铁电体定义、特征和基础知识
- 格式:ppt
- 大小:1.38 MB
- 文档页数:62
铁电体、热释电体、压电体和介电体及其之间的关系
铁电体、热释电体、压电体和介电体都是电子材料种类之一,它们在电子领域和工业
领域中有着广泛的应用,是电子材料中的重要种类。
下面我们来了解一下这些电子材料之
间的关系。
铁电体:铁电体是具有铁电性的晶体材料,铁电性是材料自身结构的一个特性,即当
材料暴露在电场中时,会发生电偶极矩的取向变化。
这个特性使得铁电体在电子产品中有
非常广泛的应用,比如它可以用作电容器、震荡器、传感器、存储器等,这些器件在电子
产品中起到重要的作用。
热释电体:热释电体是一种能够将温度变化转化为电能的材料,也叫做热电材料。
热
释电体使用的原理是通过热电效应将热能转化为电能,这个效应是指材料在温度差异作用
下会产生电势差。
热释电体具有良好的稳定性和性能,可以应用于如温度测量、温差发电、制冷等领域。
介电体:介电体是一种在电场作用下不会导电的材料,介电体在电子器件中有广泛的
应用,比如用作电容器、滤波器、隔离器、保险丝等。
由于介电体具有较高的绝缘性能,
它可以防止电信号的干扰和噪声,可以使电子器件的性能更加稳定。
尽管以上这些电子材料在应用领域不同,但它们之间有着一些共同的特性,比如它们
都是晶体材料,都可以产生电势差并转化为电能,它们都可以在电子领域中应用,有着一
定的互相联系。
当然,它们也存在一些区别,这主要体现在各自使用效应的不同点上。
铁电体铁电体是指可以产生自发极化并且自发极化可以随外电场的变化而发生转向的电介质材料,铁电体包含于压电体,压电体是指能够产生压电效应及逆压电效应的电介质材料,晶体具有压电性的前提是点群结构是非中心对称的。
结构中心对称的晶体发生形变后,其正电荷和负电荷中心仍然重合,不具备产生压电效应及逆压电效应的条件。
因为正负离子产生相互位移的结果是相互抵消的,所以只有不具备中心对称结构的晶体才具有压电效应可以成为压电晶体,但并不是具有压电效应的点群结构都可以产生自发极化强度,因为很多晶体的压电效应都是在某个特定方向产生的,说明该晶体的点群结构只在某个特定方向上非中心对称。
这就是说所有铁电体都是压电体,但压电体不一定是铁电体,比如石英,四硼酸锂等著名的压电体都不是铁电体[12]。
图1-2 电介质晶体分类在晶体学的32种点群中,有21种点群是非中心对称的,它们分别是1、2、m、222、2mm、4、4、422、4mm、3、32、422、3m、6、6、622、6mm、6m2、23、43m、432。
在这21种点群中,属于432点群的晶体至今未发现压电效应,这可能是由于432点群具有很高的轴对称性造成的,在这21种非中心对称的点群中有10种点群的晶体可能具有自发极化,它们是1、2、m、mm2、4、4mm、3、3m、6、6mm,并且在这10种点群晶体中自发极化还会随着温度的变化而发生改变,如果热胀冷缩效应足够大,那么温度的变化会导致应变的产生,这就是热释电效应,所以铁电体一定是属于可以产生自发极化的这10个点群范围内的[13],图1-2中给出了几种晶体之间的关系。
铁电体的本质特性是可以产生自发极化,自发极化的产生是由于晶胞内部正负电荷中心不重叠而形成电偶极矩的体现,铁电体呈现自发极化状态,在其正负端面分别出现一层符号相反的束缚电荷使其净电压发生变化。
当铁电体受到机械束缚或外界条件发生变化时自发极化状态也将发生变化,所以自发极化的状态是不稳定的,也不是一致有序的。
铁电体的名词解释铁电体是一种特殊的晶体材料,具有独特的电学性质和结构特征。
它在外加电场的作用下,可以在分子、原子或晶体的层次上发生可逆的极化。
这种极化特性使得铁电体成为一种重要的功能材料,广泛应用于电子器件、储能装置等领域。
1. 铁电体的概念和特性铁电体是一类特殊的晶体材料,由于其晶体结构的对称性破缺,使得它们能够在外加电场的作用下发生极化。
这种极化可逆,即在去除电场的情况下,铁电体仍能保持极化状态。
这种独特性质使得铁电体在电子行业和科学研究中具有广泛的应用价值。
2. 铁电体的结构铁电体的结构通常由正负离子组成,其晶格结构可分为正交晶系、四方晶系、三方晶系等。
这些晶格结构的共同点是破缺了空间对称性,导致铁电性的出现。
同时,铁电体的晶格结构中通常含有极化轴或反向极化轴,使得极化能够在电场作用下发生转换。
3. 铁电体的应用由于铁电体具有独特的电学性质和结构特征,因此在电子器件制造、传感器技术、电荷存储等领域有着广泛的应用。
其中最典型的应用便是铁电存储器,它利用铁电体极化的性质来实现数据的存储和读取。
与传统存储器相比,铁电存储器具有更高的存储密度、快速的读取速度以及低功耗等优势。
此外,在电子元件中,铁电体的极化性质还可以用于制造传感器和微马达等器件,例如压力传感器利用铁电体的极化改变来检测压力变化。
还有一些研究表明,铁电体材料在太阳能电池、柔性显示器等领域的应用也具有巨大的潜力。
4. 铁电体的研究与发展随着科学技术的不断进步,对铁电体的研究也得到了广泛的关注。
研究人员通过不断改进合成方法、调控晶格结构和探索新的材料组成,试图提高铁电体的性能和稳定性。
此外,利用先进的实验技术和理论模拟手段,科学家们还对铁电体的物理机制进行深入研究,以解开其中的奥秘。
5. 铁电体与其他材料的比较与铁磁体和铁氧体等材料相比,铁电体具有更广泛的极化能力和更高的极化密度。
与传统的铁磁体相比,铁电体还具有更低的介电常数和更高的电容效应。
无机材料物理性能知识点整理无机材料指由无机物单独或混合其他物质制成的材料。
下面是店铺精心整理的无机材料物理性能知识点整理,供大家参考借鉴,希望可以帮助到有需要的朋友。
1.铁电体与铁磁体的定义和异同答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体。
铁磁体是指具有铁磁性的物质。
2. 本征(固有离子)电导与杂质离子电导答:本征电导是源于晶体点阵的基本离子的运动。
这种离子自身随着热振动离开晶体形成热缺陷。
这种热缺陷无论是离子或者空位都是带电的,因而都可作为离子电导载流子。
显然固有电导在高温下特别显著;第二类是由固定较弱的离子的运动造成的,主要是杂质离子。
杂质离子是弱联系离子,所以在较低温度下杂质电导表现显著。
相同点:二者的离子迁移率和电导率表达形式相同不同点:a.本征离子电导载流子浓度与温度有关,而杂质离子电导载流子浓度与温度无关,仅决定于杂质的含量B.由于杂质载流子的生成不需要提供额外的活化能,即他的活化能比在正常晶格上的活化能要低得多,因此其系数B比本征电导低一些C.低温部分有杂质电导决定,高温部分由本征电导决定,杂质越多,转折点越高3. 离子电导和电子电导答:携带电荷进行定向输送形成电流的带点质点称为载流子。
载流子为离子或离子空位的为离子电导;载流子是电子或空穴的为电子电导不同点:a.离子电导是载流子接力式移动,电子电导是载流子直达式移动B.离子电导是一个电解过程,符合法拉第电解定律,会发生氧化还原反应,时间长了会对介质内部造成大量缺陷及破坏;而电子电导不会对材料造成破坏C.离子电导产生很困难,但若有热缺陷则会容易很多;一般材料不会产生电子电导,一般通过掺杂形式形成能量上的自由电子D.电子电导的电导率远大于离子电导(原因:1.当温度升高时,晶体内的离子振动加剧,对电子产生散射,自由电子或电子空穴的数量大大增加,总的效应还是使电子电导非线性地大大增加;2.在弱电场作用下,电子电导和温度成指数式关系,因此电导率的对数也和温度的倒数成直线关系;3.在强电场作用下,晶体的电子电导率与电场强度之间不符合欧姆定律,而是随场强增大,电导率有指数式增加4.铁电体与反铁电体答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体;反铁电体是指晶体中相邻的离子沿反平行方向发生自发极化,宏观上自发极化为零且无电滞回线的材料不同点:1.在反铁电体的晶格中,离子有自发极化,以偶极子形式存在,偶极子成对的按反平行方向排列,这两部分偶极子的偶极矩大小相等,方向相反;而在铁电体的晶格中,偶极子的极性是相同的,为平行排列2.反铁电体具有双电滞回线,铁电体具有电滞回线3.当外电场降至零时,反铁电体无剩余极化,铁电体存在剩余计5.声频支与光频支的异同答:相同点:声频支与光频支都是由于一维双原子点阵的振动引起的,且都是独立的格波,频率都与元胞振动频率相同不同点:1.声频支是相邻原子具有相同的振动方向,表示了元胞的质量中心的振动;光频支是相邻两种原子振动方向相反,表示了元胞的质量中心维持不同,因而引起了一个范围很小,频率很高的振动2.声频支是低温下的格波,频率小影响范围广,是同一类原子不同晶胞之间相互振动引起的;光频支是晶体熔融温度下的格波,频率高,影响范围小,是不同类原子同一晶胞之间相互振动引起的。
有机铁电体
有机铁电体是一种具有铁电性质的有机材料,其分子结构中含有极性分子基团,可在电场作用下产生电偶极矩并改变分子构象。
有机铁电体具有许多优良的性能特点,如高电场响应速度、低工作电压、可撤销的电极化等,因此在电子器件领域有广泛的应用前景。
目前,有机铁电体的合成、性能表征和应用研究已成为国际学术界研究的热点之一。
未来,随着相关技术的不断发展和完善,有机铁电体在电子器件、传感器等领域的应用前景将更加广阔。
- 1 -。