线段、角的轴对称性
- 格式:doc
- 大小:254.68 KB
- 文档页数:7
线段、角的轴对称性【基础知识点】:1.线段的轴对称性:① 线段是轴对称图形,对称轴有两条:一条是线段所在的直线,另一条是这条线段的垂直平分线。
②线段的垂直平分线上的点到线段两端的距离相等。
③到线段两端距离相等的点,在这条线段的垂直平分线上。
【结论】:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。
②角平分线上的点到角的两边距离相等。
③到角的两边距离相等的点,在这个角的平分线上。
【结论】:角的平分线是到角的两边距离相等的点的集合【课后练习题】一、选择题1.下列图形中,不是轴对称图形的是( )A. 两条相交直线B. 线段C.有公共端点的两条相等线段D.有公共端点的两条不相等线段2.到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点二、填空题1、如图:在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D.①若BC=8,BD=5,则点D 到AB 的距离是 。
②若BD:DC=3:2,点D 到AB 的距离为6,则BC 的长是多少?2、如图,OP是∠AOB的平分线,C是OP上一点,CE⊥OA于点E,CF⊥OB于点F,CE=6㎝,CF= ㎝,理由是三、应用题1、已知∆ABC中,AB=AC=10,DE垂直平分AB,交AC于E,已知∆BEC的周长是16。
求∆ABC的周长.2、如图在△ABC 中,AB>AC,BC的垂直平分线DE,分别交AB,BC于D,E,AB=12cm,△ACD的周长为21cm,求AC长。
线段、角的轴对称性【本讲教育信息】一。
教学内容:线段、角的轴对称性[学习目标]探索基本图形(线段、角)的轴对称性及其相关性质。
二。
重、难点:1。
线段的垂直平分线的性质及其应用;2. 角平分线的性质及其应用。
三。
知识要点:1. 线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴。
(线段的对称轴不只一条,除了它的垂直平分线,还有它本身。
)(2)线段垂直平分线及其性质。
a)线段垂直平分线垂直且平分—条线段的直线叫做线段的垂直平分线(简称中垂线)。
(线段的垂直平分线是到线段两端距离相等的点的集合)b)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;(性质定理)到线段两端距离相等的点,在这条线段的垂直平分线上。
(判定定理)c) 作法:①分别以B A 、为圆心,大于AB 21的长为半径画弧,两弧相交于点D C 、;②过D C 、两点做直线。
直线CD 就是线段AB 的垂直平分线。
[注意]:平面内的曲线被理解为平面内适合某种条件的点的集合,必须满足下列两个条件,缺一不可:① 曲线上的每一个点都要具备某种条件; ② 每个符合某种条件的点都要在这条曲线上。
2。
角的轴对称性(1)角是轴对称图形,角的平分线所在直线是它的对称轴。
(2)角平分线及其性质。
a ) 角平分线由角的顶点出发到角的两边距离相等的一条射线叫做角平分线。
(角平分线是到角两边距离相等的点的集合) b) 角平分线的性质① 角平分线上的任意一点到角两边的距离相等;(性质定理)② 到一个角的两边距离相等的点,在这个角的平分线上。
(判定定理)【典型例题】例 1. 求作一点P ,使点P 到已知AOB ∠的两边的距离相等,且到已知点D C 、的距离相等。
作法:①做AOB ∠的平分线OE ;②连接CD ,作CD 的垂直平分线MN ,交OE 于P 。
点P 即为所求点。
例2。
已知:如图,在ΔABC 中,AB 、BC 的中垂线交于点O ,那么点O 在AC 的中垂线上吗?为什么?分析:围绕着“中垂线上的点到这条线段两个端点的距离相等,到线段两端距离相等的点,在这条线段的中垂线上”。
2.4 线段、角的轴对称性(1)学习目标:1.知道线段的垂直平分线的概念,知道成轴对称的两个图形全等,对称轴是对称点的连线的垂直平分线.2.经历探索轴对称的性质的活动的过程,进一步发展空间观点,以及有条理地思考和表达的水平. 教学过程: 一、创设情境:1.复习提问:什么是轴对称图形,线段是轴对称图形吗?为什么? 二、探索活动 实践探索一1.在一张薄纸上画一条线段AB ,操作并思考:线段是轴对称图形吗?如果是,对称轴在哪里?为什么?2.你能画出线段AB 的对称轴吗?说明理由。
实践探索二上图中,线段AB 的垂直平分线l 交AB 于点O ,点P 是l 上任意一点,P A 与PB 相等吗?为什么?通过证明,你发现了什么?用语言描述你得到的结论. 总结:线段垂直平分线上的点有什么特点? 实践探索三试判断:线段的垂直平分线外的点到这条线段两端的距离相等吗?引导学生展开讨论:1.你能读懂题目吗?题中已知哪些条件?要说明怎样一个结论? 2.请你利用题中的已知条件和要说明的结论画出图形.3.根据图形你能证明吗?试一试,让学生自己作图,讨论研究,并给出结论和证明. 教师点评,给出解答过程:解:线段的垂直平分线外的点,到这条线段两端的距离不会相等. 如图,在线段AB 的垂直平分线l 外任取一点P ,连接P A 、PB ,设P A 交l 于点Q ,连接QB .根据“线段的垂直平分线上的点到线段两端的距离相等”,因为点Q 在AB 的垂直平分线上,所以QA =QB .于是P A =PQ +QA =PQ +QB .因为三角形的两边之和大于第三边,所以PQ +QB >PB ,即P A >PB .三、实践应用:课本52页练习1、2 四、例题教学:QlPBA天才由于积累,聪明在于勤奋。
2EDCBA例1已知:如图,AB =AC =12 cm ,AB 的垂直平分线分别交AC 、AB 于D 、E ,△ABD 的周长等于29 cm ,求DC 的长.例2 右图所示,直线MN 和DE 分别是线段 AB 、BC 的垂直平分线,它们交于P 点.P A 和 PC 相等吗?为什么?五、课堂小结 六、课堂反馈1.已知点P 在线段AB 的垂直平分线上,点Q 在线段AB 的垂直平分线外,则线段PA 与PB______,线段QA 与QB________(填“相等”或“不相等” )。