初中数学专题复习整式的加减(含答案)
- 格式:doc
- 大小:105.95 KB
- 文档页数:4
整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
初中数学专项练习《整式的加减》50道计算题包含答案一、解答题(共50题)1、先化简,再求值:求的值,其中.2、实数a,b,c在数轴上的位置如图,化简|b+c|-|b+a|+|a+c|.3、已知:A=2x2+xy﹣3,B=﹣x2+2xy﹣1,求2A﹣B.4、先化简,再求值:若多项式x2﹣2mx+3与x2+2x﹣1的差与x的取值无关,求多项式4mn﹣[3m﹣2m2﹣6(mn n2)]的值.5、小丽做一道数学题:“已知两个多项式A,B,B为﹣5x﹣6,求A+B”.小丽把A+B看成A﹣B,计算结果是+10x+12.根据以上信息,你能求出A+B的结果吗?6、合并同类项:4a-2(a-3b)7、若2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,求m、n的值.8、已知关于x、y的多项式5x2﹣2xy2﹣[3xy+4y2+(9xy﹣2y2﹣2mxy2)+7x2]﹣1(1)若该多项式不含三次项,求m的值;(2)在(1)的条件下,当x2+y2=13,xy=﹣6时,求这个多项式的值.9、已知A=3a2﹣a+1,B=a2+4a﹣3.若化简A+B+m(m是常数)的结果中没有常数项,求m的值;10、在解决关于x,y的二元一次方程组时,小明由于粗心,把c写错解得,小红符合题意地解得,求的值.11、如果﹣4x a y a+1与mx5y b﹣1的和是3x5y n,求(m﹣n)(2a﹣b)的值.12、下列代数式,哪些是整式?1﹣a,, 32+42,, -x3y4,, x2﹣8x+7.13、数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.14、先化简再求值:,其中15、如图,正方形的边长为a,用整式表示图中阴影部分的面积,并计算当a=2时阴影部分的面积(取3.14)16、有依次排列的3个数:3,9,8,对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少?17、某市居民使用自来水按如下标准收费:若每户月用水不超过,按a 元收费,若超过,但不超过,则超过部分按元收费;若超过,超过部分按元收费,根据表中户月用水量n的取值,把相应的收费金额填在下表中户月用水量10 18 26收费金额/元18、如图,要设计一幅长为3xcm、宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度为acm,竖彩条的宽度为bcm,问空白区域的面积是多少?19、观察下列等式:32﹣12=4×242﹣22=4×352﹣32=4×4…你发现有什么规律请用含有n(n≥1的整数)的等式表示你发现的规律,并写出第12个等式.20、如果的3倍加上一个多项式得到,求这个多项式.21、有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中”.甲同学把“ ”错抄成“ ”,但他计算的结果也是正确的,试说明理由,并求出这个结果.22、如图所示的是某居民小区的一块长为bm,宽为2am的长方形空地,为了美化环境,准备在这个长方形空地的四个顶点各修建一个半径为am的扇形花台,然后在花台内种花,其余空地种草,如果建筑花台及种花每平方米需要资金200元,种草每平方米需要资金150元,那么美化这块空地共需资金多少元?23、已知有理数在数轴上的位置如图,化简:24、如图,在一块边长为acm的正方形纸板四角,各剪去一个边长为bcm(b<)的正方形,计算当a=13,b=3时,剩余部分的面积.25、计算:26、化简:(1)﹣[﹣(﹣8)];(2)﹣|﹣|27、(1)化简2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y(2)若2a10x b与﹣a2b y是同类项,求(1)结果中的值.28、有一道化简求值题:“当x=2,y=﹣1时,求3x2y+[2x2y﹣(5x2y2﹣y2)]﹣5(x2y+y2﹣x2y2)的值.”小芳做题时,把“x=2,y=﹣1”错抄成了“x=﹣2,y=1”,但她的计算结果也是正确的,请你解释一下原因.29、如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按折痕做一个有底无盖的长方形盒子,试求盒子的体积.30、关于x、y的单项式2ax c y与单项式3bx3y是同类项,并且2ax c y+3bx3y=0 ,当m 的倒数是-1,n的相反数是时,求的值。
初中数学专项练习《整式的加减》50道计算题包含答案一、解答题(共50题)1、已知、、满足:① ;② 与是同类项,求代数式的值.2、先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x、y满足|x﹣2|+(y+1)2=0.3、先化简,后求值:(其中x=﹣2,y=).4、实数a,b,c是数轴上三点A,B,C所对应的数,如图,化简:+|a-b|+ -|b-c|5、在平面直角坐标系xOy中,直线为一、三象限角平分线.点P关于y轴的对称点称为P的一次反射点,记作;关于直线的对称点称为点P的二次反射点,记作.若点A在轴左侧,点,分别是点A的一次、二次反射点,△ 是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.6、先化简,再求值:其中,.7、已知有理数在数轴上的位置如图,化简:8、(1)先化简,再求值:3x2﹣(2x2﹣xy+y2)+(﹣x2+3xy+2y2),其中x=﹣2,y=3.(2)一个角比它的余角大20°,求这个角的补角度数.9、已知a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|﹣|a﹣c|.10、已知多项式3x2﹣y3﹣5xy2﹣x3﹣1;(1)按x的降幂排列;(2)当x=﹣1,y=﹣2时,求该多项式的值.11、已知:A=2x2+xy﹣3,B=﹣x2+2xy﹣1,求2A﹣B.12、已知多项式3 +-8与多项式-+2 +7的差中,不含有、,求+的值.13、已知|x﹣2|+(y﹣1)2=0,求x2+(2xy﹣3y2)﹣2(x2+xy﹣2y2)的值.14、若单项式n y2n-1的次数是3,求当y=3时此单项式的值.15、有理数a,b,c在数轴上的位置如图所示,化简代数式.16、先化简,再求值:﹣5x2y﹣[2x2y﹣3(xy﹣2x2y)]+2xy,其中x=﹣1,y=﹣2.17、已知m、n是系数,且与的差中不含二次项,求的值.18、已知实数a,b,c在数轴上的位置如图,且,化简19、为了出行方便,现在很多家庭都购买了小汽车.又由于能源紧张和环境保护,石油的市场价格常常波动.为了在价格的波动中尽可能减少损失,常常有两种加油方案.方案一:每次加50元的油.方案二:每次加50升的油.请同学们以2次加油为例(第一次油价为a元/升,第二次油价为b元/升,a>0,b>0且a≠b),计算这两种方案中,哪种加油方案更实惠便宜(平均单价小的便宜)?20、已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的和中,不含有x、y,求m n+mn 的值.21、观察下列单项式﹣2x,4x2,﹣8x3, 16x4,﹣32x5, 64x6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n个单项式.22、已知﹣3x m y2与5x2y n﹣2是同类项,求m2﹣5mn的值.23、如果A=5x2+4x﹣1,B=﹣x2﹣3x﹣3,C=8﹣7x﹣6x2,小聪在计算A﹣B+C 的值后判断A﹣B+C的值与x无关,请你说明小聪的判断是否正确,并说明理由.24、去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).25、先化简,再求值: (a2b−ab2)−(1−ab2−a2b) ,其中 a=−3, b=2 .26、如图,是两种长方形铝合金窗框,已知窗框的长都是y米,窗框宽是x 米,若一用户需A型的窗框2个,B型的窗框5个,则共需铝合金多少米?27、3a2﹣2a+4a2﹣7a.28、若展开后不含x2、x3项,求pq的值.29、若单项式n y2n-1的次数是3,求当y=3时此单项式的值.30、计算某个整式减去多项式时,一个同学误认为是加上此多项式,结果得到的答案是.请你求出原题的正确答案.31、已知﹣5.2x m+1y3与﹣100x4y n+1是同类项,求:m n+n m32、先化简,再求值.3(x2﹣2xy)﹣[3x2+2(﹣2xy+y2+3)﹣4y2],其中,.33、有三个有理数x、y、z,其中x=(n为正整数)且x与y互为相反数,y与z互为倒数.(1)当n为奇数时,求出x、y、z这三个数,并计算xy﹣y n﹣(y﹣2z)2015的值.(2)当n为偶数时,你能求出x、y、z这三个数吗?为什么?34、如图,A、B、C,依次为直线l上三点,M为AB的中点,N为BC的中点,且AM=3cm,BC=10cm,求MN的长。
专题02 整式的加减一、单选题1.下列代数式属于二次三项式的是( )A .2231x y x ++B .21x y x ++C .2x y xy ++D .22xy yx +-2.下列运算错误的是( )A .﹣5x 2+3x 2=﹣2x 2B .5x +(3x ﹣1)=8x ﹣1C .3x 2﹣3(y 2+1)=﹣3D .x ﹣y ﹣(x +y )=﹣2y 【答案】C【分析】根据整式的加减计算法则,进行逐一求解判断即可.【解析】解:A 、222532x x x -+=-,故此选项不符合题意;B 、5(31)53181x x x x x +-=+-=-,故此选项不符合题意;C 、222233(1)333x y x y -+=--,故此选项符合题意;D 、()2x y x y x y x y y --+=---=-,故此选项不符合题意;故选C .【点睛】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关计算法则.3.下列说法中正确的有( )个.①27xy -的系数是7;②2xy -与3x 没有系数;③23ab c 的次数是5;④3m -的系数是1-;⑤2323m n -的次数是232++;⑥213r h p 的系数是13.A .0B .1C .2D .34.下列各组中的两个单项式不是同类项的是( )A .32a b 与3ba-B .-3与0C .3212m n 与232m n -D .26m a 与29ma -5.已知23x y +=,则多项式241x y +-的值是( )A .7B .2C .1-D .5【答案】D【分析】根据已知23x y +=可得()22246x y x y +=+=,代入计算后即可求得结果.【解析】解:∵23x y +=,∴()2224236x y x y +=+=´=,∴241615x y +-=-=.故选:D .【点睛】此题考查了代数式求值,利用了整体代入的思想,能准确判断代数式之间的关系是解题的关键.6.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-【答案】D【分析】先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.【解析】解:()22537351x x x x +---+22=537351x x x x +--+-2288x x =+-所以的计算过程是:()22288351x x x x +---+22288351x x x x =+---+2139x x =-+-故选:.D 【点睛】本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.7.如果一个多项式是三次多项式,那么( )A .这个多项式至少有两项,并且最高次项的次数是3B .这个多项式一定是三次四项式C .这个多项式最多有四项D .这个多项式只能有一项次数是3【答案】A【分析】根据多项式次数和多项式的概念,逐一判断选项即可.【解析】解:如果一个多项式是三次多项式,那么这个多项式至少有两项,并且最高次项的次数是3,如果一个多项式是三次多项式,这个多项式不一定是三次四项式,如果一个多项式是三次多项式,这个多项式不一定有四项,如果一个多项式是三次多项式,这个多项式不一定只有一项次数是3,故选A .【点睛】本题主要考查多项式相关概念,掌握多项式次数和项数的定义是解题的关键.8.已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为( )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z +-【答案】B【分析】由题意得222222=()3)24(2C x y z z A y B x +--+-+=---,进行计算即可得.【解析】解:由于多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则222222=()3)24(2C x y z z A y B x +--+-+=---=2222222432x y z x y z ++----=22235x y z --,故选:B .【点睛】本题考查了整式的加减,解题的关键是掌握整式加减的步骤.9.若3223323M x x y xy y =-++,322325N x x y xy y =-+-,则322327514x x y xy y -++的值为( ).A .M N+B .M N -C .3M N -D .3N M -【答案】C【分析】分别计算:M N +,M N -,3M N -,3N M -化简后可得答案.【解析】解:32232532M N x x y xy y +=-+-,故A 不符合题意;2238M N x y xy y -=-++,故B 不符合题意;322332233396925M N x x y xy y x x y xy y -=-++-+-+3223=27514x x y xy y -++,故C 符合题意;322332233=36315323N M x x y xy y x x y xy y --+--+--3223=2318x x y xy y -+-,故D 不符合题意;故选:.C 【点睛】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.10.在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a 的正方形纸片(如图1)剪去两个相同的小长方形,得到一个的图案(如图2),剪下的两个小长方形刚好拼成一个“T”字形(如图3),则“T”字形的外围周长(不包括虚线部分)可表示为( )A .35a b-B .58a b -C .57a b -D .46a b-二、填空题11.在下列各式①235a bc ,②0,③3x y -,④3p ,⑤2s r p =,⑥75x -+,⑦24b ac -,⑧m ,⑨11a +中,其中单项式是_______,多项式是_______,整式是_______.(填序号)【点睛】本题主要考查单项式、多项式、整式的定义,熟练掌握上述定义是解题的关键.12.多项式3251x x -+-是______次______项式,其中三次项是______,二次项系数是______,一次项系数是______,常数项是______.【答案】 三##3 三##3 32x - 0 5 1-【分析】根据多项式的次数、项、系数的定义写出即可.【解析】多项式3251x x -+-是三次三项式,其中三次项是32x -,二次项系数是0,一次项系数是5,常数项是1-.故答案为:三;三;32x -;0;5;1-.【点睛】本题考查了多项式的项数,系数,此时,掌握多项式的定义是解题的关键.多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.13.添括号:(1)22916a b -+=-();(2)23()b a a b -+-=-()23()a b +-.【答案】 22916a b - -a b【分析】(1)(2)利用添括号法则计算得出答案.【解析】解:(1)()2222916916a b a b -+=--,(2)()223()3()b a a b a b a b -+-=--+-,故答案为:(1)22916a b -;(2)-a b .【点睛】此题主要考查了添括号,正确把握运算法则是解题关键.14.若单项式2+7m n a b -与单项式443a b -的和仍是一个单项式,则m -n =_______.【答案】9【分析】直接利用合并同类项法则得出m ,n 的值,进而得出答案.【解析】由题意知:单项式2+7m n a b -与单项式443a b -是同类项,∴m -2=4,n +7=4,解得:m =6,n =-3,故m -n =6-(-3)=9.故答案为:9.【点睛】此题主要考查了合并同类项,正确得出m ,n 的值是解题关键.15.某超市搞促销活动,对一种软皮本的销售方式是买一赠一,即买一本软皮本赠送一支铅笔,这种软皮本每本定价2元,铅笔每支定价0.3元,若小明的爸爸买回软皮本x 本,铅笔y 支,则需要付______________元钱【答案】2x 或1.70.3x y+【分析】根据题意列式计算即可得.【解析】解:当x y ³时:2x (元);当x <y 时:[]20.3()(1.70.3)x y x x y +-=+(元),故答案为:2x 或1.70.3x y +.【点睛】本题考查了代数式,解题的关键是找出题意中的关系列出代数式.16.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如 ()2222153x x x x --+=-+-,则所捂住的多项式是_____.【答案】232+-x x 【分析】根据加减法互为逆运算移项,然后去括号、合并同类项即可.【解析】解: 捂住的多项式是:()2253221x x x x -+-+-+=2253221x x x x -+-+-+=232+-x x 故答案为: 232+-x x .【点睛】此题考查的是整式的加减法,掌握去括号法则和合并同类项法则是解决此题的关键.17.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.【答案】3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【解析】解:()221325x k xy y xy +----=()22335x k xy y +---,∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.18.已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.三、解答题19.下列代数式中哪些是单项式?哪些是多项式?分别填入所属的圈中.指出其中各单项式的系数;多项式中哪个次数最高?次数是多少?222223315,,23,44,,2x a b x y a b ab b a x y xp ---+-+-20.已知多项式212336m x y xy x ++--是六次四项式,单项式256n m x y -的次数与这个多项式的次数相同,求m n +的值.【答案】5m n +=.【分析】根据多项式的次数和项数以及单项式的次数的定义求得,m n 的值,进而求得m n +的值.【解析】因为多项式212336m x y xy x ++--是六次四项式,所以216m ++=, 解得3m =.因为单项式256n m x y -的次数与这个多项式的次数相同,所以256n m +-=,所以2134n =+=,解得2n =.故325m n +=+=.【点睛】本题考查了多项式的次数和项数,掌握多项式的次数和项数是解题的关键.21.计算:(1)3323235912322ab a b a b ab a b a b -+----(2)()2246312x x x x éù----ëû(2)原式=()2246312x x x x --+-=2246312x x x x -+-+=2631x x --.【点睛】本题主要考查整式的加减运算,掌握去括号,再合并同类项是解题的关键.22.已知 A −B =7a 2−7ab +1,且B =−4a 2+6ab +5,(1)求A ;(2)若2|1|(2)0a b ++-=,求A B +的值.【答案】(1)3a 2−ab +6;(2)A +B =0.【分析】(1)根据A =A -B +B ,代入计算即可;(2)根据非负数的性质得到a 和b ,求出A +B ,代入计算即可.【解析】解:(1)∵A −B =7a 2−7ab +1,B =−4a 2+6ab +5,∴A =A -B +B=7a 2−7ab +1+(−4a 2+6ab +5)=7a 2−7ab +1−4a 2+6ab +5=3a 2−ab +6;(2)∵|a +1|+(b −2)2=0,∴a +1=0,b -2=0,∴a =-1,b =2,∴A +B=3a 2−ab +6−4a 2+6ab +5=−a 2+5ab +11=−(−1)2+5×(−1)×2+11=0.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.小刚在计算一个多项式A 减去多项式22b -3b-5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是2b 3b-2+.(1)求这个多项式A ;(2)求出这两个多项式运算的正确结果;(3)当b =﹣2时,求(2)中结果的值.【答案】(1)3b 2+6b +3;(2)b 2+9b +8;(3)-6.【分析】(1)依题意得A =(b 2+3b ﹣2)+(2b 2+3b +5)即可计算;(2)利用整式的加减运算即可求解;(3)把b =﹣2代入即可求解.【解析】(1)A =(b 2+3b ﹣2)+(2b 2+3b +5),=b 2+3b ﹣2+2b 2+3b +5,=3b 2+6b +3;(2)(3b 2+6b +3)﹣(2b 2﹣3b ﹣5)=3b 2+6b +3﹣2b 2+3b +5,=b 2+9b +8;(3)当b =﹣2时,原式=(﹣2)2+9×(﹣2)+8=4-18+8=-6.【点睛】此题主要考查整式的加减运算,解题的关键是熟知整式的加减运算法则.24.(1)已知2223,1A x x B x x =-=-+,求当1x =-时代数式3A B -的值.(2)已知,a b 为常数,且三个单项式234,,3b xy axy xy -相加得到的和仍然是单项式.那么a b +的值可能是多少?请你说明理由.【答案】(1)-4;(2)-3或-1【分析】(1)先把A 、B 代入得出(2x 2-3x )-3(x 2-x +1),去括号、合并同类项后得出-x 2-3,把x =-1代入求出即可.(2)根据已知得出4xy 2,axy 3-b ,3xy 是同类项,根据同类项定义得出a =-4,3-b =2或a =-3,3-b =1,代入求出即可.【解析】解:(1)∵A =2x 2-3x ,B =x 2-x +1,∴A -3B=(2x 2-3x )-3(x 2-x +1)=2x 2-3x -3x 2+3x -3=-x 2-3,当x =-1时,原式=-(-1)2-3=-4.(2)∵4xy 2,axy 3-b ,3xy 的和仍是一个单项式,∴a =-4,3-b =2,解得:b =1,则a +b =-4+1=-3;或a =-3,3-b =1,解得:b =2,则a +b =-3+2=-1.故a +b 的值可能是-3或-1.【点睛】本题考查了整式的加减,求代数式的值等知识点,解此题的关键是正确化简,题目具有一定的代表性,是一道比较好的题目.25.已知关于x 、y 的多项式mx2+4xy ﹣x ﹣3x2+2nxy ﹣4y 合并后不含有二次项,求n ﹣m 的值.【答案】-5【解析】试题分析:由于多项式mx 2+4xy ﹣x ﹣2x 2+2nxy ﹣4y 合并后不含有二次项,即二次项系数为0,在合并同类项时,可以得到二次项为0,由此得到故m 、n 的方程,即m ﹣3=0,4+2n=0,解方程即可求出m ,n ,然后把m 、n 的值代入n ﹣m ,即可求出代数式的值.试题解析:解:mx2+4xy ﹣x ﹣3x2+2nxy ﹣4y=(m ﹣3)x2+(4+2n )xy ﹣x ﹣4y ,∵合并后不含二次项,∴m ﹣3=0,4+2n=0,∴m=3,n=﹣2,∴n ﹣m=﹣2﹣3=﹣526.(1)先化简,再求值: 22225(3)4(3)a b ab ab a b ---+,其中2,3a b =-=.(2)已知226,2a b ab +==-,求代数式2222(43)(752)a ab b a ab b +---+的值.【答案】(1)3a 2b -ab 2,54;(2)-34【分析】(1)原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.【解析】解:(1)原式=15a 2b -5ab 2+4ab 2-12a 2b=3a 2b -ab 2,当a =-2,b =3时,原式=()()2232323´-´--´=54;(2)原式=4a 2+3ab -b 2-7a 2+5ab -2b 2=-3(a 2+b 2)+8ab ,当a 2+b 2=6,ab =-2时,原式=-18-16=-34.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(1)某同学做一道数学题:“两个多项式A 、B ,其中2231B x x =--,试求2A B +”,这位同学把“2A B +”看成“2A B -”,结果求出答案是2571x x -++,那么2A B +的正确答案是多少?(2)已知781a b c +=+=-,求代数式222()()()b a c b c a -+-+-的值.【答案】(1)2353x x --;(2)146【分析】(1)先根据条件求出多项式A ,然后将A 和B 代入A +2B 中即可求出答案.(2)对所给的等式变形,分别求出b -a ,c -b ,c -a 的值,再整体代入所求代数式中,求值即可.【解析】解:(1)由题意可得:A =()225712231x x x x -+++--=22571462x x x x -+++--=21x x -+-∴A +2B =()2212231x x x x -+-+--=221462x x x x -+-+--=2353x x --;(2)∵781a b c +=+=-,∴b -a =-1,c -b =9,c -a =8,∴原式=(-1)2+92+82,=1+81+64,=146.【点睛】本题考查的是整式的加减,代数式求值,利用整体代入求代数式的值比较关键.28.定义:若a b ab +=,则称a 、b 是“白马湖数”例如:3 1.5315+=´.,因此3和1.5是一组“白马湖数”(1)1-与_____是一组“白马湖数”;(2)若m 、n 是一组“白马湖数”,112323622mn m n m mn éùæö-+-+-ç÷êúèø的值.29.小方家住房户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)a的值为_______.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)已知卧室2的面积为21平方米,按市场价格,木地板单价为400元/平方米,地砖单价为10元/平方米,求铺设地面总费用.【答案】(1)3;(2)木地板(75-7x)平方米;地砖(7x+53)平方米;(3)25070元【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积-三间卧室的面积,所得的差为地砖的面积;(3)先根据卧室2的面积为21平方米求出x,再求出所需的费用即可.【解析】解:(1)根据题意得a+5=4+4,解得a=3;(2)铺设地面需要木地板:4×2x+a[10+6-(2x-1)-x-2x]+6×4=8x+3(17-5x)+24=(75-7x)平方米;铺设地面需要地砖:16×8-(75-7x)=128-75+7x=(7x+53)平方米;(3)∵卧室2的面积为21平方米,∴3[10+6-(2x-1)-x-2x]=21,∴3(17-5x)=21,∴x=2,∴铺设地面需要木地板:75-7x=75-7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.铺设地面的总费用:61×400+67×10=25070(元).故铺设地面的总费用为25070元.【点睛】本题考查了列代数式,长方形的面积,分别求出铺设地面需要木地板与地砖的面积是解题的关键.30.如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性.它的编制是按照特定的算法得来的.以上图为例,其算法为:a=++=;步骤1:计算前6位数字中偶数位数字的和a,即91313b=++=;步骤2:计算前6位数字中奇数位数字的和b,即6028c=´+=;步骤3:计算3a与b的和c,即313847d=;步骤4:取大于或等于c且为10的整数倍的最小数d,即50X=-=.步骤5:计算d与c的差就是校验码X,即50473请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为______,校验码Y的值为______.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.【答案】(1)73,7;(2)3,过程见解析;(3)4、0或9、5或2、6【分析】(1)根据特定的算法代入计算计算即可求解;(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;(3)根据校验码为8结合两个数字的差是4即可求解.【解析】(1)∵《数学故事》的图书码为978753Y,∴a=7+7+3=17,b=9+8+5=22,则“步骤3”中的c的值为3×17+22=73,校验码Y的值为80-73=7.故答案为:73,7;(2)依题意有:a=m+1+2=m+3,b=6+0+0=6,c=3a+b=3(m+3)+6=3m+15,d=c+X=3m+15+6=3m+21,∵d为10的整数倍,∴3m的个位数字只能是9,∴m的值为3;(3)可设这两个数字从左到右分别是p,q,依题意有:a=p+9+2=p+11,b=6+1+q=q+7,c=3(p+11)+(q+7)=3p+q+40,∵校验码是8,则3p+q的个位是2,∵|p-q|=4,∴p=4,q=0或p=9,q=5或p=2,q=6.故这两个数字从左到右分别是4,0或9,5或2,6.【点睛】本题考查了列代数式以及整式的加减,正确理解题意,学会探究规律、利用规律是解题的关键.。
第3课 整式的加减
目的:复习整式的概念,去括号、添括号法则,求代数式的值,整式的加减运算. 中考基础知识
1.代数式的分类
代数式22,____,____2(1)1()3a b ab b x x ⎧⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨-+⎪⎪⎪⎨⎩⎪⎪⎪⎪≠⎪⎪⎩⎪⎪≥⎪⎩
22单项式:-系数是次数是3整式(单独一个数或字母也是单项式)
有理式多项式:a 是_____次_____项式1分式:x-1 2.去括号添括号法则
a+(b-c )=a+b-c , a-(b+c )=a-b-c , a+b-c=+( ), a-b+c=-( ).
3.整式加减:实质上就是合并同类项.
备考例题指导
例1
是( ) (A )多项式 (B )分式 (C )无理式 (D )单项式
不含有字母,它不是无理式,又题中虽有分母但分母中也不含有字母,所以它不是分式,
因题中实质上是2-2
2
x 表示两个单项式的差,因此应该是多项式,故选(A ). 例2.比较a 与-a 的大小关系是( )
(A )a>-a (B )a ≥-a (C )a<-a (D )以上答案都不对
分析:题中的a 是实数,当a 等于零时,(A )(C )答案都不成立,当a 为负数时,(B )•不成立,故应选(D ).
例3.单项式3x m+2n y 4与-2x 2y 3m+4n 是同类项,求n m 的值.
分析:由同类项定义知:
22
344
m n
m n
+=
⎧
⎨
+=
⎩
转化为二元一次方程组,求出m,n,然后代
入可求值.
答案:n m=1.
例4.先化简,再求值:(2a+1)2-(2a-1)(2a-1),其中a=
1 2
分析:对代数式进行化简时,应根据式子特点,合理使用公式,特别注意化简过程中的符号问题.
解:原式=(4a2+4a+1)-(4a2-1)
=4a+2.
当=4
备考巩固练习
1.填空题
(1)-
3
x3y2z的系数是________,次数是______,x-xy+1是______次_______项式.(2)把a2b-4ab2+2a3b-1按a的降幂排列为___________.
(3)若2
3
x2m-1y2m与-
1
4
x5y n+7是同类项,则(m-n)-1的值为_________.
(4)3x2-2x-1=3x2-(_________);4a2-2ab+b2+1=4a2+(_________).
(5)化简-3(2a+3b)-1
3
(6b-12a)=_________.
(6)合并同类项1
3
a-
1
2
a-3c-2c-c=________.
(7)当x=-2时,代数式x2-2x+1的值为_________.
2.计算:5
3
a2-[a2-
1
2
(
2
3
a2-2a)+2(a2-
1
2
a)-
2
3
a2].
3.已知2x 2+3x -6=A (x -1)2+B (x -1)+C ,求实数A 、B 、C .
4.多项式8x 2+2x -5减去另一个多项式的差是5x 2-x+3,求另一个多项式.
5.已知A=5x 2-mx+n ,B=-3y 2+2x -1,若A+B 中不含有一次项和常数项,求m 2-2mn+n 2的值.
6.(2004,海口)先化简,后求值:(a+b )(a -b )+b (b -2),其中b=-1.
7.有一列数:第一个数为x 1=1,第二个数为x 2=3,第三个数开始依次记为x 3,x 4,…,
x n ;从第二个数开始,每个数是它相邻两个数和的一半.(如x 2=132
x x ) (1)求第三、第四、第五个数,并写出计算过程;
(2)根据(1)的结果,推测x 8=_________.
(3)探索这一列数的规律,猜想第K 个数X k =_______.(K 是大于2的整数)
答案:
1.(1
)
3
,6,二次三项式(2)原式=2a3b+a2b-4ab2-1
(3)由题知
215
27
m
m n
-=
⎧
⎨
=+
⎩
⇒
3
1
m
n
=
⎧
⎨
=-
⎩
∴(m-n)-1=
1
4
(4)3x2-2x-1=3x2-(2x+1),
4a2-2ab+b2+1=4a2+(-2ab+b2+1)(5)原式=-6a-9b-2b+4a=-2a-11b
(6)原式=-1
6
a-6c
(7)原式=(x-1)2=(-2-1)2=(-3)2=9
2.原式=5
3
a2-[a2-
1
3
a2+a+2a2-a-
2
3
a2].
=5
3
a2-2a2=-
1
3
a2
3.∵2x2+3x-6=Ax2-2Ax+A+Bx-B+C
∴
2
23
6
A
A B
A B C
=
⎧
⎪
-+=
⎨
⎪-+=-
⎩
⇒
2
7
1
A
B
C
=
⎧
⎪
=
⎨
⎪=-
⎩
4.因8x2+2x-5-5x2+x-3=3x2+3x-8
∴另一个多项式为:3x2+3x-8
5.A+B=5x2-mx+n+(-3y2+2x-1)=5x2-3y2-mx+2x+n-1
由题意
20
10
m
n
-+=
⎧
⎨
-=
⎩
⇒
2
1
m
n
=
⎧
⎨
=
⎩
∴m2-2mn+n2=(m-n)2=1
6.4 7.(1)5、7、9 (2)15 (3)2k-1。