高一数学分层抽样
- 格式:doc
- 大小:58.50 KB
- 文档页数:3
随机抽样:分层抽样【例1】(2020·全国高三专题练习)某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中二年级被抽取的人数为( )A.28B.32C.40D.64【答案】D【解析】∵高中一年级有400人,高中二年级有320人,高中三年级有280人,∴取一个容量为200人的样本,则高中二年级被抽取的人数为,故选D.【举一反三】1.(2020·全国高三专题练习)某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示,电视台为了了解观众的具体想法和意见,打算从中抽取100人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( )A.25,25,25,25 B.48,72,64,16C.20,40,30,10 D.24,36,32,8【答案】D【解析】法一:因为抽样比为10020000=1200,所以每类人中应抽取的人数分别为 4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.法二:最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66982+++×100=24,96982+++×100=36,86982+++×100=32,26982+++×100=8.故选:D2.(2020·全国高三专题练习)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( ) A.100 B.150C.200 D.250【答案】A【解析】根据已知可得:70100 350015003500nn=⇒=+,故选择A。
2.1.3分层抽样问题导航(1)什么叫分层抽样?(2)分层抽样适用于什么状况?(3)分层抽样时,每个个体被抽到的机会是相等的吗?1.分层抽样的概念一般地,在抽样时,将总体分成互不交叉的层,然后依据肯定的比例,从各层独立地抽取肯定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所把握的各种信息,并充分考虑保持样本结构与总体结构的全都性,这对提高样本的代表性格外重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.1.推断下列各题.(对的打“√”,错的打“×”)(1)系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样;()(2)在分层抽样时,每层可以不等可能抽样;()(3)在分层抽样的过程中,每个个体被抽到的可能性是相同的,与层数及分层有关.()解析:(1)由于分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规章进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.(2)分层抽样时,每层仍旧要等可能抽样.(3)与层数及分层无关.答案:(1)×(2)×(3)×2.某地区为了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽取1100的居民家庭进行调查,这种抽样是()A.简洁随机抽样B.系统抽样C.分层抽样D.分类抽样解析:选C.符合分层抽样的特点.3.一个班共有54人,其中男、女比为5∶4,若抽取9人参与教改调查会,则每个男同学被抽取的可能性为________,每个女同学被抽取的可能性为________.解析:男、女每人被抽取的可能是相同的,由于男同学共有54×59=30(人),女同学共有54×49=24(人),所以每个男同学被抽取的可能性为530=16,每个女同学被抽取的可能性为424=16.答案:16164.分层抽样的操作步骤是什么?解:总体分层;依据比例独立抽取.1.分层抽样的特点(1)适用于总体由有明显差别的几部分组成的状况.(2)抽取的样本更好地反映了总体的状况.(3)是等可能性抽样,每个个体被抽到的可能性都是nN.2.分层抽样的公正性假如总体中个体的总数是N,样本容量为n,第i层中个数为N i,则第i层中要抽取的个体数为n i=n·N iN.每一个个体被抽取的可能性是n iN i=1N i·n·N iN=nN,与层数无关.所以对全部个体来说,被抽取的可能性是一样的,与层数及分层无关,所以分层抽样是公正的.3.分层抽样需留意的问题(1)分层抽样中分多少层、如何分层要视具体状况而定,总的原则是每层内样本的差异要小,不同层之间的样本差异要大,且互不重叠.(2)抽取比例由每层个体占总体的比例确定.(3)各层抽样按简洁随机抽样或系统抽样进行.分层抽样的概念某中学有老年老师20人,中年老师65人,青年老师95人.为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则合适的抽样方法是()A.抽签法B.系统抽样C.分层抽样D.随机数法[解析]各部分之间有明显的差异是分层抽样的依据.[答案] C方法归纳各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是机敏的,可用简洁随机抽样,也可接受系统抽样.分层抽样中,无论哪一层的个体,被抽中的机会均等,体现了抽样的公正性.1.(1)某市有四所重点高校,为了解该市高校生的课外书籍阅读状况,则接受下列哪种方法抽取样本最合适(四所高校图书馆的藏书有肯定的差距)( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法解析:选D. 由于学校图书馆的藏书对同学课外书籍阅读影响比较大,因此实行分层抽样.(2)某校高三班级有男生800人,女生600人,为了解该班级同学的身体健康状况,从男生中任意抽取40人,从女生中任意抽取30人进行调查.这种抽样方法是( )A .简洁随机抽样法B .抽签法C .随机数表法D .分层抽样法解析:选D.总体中个体差异比较明显,且抽取的比例也符合分层抽样.分层抽样的应用(2022·高考湖北卷)甲、乙两套设备生产的同类型产品共4 800件,接受分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.[解析] 设乙设备生产的产品总数为x 件,则甲设备生产的产品总数为(4 800-x )件.由分层抽样特点,结合题意可得5080=4 800-x4 800,解得x =1 800.[答案] 1 800[互动探究] 将本例条件“若样本中有50件产品由甲设备生产”换为“已知甲、乙两套设备生产的同类型产品数量之比为5∶3”,求样本中抽取的由甲、乙设备生产的数量分别是多少件?解:设样本中抽取的由甲、乙设备生产的数量分别是x ,y 件,则x =80×55+3=50,y =80×35+3=30.故样本中抽取的由甲、乙设备生产的数量分别是50,30件. 方法归纳在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .2.(1)为了调查城市PM 2.5的状况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( )A .3B .4C .5D .6解析:选B.依据分层抽样的特点可知,抽样比例为1248=14,则应抽取的中型城市数为16×14=4.(2)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,则应抽取超过45岁的职工________人.解析:抽样比为25∶200=1∶8,而超过45岁的职工有80人,则从中应抽取的个体数为80×18=10.答案:10三种抽样方法的考查选择合适的抽样方法抽样,并写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取10个入样; (2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样; (3)有甲厂生产的300个篮球,抽取10个入样; (4)有甲厂生产的300个篮球,抽取30个入样. [解] (1)总体容量较小,用抽签法.①将30个篮球编号,编号为00,01, (29)②将以上30个编号分别写在完全一样的一张小纸条上,揉成小球,制成号签. ③把号签放入一个不透亮 的袋子中,充分搅拌均匀. ④从袋子中逐个抽取10个号签,并记录上面的号码. ⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样.①确定抽取个数.由于1030=13,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个).②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本. (3)总体容量较大,样本容量较小,宜用随机数表法. ①将300个篮球用随机方式编号,编号为001,002, (300)②在随机数表中随机地确定一个数作为开头,如(教材P 103附表)第8行第29列的数“7”开头.任选一个方向作为读数方向,比如向右读.③从数“7”开头向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样.①将300个篮球用随机方式编号,编号为000,001,002,…,299,并分成30段,其中每一段包含30030=10个个体.②在第一段000,001,002,…,009这十个编号中用简洁随机抽样抽出一个(如002)作为起始号码.③将编号为002,012,022,…,292的个体抽出,即可组成所要求的样本.方法归纳(1)简洁随机抽样、系统抽样和分层抽样是三种常用的抽样方法,在实际生活中有着广泛的应用.(2)三种抽样的适用范围不同,各自的特点也不同,但各种方法间又有亲密联系.在应用时要依据实际状况选取合适的方法.(3)三种抽样中每个个体被抽到的可能性都是相同的.扫一扫进入91导学网()三种抽样方法的比较3.(1)某饮料公司在华东、华南、华西、华北四个地区分别有200个、180个、180个、140个销售点.公司为了调查产品销售的状况,需从这700个销售点中抽取一个容量为100的样本,记这项调查为①;在华南地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务状况,记这项调查为②.则完成①、②这两项调查宜接受的抽样方法依次是()A.分层抽样法、系统抽样法B.分层抽样法、简洁随机抽样法C.系统抽样法、分层抽样法D.简洁随机抽样法、分层抽样法解析:选B. 当总体中个体较多时宜接受系统抽样;当总体中的个体差异较大时,宜接受分层抽样;当总体中个体较少时,宜接受简洁随机抽样.依题意,第①项调查应接受分层抽样法、第②项调查应接受简洁随机抽样法.故选B.(2)调查某班同学的平均身高,从50名同学中抽取5名,抽样方法是________,假如男女身高有显著不同(男生30人,女生20人),抽样方法是________.解析:从50名同学中抽取5名,总体中个体数不多,接受简洁随机抽样;总体中个体差异比较明显,接受分层抽样.答案:简洁随机抽样分层抽样(3)下列问题中,接受怎样的抽样方法较为合理?①从10台电冰箱中抽取3台进行质量检查;②某学校有160名教职工,其中老师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.解:①抽签法,由于总体容量较小,宜用抽签法.②分层抽样,由于学校各类人员对这一问题的看法可能差异较大,用分层抽样.易错警示分层抽样的应用某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本,假如接受系统抽样和分层抽样方法抽取,不用剔除个体;假如样本容量增加1个,则在接受系统抽样时,需要在总体中先剔除1个个体,则样本容量为________.[解析]总体容量N=36.当样本容量为n时,系统抽样间隔为36n∈N+,所以n是36的约数;分层抽样的抽样比为n36,求得工程师、技术员、技工的抽样人数分别为n6,n3,n2,所以n应是6的倍数,所以n=6或12或18或36.当样本容量为n+1时,总体中先剔除1人时还有35人,系统抽样间隔为35n+1∈N+,所以n只能是6.[答案] 6[错因与防范]由36n,n6,n3,n2∈N+求n时,n的值有遗漏;35n+1∈N+易错写成36n+1∈N+.为猎取各层入样数目,需先正确计算出抽样比k=样本容量总体容量,若k与某层个体数的积不是整数时,可先将该层等可能性剔除多余个体.4.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长状况,接受分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25C.20 D.15解析:选C.抽样比为150∶30 000=1∶200,则样本中松树苗的数量为4 000×1200=20.故选C.1.某高校共有同学5 600人,其中有专科生1 300人、本科生3 000人、争辩生1 300人,现接受分层抽样的方法调查同学利用因特网查找学习资料的状况,抽取的样本为280人,则应在专科生、本科生与争辩生这三类同学中分别抽取( )A .65人、150人、65人B .30人、150人、100人C .93人、94人、93人D .80人、120人、80人解析:选A.依据分层抽样按比例抽取的特点,有5 600280=1 300x =3 000y =1 300z ,解得x =z =65,y =150,即专科生、本科生与争辩生应分别抽取65、150、65,故选A.2.某地共有10万户居民,从中随机调查了1 000户拥有彩电的调查结果如下表:彩电 城市 农村 有 432 400 无48120若该地区城市与农村住户之比为4∶6,估量该地区无彩电的农村总户数约为( )A .0.923万户B .1.385万户C .1.8万户D .1.2万户 解析:选B.无彩电的农村总户数约为10×610×120520≈1.385万户.3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n =________.解析:由分层抽样的特点,得n ×22+3+5=16,所以n =80.答案:804.某校对全校男、女同学共1 200名进行健康调查,选用分层抽样抽取一个容量为200的样本,已知男生比女生多抽了10人,则该校男生人数为________.解析:入样比例=2001 200=16,则男生应抽105人,设男生为x 人,所以105x =16⇒x =630.答案:630[A.基础达标]1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100的样本,记作①;某学校高一班级有12名女排运动员,要从中选出3名调查学习负担状况,记作②.那么完成上述两项调查应接受的抽样方法是( )A .①用简洁随机抽样法;②用系统抽样法B .①用分层抽样法;②用简洁随机抽样法C .①用系统抽样法;②用分层抽样法D .①用分层抽样法;②用系统抽样法解析:选B.对于①,总体由高收入家庭、中等收入家庭和低收入家庭差异明显的3部分组成,而所调查的指标与收入状况亲密相关,所以应接受分层抽样法.对于②,总体中的个体数较少,而且所调查内容对12名调查对象是“公平”的,所以应接受简洁随机抽样法.2.已知某单位有职工120人,其中男职工90人,现接受分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A .30B .36C .40D .无法确定解析:选B.分层抽样中抽样比肯定相同,设样本容量为n ,由题意得,n 120=2790,解得n =36.3.(2022·高考重庆卷)某中学有高中生3 500人,学校生1 500人,为了解同学的学习状况,用分层抽样的方法从该校同学中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解析:选A.法一:由题意可得70n -70=3 5001 500,解得n =100,故选A.法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.4.(2021·中山高一检测)某校选修乒乓球课程的同学中,高一班级有30名,高二班级有40名,现用分层抽样的方法在这70名同学中抽取一个样本,已知在高一班级的同学中抽取了6名,则在高二班级的同学中应抽取的人数为( )A .6B .8C .10D .12解析:选B.设高二班级抽取x 人,则有630=x40,解得x =8,故选B.5.(2021·潍坊高一检测)某学校在校同学2 000人,为了同学的“德、智、体”全面进展,学校进行了跑步和登山竞赛活动,每人都参与而且只参与其中一项竞赛,各班级参与竞赛的人数状况如下表:高一班级高二班级高三班级跑步人数 a b c 登山人数xyz其中a ∶b ∶c =2∶5∶3,全校参与登山的人数占总人数的14.为了了解同学对本次活动的满足程度,从中抽取一个200人的样本进行调查,则高三班级参与跑步的同学中应抽取( )A .15人B .30人C .40人D .45人解析:选D.全校参与登山的人数是2 000×14=500,所以参与跑步的人数是1 500,应抽取1 5002 000×200=150,c =150×310=45(人).6.某学校高一、高二、高三班级的同学人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个班级的同学中抽取一个容量为50的样本,则应从高二班级抽取________名同学.解析:抽取比例与同学比例全都.设应从高二班级抽取x 名同学,则x ∶50=3∶10.解得x =15.答案:157.某公司生产三种型号的轿车,产量分别为1 200辆,6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应当抽取________辆,________辆,________辆.解析:由于461 200+6 000+2 000=1200,所以这三种型号的轿车依次应当抽取1 200×1200=6辆,6 000×1200=30辆,2 000×1200=10辆.即这三种型号的轿车依次应当抽取6辆、30辆、10辆进行检验.答案:6 30 108.某地区有农夫、工人、学问分子家庭共计2 015家,其中农夫家庭1 600户,工人家庭303户.现要从中抽出容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法中的________.(将你认为正确的选项的序号都填上)①简洁随机抽样;②系统抽样;③分层抽样.解析:为了保证抽样的合理性,应对农夫、工人、学问分子分层抽样,在各层中接受系统抽样和简洁随机抽样,抽样时还要先用简洁随机抽样剔除多余的个体.答案:①②③ 9.(2021·莱州高一检测)某校高一班级500名同学中,血型为O 的有200人,血型为A 的有125人,B 型的有125人,AB 型的有50人.为了争辩血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出血型为AB 型的抽样过程.解:由于40÷500=225,所以应用分层抽样法抽取血型为O 型的225×200=16(人),A 型的225×125=10(人),B 型的225×125=10(人),AB 型的225×50=4(人).AB 型的4人可以这样抽取:第一步,将50人随机编号,编号为1,2, (50)其次步,把以上50人的编号分别写在大小相同的小纸片上,揉成小球,制成号签. 第三步,把得到的号签放入一个不透亮 的袋子中,充分搅拌均匀. 第四步,从袋子中逐个抽取4个号签,并记录上面的编号. 第五步,依据所得编号找出对应的4人即可得到样本.10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参与其中一组.在参与活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参与活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满足程度,现用分层抽样的方法从参与活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a 、b 、c , 则有x ×40%+3xb 4x =47.5%,x ×10%+3xc 4x =10%,解得b =50%,c =10%, 故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%. (2)游泳组中,抽取的青年人人数为200×34×40%=60(人);抽取的中年人人数为200×34×50%=75(人);抽取的老年人人数为200×34×10%=15(人).即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.[B.力量提升]1.某鱼贩一次贩运草鱼、青鱼、鲢鱼、鲤鱼及鲫鱼各有80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行质量检测,若接受分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有( )A .6条B .8条C .10条D .12条解析:选A.设抽取的青鱼与鲤鱼共有x 条,依据分层抽样的比例特点有20+4080+20+40+40+20=x 20,所以x=6.2.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁同学问卷中抽取60份,则在15~16岁同学中抽取的问卷份数为( )A .60B .80C .120D .180解析:选C.11~12岁回收180份,其中在11~12岁同学问卷中抽取60份,则抽样比为13.∵从回收的问卷中按年龄段分层抽取容量为300的样本,∴从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总数为30013=900(份),则15~16岁回收问卷份数为:x =900-120-180-240=360(份).∴在15~16岁同学中抽取的问卷份数为360×13=120(份),故选C.3.某校高一班级有x 名同学,高二班级有y 名同学,高三班级有z 名同学,接受分层抽样抽取一个容量为45的样本,高一班级被抽取20人,高二班级被抽取10人,高三班级共有同学300人,则此学校共有同学________人.解析:高三班级被抽取了45-20-10=15(人),设此学校共有同学N 人,则45N =15300,解得N =900.答案:900 4.(2021·泰安质检)某企业三月中旬生产A ,B ,C 三种产品共3 000件,依据分层抽样的结果,企业统计员制作了如下的统计表格:由于不当心,表格中A 、C A 产品的样本容量比C 产品的样本容量多10,依据以上信息,可得C 产品的数量是________件.解析:抽样比为130∶1 300=1∶10,又A 产品的样本容量比C 产品的样本容量多10,故C 产品的数量是[(3 000-1 300)-100]×12=800(件).答案:8005.某校有在校高中生共1 600人,其中高一班级同学520人,高二班级同学500人,高三班级同学580人.假如想通过抽查其中的80人来调查同学的消费状况,考虑到不同班级同学的消费状况有明显差别,而同一班级内消费状况差异较小,问应接受怎样的抽样方法?高三班级同学中应抽查多少人?解:因不同班级的同学消费状况有明显差别,所以应接受分层抽样.由于520∶500∶580=26∶25∶29,于是将80分成比例为26∶25∶29的三部分.设三部分各抽个体数分别为26x ,25x ,29x ,由26x +25x +29x =80,解得x =1.所以高三班级同学中应抽查29人.6.(选做题)某中学进行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名学校生、4 000名高中生中进行问卷调查,假如要在全部答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份学校生的答卷中抽取一个容量为48的样本,假如接受简洁随机抽样,应如何操作? (3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取得到所需的样本?解:(1)由于这次活动对教职员工、学校生和高中生产生的影响不相同,所以应当实行分层抽样的方法进行抽样.∵样本容量为120,总体个数为500+3 000+4 000=7 500(名),则抽样比为1207 500=2125.∴500×2125=8(人),3 000×2125=48(人),4 000×2125=64(人),∴在教职员工、学校生、高中生中抽取的个体数分别是8、48、64.分层抽样的步骤是:第一步,分为教职员工、学校生、高中生共三层.其次步,确定每层抽取个体的个数:在教职员工、学校生、高中生中抽取的个体数分别是8、48、64. 第三步,各层分别按简洁随机抽样的方法抽取样本. 第四步,综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简洁随机抽样有两种方法:抽签法或随机数表法.若用抽签法,则要做3 000个号签,费时费劲,因此接受随机数表法抽取样本,步骤是:第一步,编号:将3 000份答卷都编上号码:0 001,0 002,…,3 000. 其次步,在随机数表上随机选取一个起始位置.第三步,规定读数方向:向右连续取数字,以4个数为一组,遇到右边线时接下一行左边线连续向右连续取数,若读取的4位数大于3 000,则去掉,假如遇到相同号码则只取一个,这样始终到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,故应先使用简洁随机抽样法从4 000名同学中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第一部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开头,每隔62个号码抽取一个,这样得到一个容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。
高一数学分层抽样知识点高一数学是学生们接触到的第一门高级数学课程,也是他们进入数学学习的重要阶段。
为了帮助学生更好地理解和掌握数学知识,教师们引入了分层抽样的概念。
本文将介绍高一数学分层抽样的一些知识点,帮助学生更好地了解这一概念。
一、什么是分层抽样分层抽样是一种统计学中常用的抽样方法,它将总体分为若干层次,然后从每一层中抽取一部分样本进行研究。
在高一数学中,教师们将数学知识点划分为不同的层次,然后根据学生的掌握情况,选择适合不同层次的题目进行练习和测试。
二、为什么采用分层抽样采用分层抽样的好处是能够更好地针对学生的掌握情况进行教学和辅导。
不同层次的学生可以根据自己的实际情况选择相应的题目来练习,这样可以提高学习效果,避免了过低或过高的难度对学生学习的不利影响。
三、分层抽样的具体应用在高一数学中,分层抽样主要应用于以下几个方面:1. 知识点的层次划分教师根据教学大纲和学生的学习情况,将数学知识点划分为不同的层次。
例如,在函数的学习中,可以将相关概念、性质和应用划分为初级、中级和高级层次。
这样,学生就可以根据自己的实际情况选择适合自己的题目进行练习。
2. 阶段性测试为了评估学生的学习情况,教师可以根据知识点的层次,进行阶段性测试。
通过对不同层次题目的抽取,可以更准确地了解学生的掌握情况,并对不同层次的学生进行相应的指导。
3. 学习计划的制定分层抽样还可以帮助学生制定学习计划。
学生可以根据自己的实际情况,选择适合自己的练习题目,从而制定合理的学习计划,提高学习效果。
总之,高一数学分层抽样是一种有效的教学辅助方法。
它能够根据学生的实际情况进行个性化教学,提高学习效果。
通过分层抽样,学生可以更有针对性地进行练习和测试,从而更好地掌握数学知识。
同时,分层抽样还可以帮助学生制定学习计划,提高学习效率。
因此,学生们应该充分利用分层抽样的优势,积极参与练习和测试,提高数学能力。
只有这样,才能在高一数学学习中取得良好的成绩。
第3节分层抽样
1.简单随机抽样、系统抽样、分层抽样之间的共同点是( )
A. 都是从总体中逐个取得
B. 将总体分成几部分,按事先规定的要求在各部分抽取
C. 抽样过程中每个个体被抽取的机会相同
D. 将总体分成几层,分层进行抽取
2.某校高中共有900人,其中高一年级400人,高二年级200人,高三年级300人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为()
A. 15人,5人,25人
B. 15人,15人,15人
C. 30人,5人,10人
D. 20人,10人,15人
3.(2010·济宁模拟改编)一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人.要从中抽取一个容量为20的样本,用分层抽样方法抽出样本,则在20人的样本中应抽取管理人员的人数为()
A. 3人
B. 4人
C. 12人
D. 7人
4.具有A、B、C三种性质的总体,其容量为63,将A、B、C三种性质的个体按1∶2∶4的比例进行分层抽样调查,如果抽取的样本容量为21,则A、B、C三种性质的个体分别抽取() A. 12、6、3 B. 12、3、6
C. 3、6、12
D. 3、12、6
5.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2∶3∶5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量n=__________.
6.对某单位1 000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料:
试利用上述资料,设计一个抽样比为
1
10
的抽样方法.
7. (2009·陕西)某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层抽样方法进行抽样,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()
A. 9
B. 18
C. 27
D. 36
8.某校老师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n=__________.
9.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.
10. (2010·安阳高一质检)某单位共有163人,其中老年人27人,中年人55人,青年人81人,为了调查他们的身体状况,需要从他们中抽取一个容量为36的样本,问应当采用怎样的抽样方法?中年人应抽查多少人?
11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,正确的是( )
A. ②③都不能为系统抽样
B. ②④都不能为分层抽样
C. ①④都可能为系统抽样
D. ①③都可能为分层抽样
12. (2008·广东)某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,采用系统抽样方法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________;若采用分层抽样的方法,则40岁以下年龄的职工应抽取__________人.
答案
1.C
2.D
3.B
4.C
5.80
6.解析:因为抽样比为
1 10
,
故只需从1 000人中抽取1 000×
1
10
=100(人).
故从任职5年以下的抽300×
1
10
=30(人),
任职5~10年的抽500×
1
10
=50(人),
任职10年以上的抽200×
1
10
=20(人).
7. B 8.192
9.解析:总体容量是6+12+18=36.
当样本容量是n时,由题意知,系统抽样的间隔为36
n
,分层抽样的比例是
n
36
,抽取工程师
人数为n
36
×6=
n
6
(人),技术员人数为
n
36
×12=
n
3
(人),技工人数为
n
36
×18=
n
2
(人),
所以n应是6的倍数,36的约数,即n=6,12,18.
当样本容量是(n+1)时,总体容量是35,系统抽样的间隔为
35
n1
+
,因为
35
n1
+
必须是整数,
所以n只能取6,即样本容量n=6.
10. 解析:由于各部分之间的身体状况有较大差别,所以应采用分层抽样法,样本才具有可行性.
因为三部分的人数不成比例,故应先从中年人中随机剔除1人,得27∶54∶81=1∶2∶3,于是将36人分成1∶2∶3的三部分,设三部分各抽个体数分别为x,2x,3x.则6x=36得x=6,故中年人应抽查12人.
11. D 12. 37 20。