻波[实验目的]1.了解弦线上的驻波。
2.通过弦线振动测定弦振动的频率。
3.测量弦线上横波的传播速度。
[实验仪器]XZDY-B型固定均匀弦振动仪、砝码等。
[仪器介绍]XZDY-B型固定均匀弦振动仪是一种自带数字显示频率的高精确度仪器。
调节面板上的频率旋钮,移动支撑弦线的劈尖的位置,能明显观察到驻波。
实验装置如图象1所示。
其中①、⑥香蕉插头座(接弦线),②频率显示,③电源开关,④频率调节旋钮,⑤磁钢,⑦砝码盘,⑧米尺,⑨弦线,⑩滑轮及托架,A、B两劈尖(滑块)。
图1 XZDY-B型固定均匀弦振动仪示意图将电源接通。
这样,在磁场的作用下,通有正弦交变电流的弦线就会振动。
根据需要,可以调节频率调节旋钮,从显示器上读出所需频率。
移动磁铁的位置,使弦振动调整到最佳状态(使弦振动的振动面与磁场方向完全垂直)。
移动劈尖的位置,可以改变弦线的长度。
注意:⑴、改变挂在弦线一端的砝码后,要使砝码稳定后再测量。
⑵、在移动劈尖调节驻波时用力要轻,磁铁应在两劈尖之间,且不能处于波节位置,不要将磁铁在槽外移动。
[实验原理]设一均匀弦线,一端由劈尖A支住,另一端由劈尖B支撑。
对均匀弦线扰动,引起弦线上质点的振动,于是波动就由A端朝B端方向传播,称为入射波,再由B端反射沿弦线朝A端传播,称为反射波。
入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,移动劈尖B到适合位置,弦线上将形成驻波。
这时,弦线上的波被分成几段且每段波两端的点始终静止不动,而中间的点振幅最大。
这些始终静止的点称为波节,振幅最大的点称为波腹。
驻波的形成如图2所示。
下面用筒谐表达式对驻波进行定量描述。
设有两列筒谐波沿X 轴方向传播,它们的振幅相等,传播方向相反。
其中沿X 轴正方向传播的波为入射波,沿X 轴负方向传播的为反射波,取它们振动位相始终相同的点作坐标原点,且在X=0处,振动质点向上达最大位移时开始计时,则它们的振动方程为:)(2cos 1λπx ft A y -=(1))(2cos 2λπx ft A y +=(2)式中A 为筒谐波的振幅,f 为频率,λ为波长,x 为弦线上质点的坐标位置。
研究弦线上的驻波现象张悦晨(华东师范大学物理与材料科学学院上海)摘要:论文主要研究和观察弦线振动后的上驻波变化,研究弦线振动时,频率、振幅与驻波间的相互影响,用origin处理实验数据得出图像。
并且简单分析吉他等弦乐器上的驻波现象和对其音色音调的影响。
关键词:驻波;origin;吉他;弦线振动The research of Standing wave on a stringYuechen Zhang(East China Normal University , Department of Physics)Abstract: In this paper, the vibration phenomenon is discussed. An experiment is designed to study the relationship between wave length and frequency while keeping tension and linear density, and to study the relationship between wave length and tension while keeping frequency a with curve graph drawn by ORIGIN .And, I’d like to talk about the guitar, which is the example of how the standing wave influences the orchestral.引言:波的干涉现象的一个特例——驻波是物理教学内容的基本知识点。
对于驻波的产生,教材中通常采用如图1实验装置来演示。
该实验直观形象地给出了驻波的波形。
对弦振动进行研究时,频率太大形成驻波时波腹太小,不明显;若频率太小时,波长太长,需要的弦线太长、本文就弦线上驻波产生需要满足什么条件,驻波产生时,如何找出弦长、弦上张力、弦线密度的关系以及振源频率的最佳组合进行了分析研究。
一、实验目的1. 观察在两端被固定的弦线上形成的驻波现象;2. 了解弦线达到共振和形成稳定驻波的条件;3. 测定弦线上横波的传播速度;4. 用实验的方法确定弦线作受迫振动时的共振频率与驻波波长、张力和弦线线密度之间的关系;5. 对实验结果进行数据处理,并给出结论。
二、实验原理1. 横波的波速:在弦线上,横波的波速v与弦线的张力T和线密度μ有关,公式为v = √(T/μ)。
2. 驻波的形成:当两列振幅、频率相同,有固定相位差,传播方向相反的简谐波叠加时,可形成驻波。
对于两端固定的弦,驻波满足条件:λ/2 = L/n,其中λ为驻波波长,L为弦长,n为驻波数目。
3. 共振频率:当弦线受到外部驱动力作用时,若驱动力频率等于弦线的固有频率,则弦线发生共振,形成稳定的驻波。
三、实验仪器1. 弦音计装置一套(包括驱动线圈和探测线圈各一个、1 kg硅码和6根不同线密度的吉他弦)2. 信号(功率函数)发生器3. 数字示波器4. 千分尺5. 米尺四、实验内容与步骤1. 认识和调节仪器:熟悉弦音计装置、信号发生器、数字示波器等仪器的使用方法。
2. 测定弦线的线密度:使用千分尺测量吉他弦的直径,根据公式μ = m/L计算弦线线密度,其中m为弦线质量,L为弦长。
3. 固定外力和弦线长度,测定弦线共振频率和驻波数目的关系:a. 调节信号发生器,使输出频率逐渐增加;b. 观察弦线上的驻波,记录共振频率和对应的驻波数目;c. 改变弦线长度,重复上述步骤。
4. 固定驻波数目和弦线长度,测定弦线振振频率和外力的关系:a. 调节砝码盘上的砝码,改变弦线的张力;b. 观察弦线上的驻波,记录不同张力下的共振频率;c. 改变砝码质量,重复上述步骤。
5. 固定驻波数目和弦线长度,测定弦线共振频率和弦线长度的关系:a. 改变弦线长度;b. 观察弦线上的驻波,记录不同弦线长度下的共振频率;c. 重复上述步骤。
五、实验数据及数据处理1. 记录实验数据,包括弦线长度、张力、驻波数目、共振频率等。