2020年中考数学专题训练:圆(含答案)
- 格式:pdf
- 大小:334.49 KB
- 文档页数:24
2020年九年级中考数学压轴题专项训练:圆的综合卷(含答案)1.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π)(1)证明:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵∠ACD=90°,∴OD⊥BC,∴BC与⊙O相切;(2)解:连接OE,ED,∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°,又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴四边形OAED是菱形,∴OE⊥AD,且AM=DM,EM=OM,∴S△AED =S△AOD,∴阴影部分的面积=S扇形ODE==π.2.如图,已知AB是⊙O的直径,AC是⊙O的弦,点E在⊙O外,连接CE,∠ACB的平分线交⊙O于点D.(1)若∠BCE=∠BAC,求证:CE是⊙O的切线;(2)若AD=4,BC=3,求弦AC的长.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠OAC=∠OCA,∵∠BAC=∠BCE,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:连接BD,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴=,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴△ADB是等腰直角三角形,∴AB=AD=4,∵BC=3,∴AC===.3.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.(1)证明:连接OE .∵OA =OE ,∴∠OAE =∠OEA ,又∵∠DAE =∠OAE ,∴∠OEA =∠DAE ,∴OE ∥AD ,∴∠ADC =∠OEC ,∵AD ⊥CD ,∴∠ADC =90°,故∠OEC =90°.∴OE ⊥CD ,∴CD 是⊙O 的切线;(2)解:∵∠C =45°,∴△OCE 是等腰直角三角形,∴CE =OE =2,∠COE =45°,∴阴影部分面积=S △OCE ﹣S 扇形OBE =2×2﹣=2﹣.4.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.解:(1)△FAG等腰三角形;理由:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(2)成立;∵BC为直径,∴∠BAC=90°∴∠ABE+∠AGB=90°∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,又∵AF=FG,∴F为BG的中点∵△BAG为直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠DBA,∠BAC=∠ADB=90°∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直径BC=.5.如图,已知矩形ABCD的边AB=6,BC=4,点P、Q分别是AB、BC边上的动点.(1)连接AQ、PQ,以PQ为直径的⊙O交AQ于点E.①若点E恰好是AQ的中点,则∠QPB与∠AQP的数量关系是∠QPB=2∠AQP;②若BE=BQ=3,求BP的长;(2)已知AP=3,BQ=1,⊙O是以PQ为弦的圆.①若圆心O恰好在CB边的延长线上,求⊙O的半径;②若⊙O与矩形ABCD的一边相切,求⊙O的半径.解:(1)①∵点E恰好是AQ的中点,∠ABQ=90°,∴BE=AE=EQ,∴∠EAB=∠EBA,∴∠QEB=2∠EBP,∵以PQ为直径的⊙O交AQ于点E,∴∠QPB=∠QEB,∠PBE=∠PQA,∴∠QPB=2∠AQP,故答案为:∠QPB=2∠AQP;②∵BE=BQ,∴∠BEQ=∠BQE,且∠BPQ=∠BEQ,∴∠BPQ=∠BQE,∴tan∠BPQ=tan∠BPQ,∴,∴,∴BP=(2)①如图1,过点O作OE⊥PQ,∵AP=3,AB=6,∴BP=3,∴PQ===,∵OE⊥PQ,∴QE=PE=,∵cos∠PQB==,∴=∴OQ=5,∴⊙O的半径为5;②如图2,若⊙O与BC相切于点Q,连接OQ,过点O作OE⊥PQ于E,∴EQ=PE=,∵BC是⊙O切线,∴OQ⊥BC,且AB⊥BC,∴OQ∥AB,∴∠OQP=∠BPQ,∴cos∠OQP=cos∠BPQ,∴,∴∴OQ=;如图3,若⊙O与AB相切于点P,连接OP,过点O作OE⊥PQ于E,∴EQ=PE=,∵AB是⊙O切线,∴OP⊥AB,且AB⊥BC,∴OP∥BC,∴∠OPQ=∠PQB,∴cos∠OPQ=cos∠PQB,∴∴,∴OP=5;如图4,若⊙O与AD相切于点M,连接OM,OQ,OP,延长MO交BC于F,作OH⊥AB于H 点,∴OM⊥AD,且BC∥AD,∴OF⊥BC,∵∠A=∠B=∠AMO=∠OFB=∠OHB=90°,∴四边形AHOM,OHBF是矩形,∴OM=AH,OH=BF,∵OQ2=OF2+FQ2,OP2=OH2+PH2,∴OQ2=(6﹣OQ)2+(BF﹣1)2,OQ2=BF2+(OQ﹣3)2,∴OQ=5﹣若图5,若⊙O与CD相切于点N,连接ON,OQ,OP,延长NO交BC于E,作OH⊥BC于H 点,同理可得:OP2=PE2+OE2,OQ2=OH2+QH2,∴OQ2=(3﹣OH)2+(4﹣OQ)2,OQ2=OH2+(4﹣OQ﹣1)2,∴OQ=35﹣6.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O 相切,并说明理由.(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.8.如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.(1)证明:连接OC,∵直线MC与⊙O相切于点C,∴∠OCM=90°,∵AD⊥CD,∴∠ADM=90°,∴∠OCM=∠ADM,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAB,即AC是∠DAB的平分线;(2)解:连接BC,连接BE交OC于点F,∵AB是⊙O的直径,∴∠ACB=∠AEB=90°,∵AB=10,AC=4,∴BC===2,∵OC∥AD,∴∠BFO=∠AEB=90°,∴∠CFB=90°,F为线段BE中点,∵∠CBE=∠EAC=∠CAB,∠CFB=∠ACB,∴△CFB∽△BCA.∴=,即=,解得,CF=2,∴OF=OC﹣CF=3.∵O为直径AB中点,F为线段BE中点,∴AE=2OF=6.9.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.10.如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,∠B=30°,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.解:(1)连结OE,∵DE垂直OA,∠B=30°,∴CE=DE=3,,∴∠AOE=2∠B=60°,∴∠CEO=30°,OC=OE,由勾股定理得OE=2;(2)∵EM∥BD,∴∠M=∠B=30°,∠M+∠AOE=90°,∴∠OEM=90°,即OE⊥ME,∴EM是⊙O的切线;(3)再连结OF,当∠APD=45°时,∠EDF=45°,∴∠EOF=90°,S=π(2)2﹣(2)2=3π﹣6.阴影11.如图,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点D,交△ABC的外接圆于点E,过点E作EF⊥BC交BC的延长线于点F.请补全图形后完成下面的问题:(1)求证:EF是△ABC外接圆的切线;(2)若BC=5,sin∠ABC=,求EF的长.(1)证明:补全图形如图所示,∵△ABC是直角三角形,∴△ABC的外接圆圆心O是斜边AB的中点.连接OE,∴OE=OB.∴∠2=∠3,∵BE平分∠ABC,∴∠1=∠2,∴∠1=∠3.∴OE∥BF.∵EF⊥BF,∴EF⊥OE,∴EF是△ABC外接圆的切线;(2)解:在Rt△ABC中,BC=5,sin∠ABC=,∴=.∵AC2+BC2=AB2,∴AC=12.∵∠ACF=∠CFE=∠FEH=90°,∴四边形C FEH是矩形.∴EF=HC,∠EHC=90°.∴EF=HC=AC=6.12.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知⊙O的两条弦AB⊥CD,则AB、CD互为“十字弦”,AB是CD的“十字弦”,CD也是AB的“十字弦”.(1)若⊙O的半径为5,一条弦AB=8,则弦AB的“十字弦”CD的最大值为10 ,最小值为 6 .(2)如图1,若⊙O的弦CD恰好是⊙O的直径,弦AB与CD相交于H,连接AC,若AC=12,DH=7,CH=9,求证:AB、CD互为“十字弦”;(3)如图2,若⊙O的半径为5,一条弦AB=8,弦CD是AB的“十字弦”,连接AD,若∠ADC=60°,求弦CD的长.解:(1)如图a,当CD是直径时,CD的长最大,则CD的最大值为10;如图b,当点D与点A重合时,CD有最小值,过点O作OE⊥CD于E,OF⊥AB于F,∴AF=BF=4,DE=CE,∴OF===3,∵OE⊥CD,OF⊥AB,∠CDB=90°,∴四边形CEOF是矩形,∴CE=OF=3,∴CD=6,∴CD最小值为6,故答案为:10,6;(2)如图1,连接AD,∵DH=7,CH=9,∴CD=16,∵CD是直径,∴∠CAD=90°,∴AD===4,∵,=,∴,∠ADH=∠ADC,∴△ADH∽△CDA,∴∠AHD=∠CAD=90°,∴AB⊥CD,∴AB、CD互为“十字弦”;(3)如图2,过点O作OE⊥CD于E,过点O作OF⊥AB于点F,连接AO,CO,过点O作ON⊥AC于N,∵∠ADC=60°,AB⊥CD,∴AF=DF,∵OE⊥CD,OF⊥AB,AB⊥CD,∴四边形OEHF是矩形,AF=BF=4,CE=ED,∴OF=EH,∵OF===3,∴EH=3,∴ED=CE=3+DH,∴CF=3+2DH,∵∠AOC=2∠ADC=120°,且AO=CO=5,ON⊥AC,∴∠CAO=30°,AN=CN,∴NO=,AN=,∴AC=5,∵AH2+CH2=AC2,∴75=3DH2+(3+2DH)2,∴DH=2﹣,∴CD=2CE=2(3+2﹣)=.13.如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB =30°,设图中阴影部分的面积为y.(1)⊙O的半径为 4 ;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.解:(1)∵∠AOB=2∠APB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=4,即⊙O的半径为4;故答案为4;(2)过点O作OH⊥AB,垂足为H,如图,则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°,∵OA=OB,OH⊥AB,∴AH=BH=AB=2,在Rt△AHO中,∠AHO=90°,AO=4,AH=2,∴OH==2,∴y=﹣×4×2+×4×x=2x+π﹣4(0<x≤2+4).14.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=,AB=6,求⊙O的半径.(1)解:结论:DE与⊙O相切证:连接OD在⊙O中,∵D为的中点,∴=,∴AD=DC,∵AD=DC,点O是AC的中点,∴OD⊥AC,∴∠DOA=∠DOC=90°,∵DE∥AC,∴∠DOA=∠ODE=90°,∵∠ODE=90°,∴OD⊥DE,∵OD⊥DE,DE经过半径OD的外端点D,∴DE与⊙O相切.(2)解:连接BD.∵四边形ABCD是⊙O的内接四边形,∴∠DAB+∠DCB=180°,又∵∠DCE+∠DCB=180°,∴∠DAB=∠DCE,∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°,∵=,∴∠ABD=∠CBD=45°,∵AD=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∵DE∥AC,∴∠DCA=∠CDE=45°,在△ABD和△CDE中,∵∠DAB=∠DCE,∠ABD=∠CDE=45°,∴△ABD∽△CDE,∴=,∴=,∴AD=DC=4,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC===8,∴⊙O的半径为4.15.(1)如图①,点A,B,C在⊙O上,点D在⊙O外,比较∠A与∠BDC的大小,并说明理由;(2)如图②,点A,B,C在⊙O上,点D在⊙O内,比较∠A与∠BDC的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点M(1,0),N(4,0),点P在y轴上,试求当∠MPN度数最大时点P的坐标.解:(1)∠A>∠BDC,理由如下:设CD交⊙O于E,连接BE,如图1所示:∠BEC=∠BDC+∠DBE,∴∠BEC>∠BDC,∵∠A=∠BEC,∴∠A>∠BDC;(2)∠A<∠BDC,理由如下:延长CD交⊙O于点F,连接BF,如图2所示:∵∠BDC=∠BFC+∠FBD,∴∠BDC>∠BFC,又∵∠A=∠BFC,∴∠A<∠BDC;(3)由(1)、(2)可得:当点P是经过M、N两点的圆和y轴相切的切点时,∠MPN度数最大,①当点P在y轴的正半轴上时,如图3所示:设⊙O′为点P是经过M、N两点的圆和y轴相切的切点的圆,连接O′P、O′M、O′N,作O′H⊥MN于H,则四边形OPO′H是矩形,MH=HN,∴OP=O′H,O′P=OH=O′M,∵M(1,0),N(4,0),∴OM=1,MN=3,∴MH=HN=MN=,设O′P=OH=O′M=x,MH=OH﹣OM=x﹣1,∴x﹣1=,∴x=,∴O′H===2,∴OP=2,∴点P的坐标为(0,2);②当点P在y轴的负半轴上时,如图4所示:同理可得O′H=OP=2,∴点P的坐标为(0,﹣2);综上所述,当∠MPN度数最大时点P的坐标为(0,2)或(0,﹣2).。
2020年中考数学复习专题练:《圆的综合》1.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.2.如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB 与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.(1)连接OP,证明:△ADM∽△APO;(2)证明:PD是⊙O的切线;(3)若AD=12,AM=MC,求PB和DM的值.3.已知正方形ABCD内接于⊙O,点E为上一点,连接BE、CE、DE.(1)如图1,求证:∠DEC+∠BEC=180°;(2)如图2,过点C作CF⊥CE交BE于点F,连接AF,M为AE的中点,连接DM并延长交AF于点N,求证:DN⊥AF;(3)如图3,在(2)的条件下,连接OM,若AB=10,tan∠DCE=,求OM的长.4.△ABC内接于⊙O,D为的中点,连接OD,交BC边于点E,且OE=DE.(1)如图1,求∠BAC的度数;(2)如图2,作AF⊥BC于点F,BG⊥AC于点G,AF、BG交于点H,求证:AH=OD;(3)如图3,在(2)的条件下,连接OH,若AC=4OH,EF=3,求线段GH的长.5.如图,以点O为圆心,OE为半径作优弧EF,连接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取点A,B(点B在点A的顺时针方向)且使AB=2,以AB为边向弧内作正三角形ABC.(1)发现:不论点A在弧上什么位置,点C与点O的距离不变,点C与点O的距离是;点C到直线EF的最大距离是.(2)思考:当点B在直线OE上时,求点C到OE的距离,在备用图1中画出示意图,并写出计算过程.(3)探究:当BC与OE垂直或平行时,直接写出点C到OE的距离.6.已知,AB、AC为圆O的弦,连接CO并延长,交AB于点D,且∠ADC=2∠C;(1)如图1,求证:AD=CO;(2)如图2,取弧BC上一点E,连接EB、EC、ED,且∠EDA=∠ECA,延长EB至点F,连接FD,若∠EDF﹣∠F=60°,求∠BDF的度数;(3)如图3,在(2)的条件下,若CD=10,EF=6,求AC的长度.7.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.8.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠B=30°,OA=2,求阴影部分的面积.(结果保留π)9.如图,在等腰△ABC中,AC=BC,以BC为直径的⊙O与底边AB交于点D,过D作⊙O的切线交AC于点E.(1)证明:DE⊥AC.(2)若BC=8,AD=6,求AE的长.10.如图,已知AB是⊙O的直径,点P是弦BC上一动点(不与端点重合),过点P作PE ⊥AB于点E,延长EP交于点F,交过点C的切线于点D.(1)求证:△DCP是等腰三角形;(2)若OA=6,∠CBA=30°.①当OE=EB时,求DC的长;②当的长为多少时,以点B,O,C,F为顶点的四边形是菱形?11.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=,OD=3,求AE的长.12.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点C为BM上一点,连接AC与⊙O交于点D,E为⊙O上一点,且满足∠EAC=∠ACB,连接BD,BE.(1)求证:∠ABE=2∠CBD;(2)过点D作AB的垂线,垂足为F,若AE=6,BF=,求⊙O的半径长.13.如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.14.如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.15.如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.(1)求证:AD是⊙O的切线;(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.16.如图,A,B,C,D四点都在OO上,弧AC=弧BC,连接AB,CD、AD,∠ADC=45°.(1)如图1,AB是⊙O的直径;(2)如图2,过点B作BE⊥CD于点E,点F在弧AC上,连接BF交CD于点G,∠FGC=2∠BAD,求证:BA平分∠FBE;(3)如图3,在(2)的条件下,MN与⊙O相切于点M,交EB的延长线于点N,连接AM,若2∠MAD+∠FBA=135°,MN=AB,EN=26,求线段CD的长.17.对于平面内⊙C和⊙C外一点P,若过点P的直线l与⊙C有两个不同的公共点M,N,点Q为直线l上的另一点,且满足(如图1所示),则称点Q是点P关于的密切点已知在平面直角坐标系xOy中,⊙O的半径为2,点P(4,0).(1)在点D(2,1),E(1,0),F(3,)中,是点P关于⊙O的密切点的为.(2)设直线l方程为y=kx+b,如图2所示,①k=﹣时,求出点P关于O的密切点Q的坐标;②⊙T的圆心为T(t,0),半径为2,若⊙T上存在点P关于⊙O的密切点,直接写出t的取值范围.18.如图,在△AOB中,∠AOB=90°,AO=6,BO=6,以点O为圆心,以2为半径作优弧,交AO于点D,交BO于点E.点M在优弧上从点D开始移动,到达点E时停止,连接AM.(1)当AM=4时,判断AM与优弧的位置关系,并加以证明;(2)当MO∥AB时,求点M在优弧上移动的路线长及线段AM的长;(3)连接BM,设△ABM的面积为S,直接写出S的取值范围.19.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E 是BC上的一点,且BE=BF,连接DE.(1)求证:△DAF≌△DCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=,求四边形ABCD的面积.20.如图1,已知AB是⊙O的直径,点D是弧AB上一点,AD的延长线交⊙O的切线BM于点C,点E为BC的中点,(1)求证:DE是⊙O的切线;(2)如图2,若DC=4,tan∠A=,延长OD交切线BM于点H,求DH的值;(3)如图3,若AB=8,点F是弧AB的中点,当点D在弧AB上运动时,过F作FG⊥AD 于G,连接BG,求BG的最小值.参考答案1.(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB﹣AE=BC+CH=BH,即5﹣AE=3+AE,∴AE=1.2.(1)证明:连接OD、OP、CD.∵AD•AO=AM•AP,∴,∠A=∠A,∴△ADM∽△APO.(2)证明:∵△ADM∽△APO,∴∠ADM=∠APO,∴MD∥PO,∴∠DOP=∠MDO,∠POC=∠DMO,∵OD=OM,∴∠DMO=∠MDO,∴∠DOP=∠POC,∵OP=OP,OD=OC,∴△ODP≌△OCP(SAS),∴∠ODP=∠OCP,∵BC⊥AC,∴∠OCP=90°,∴OD⊥AP,∴PD是⊙O的切线.(3)解:连接CD.由(1)可知:PC=PD,∵AM=MC,∴AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,∴R2+122=9R2,∴R=3,∴OD=3,MC=6,∵,∴,∴AP=18,∴DP=AP﹣AD=18﹣12=6,∵O是MC的中点,∴,∴点P是BC的中点,∴PB=CP=DP=6,∵MC是⊙O的直径,∴∠BDC=∠CDM=90°,在Rt△BCM中,∵BC=2DP=12,MC=6,∴BM===6,∵△BCM∽△CDM,∴,即,∴DM=2.3.(1)证明:连接BD,OC,∵四边形ABCD为正方形,∴∠A=90°,BC=CD,∴BD为⊙O的直径,∵OB=OD,∴OC⊥BD,∴∠BOC=90°,∴∠BEC=∠BOC=45°,∵正方形ABED是圆O的内接四边形,∴∠A+∠DEB=180°,∴∠DEB=90°,∴∠DEC+∠BEC=∠DEB+∠BEC+∠BEC=180°;(2)证明:如图2,延长ED至G,使ED=DG,连接AG,∵CE⊥CF,∴∠ECF=90°,∵∠CEF=45°,∴∠CEF=∠CFE=45°,∴CE=CF,∵∠BCD=∠ECF=90°,∴∠BCF=∠DCF,∵BC=CD,∴△BFC≌△DEC(SAS),∴BF=DE,∵DE=DG,∴BF=DG,∵四边形ABED为圆O的内接四边形,∴∠ABE+∠ADE=180°,∵∠ADE+∠ADG=180°,∴∠ABE=∠ADG,∵AB=AD,∴△ABF≌△ADG(SAS),∴∠BAF=∠DAC,∵∠BAF+∠FAD=∠BAD=90°,∴∠DAG+∠FAD=90°,∴∠FAG=90°,∵M为AE的中点,∴DM为△AEG的中位线,∴DM∥AG,∴∠DNF=∠FAG=90°,∴DN⊥AF,(3)解:如图3,连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT⊥AE于点T,由(1)知∠BOC=90°,∴OB=OC=,由(1)知BD为⊙O的直径,在Rt△ABD中,BD=AB=10,∵,∴∠DBE=∠DCE,∴tan∠DCE=tan∠DBE=,∴,设DE=x,则BE=7x,在Rt△BDE中,BD==5x,∴,∴x=2,∴DE=2,∴BF=2,∵∠EFC=45°,∴∠BFK=∠EFC=45°,∴∠KBF=∠BFK=45°,∴,由(2)知∠BCF=∠DCE,∴tan∠BCF=tan∠DCE=,∴,∴,∴,在Rt△ECF中,EF=CF=12,∴BE=EF+BF=14,∵∠AEB=∠AEC﹣∠BEC=90°﹣45°=45°,∴∠TBE=∠TEB,∴TB=TE=,∴=,∴,∴,∵M为AE的中点,∴OM⊥AE,在Rt△OME中,OM==3.4.解:(1)连接OB,OC,如图所示:∵OE=DE,∴OB=2OE,∴,∴∠OBC=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,(2)证明:连接OA,过O做OM⊥AB,垂足为M,连接AD,如图所示:∵∠BAC=60°.∠AGB=90°,∴∠ABG=30°,∴,∵OM⊥AB,∴,∴AM=AG,∵D为弧中点,∴∠BAD=∠CAD,∴OD⊥BC,∴OD∥AF,∴∠ODA=∠OAD=∠FAD,∴∠OAM=∠HAG,∴△OAM≌△HAG(AAS),∴AH=AO=OD.∴AH=OD;(3)连接DA,DB,DC,DH,延长AC至N,使AN=AB,连接DN.如图所示:由(2)可知,DO=DH,∴△ABD≌△AND(SAS),∴DN=DB=DC=DO=DH.∴△OBD为等边三角形,∴∠OBD=∠ODB=60°,设∠HBF=α,则∠CAF=α,∠DAF=30°﹣α,∴∠ODH=60°﹣2α,∵四边形ABDC内接于⊙O,∠DCN=DBA=∠N=60°+α,∴∠CDN=60°﹣2α=∠ODH,∴△DOH≌△DCN(SAS),∴OH=CN,∴AC+OH=AB.设OH=2a,∵AC=4OH,∴AC=8a,AB=10a,∵∠AGB=90°,∠ABG=30°,∴AG=5a,CG=3a,∴BG==5a,∴BC==2a,∴,∵△OBD为等边三角形,∴,由勾股定理得:GH==a,∴,∵cos∠HBF=cos∠HAG,∴=,∴BF=×BH=×4a=a,又∵EF=3,∴,解得,∴GH=×=.∴线段GH的长为.5.解:(1)如图1,连接OA、OB、OC,延长OC交AB于点G,在正三角形ABC中,AB=BC=AC=2,∵OA=OB,AC=BC,∴OC垂直平分AB,∴AG=AB=1,∴在Rt△AGC中,由勾股定理得:CG===,在Rt△AGO中,由勾股定理得:OG===2,∴OC=2﹣;如图2,延长CO交EF于点H,当CO⊥EF时,点C到直线EF的距离最大,最大距离为CH的长,∵OE=OF,CO⊥EF,∴CO平分∠EOF,∵∠EOF=120°,∴∠EOH=∠EOF=60°,在Rt△EOH中,cos∠EOH=,∴cos60°==,∴OH=,∴CH=CO+OH=,∴点C到直线EF的最大距离是.故答案为:2﹣;.(2)如图3,当点B在直线OE上时,由OA=OB,CA=CB可知,点O,C都在线段AB的垂直平分线上,过点C作AB的垂线,垂足为G,则G为AB中点,直线CG过点O.∴由∠COM=∠BOG,∠CMO=∠BGO∴△OCM∽△OBG,∴=,∴=,∴CM=,∴点C到OE的距离为.(3)如图4,当BC⊥OE时,设垂足为点M,∵∠EOF=120°,∴∠COM=180°﹣120°=60°,∴在Rt△COM中,sin∠COM=,∴sin60°==,∴CM=CO=(2﹣)=﹣;如图5,当BC∥OE时,过点C作CN⊥OE,垂足为N,∵BC∥OE,∴∠CON=∠GCB=30°,∴在Rt△CON中,sin∠CON=,∴sin30°==,∴CN=CO=(2﹣)=﹣;综上所述,当BC与OE垂直或平行时,点C到OE的距离为﹣或﹣.6.解:(1)如图1,连接AO,则∠DCA=∠OAC,∵∠DOA=∠DCA+∠OAC=2∠C,而∠ADC=2∠C,∴∠ADC=∠DOA,∴AD=AO=CO;(2)设∠F=x,则∠EDF=60°+x,∴∠FED=180°﹣x﹣(60°+x)=120°﹣2x,∵∠EDA=∠ECA,∴∠EBD=∠EDB=(180°﹣120+2x)=30°+x,∴∠BDF=∠EDF﹣∠EDB=60°+x﹣30°﹣x=30°;(3)延长ED交圆于点G,连接OG、OA、AG、BG,作AM⊥OD于点M,作ON⊥BG于点N,∵∠BEG=∠BAG=120°﹣2x,∠ADG=∠EDB=∠EBD=∠AGD=30°+x,∴AG=AD=OG=OA,∴△OGA为等边三角形,则∠ABG=AOG=30°=∠BDF,∵EB=ED,∠FED=∠GEB,∴△FED≌△GEB(AAS),∴EG=EF=6,∴NG=NE=3,∵∠OAD=∠OAG﹣∠DAG=60°﹣(120°﹣2x)=2x﹣60°,AD=AO,∴∠ADO=∠AOD=120°﹣x,∴∠NDO=180°﹣∠ADO﹣∠ADG=180°﹣(120°﹣x)﹣(30°﹣x)=30°,∴ON=OD=DM=OM=a,∴OC=OG=10﹣2a,在Rt△NOG中,由勾股定理得:(10﹣2a)2+a2+(3)2,解得:a=1或(舍去,此时OC=10﹣2a<0),∴CM=10﹣1=9,AM=3,则AC==12.7.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=2,∴,∴EF=4.8.(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:设EO与AD交于点M,连接ED.∵∠B=30°,∠ACB=90°,∴∠BAC=60°,∵OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=AO=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM =S△DMO,∴S阴影=S扇形EOD==.9.解:(1)如图,连接OD,∵DE是⊙O的切线,∴∠ODE=90°,∵OB=OD,∴∠OBD=∠ODB,∵AC=BC,∴∠OBD=∠A,∴∠A=∠ODB,∴OD∥AC,∴∠DEC=90°,即DE⊥AC.(2)连接CD,∵BC为直径,∴∠BDC=∠CDA=90°,∴∠DEA=∠CDA=90°,∵∠A=∠A,∴△ADE∽△ACD,∴=,即=,∴AE=.10.(1)证明:连接OC,如图1,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,即∠OCB+∠BCD=90°,∵OB=OC,∴∠OCB=∠OBC,∵PE⊥AB,∴∠B+∠BPE=90°,而∠BPE=∠DPC,∴∠OCB+∠DPC=90°,∴∠DPC=∠BCD,∴DC=DP,∴△DCP是等腰三角形;(2)解:①如图1,连接AC,∵AB是⊙O的直径,AB=2AO=12,∴∠ACB=90°,∵∠ABC=30°,∴AC=AB=6,BC=6,Rt△PEB中,∵OE=BE=3,∠ABC=30°,∴PE=,PB=2,∴CP=BC﹣PB=6﹣2=4,∵∠DCP=∠CPD=∠EPB=60°,∴△PCD为等边三角形,∴CD=PC=4;②当F是弧BC的中点,即弧FB所对的圆周角为60°时,此时的长:=2π,以点B,O,C,F为顶点的四边形是菱形;理由如下:如图2,连接OF,AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CBA=30°,∴∠A=60°,∴△OAC为等边三角形,∴∠BOC=120°,当F是弧BC的中点时,∠BOF=∠COF=60°,∴△BOF与△COF均为等边三角形,∴OB=OC=CF=BF,∴四边形OCFB为菱形,则当的长为2π时,以点B,O,C,F为顶点的四边形是菱形.11.(1)证明:连接OC,交AE于点H.∵C是弧AE的中点,∴OC⊥AE.∵GC是⊙O的切线,∴OC⊥GC,∴∠OHA=∠OCG=90°,∴GC∥AE;(2)解:OC⊥AE,CD⊥AB,∴∠OCD=∠EAB.∴.在Rt△CDO中,OD=3,∴OC=5,∴AB=10,连接BE∵AB是⊙O的直径,∴∠AEB=90°.在Rt△AEB中,∵,∴BE=6,∴AE=8.12.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠DAB+∠DBA=90°,∵BM是⊙O的切线,∴AB⊥BC,∴∠ABC=90°,即∠CBD+∠DBA=90°,∴∠DAB=∠CBD,∵∠ABC=90°,∴∠ACB=90°﹣∠BAC,∵∠EAC=∠ACB,∴∠EAC=90°﹣∠BAC=90°﹣(∠EAC﹣∠BAE),∴∠BAE=2∠EAC﹣90°,∵AB是直径,∴∠AEB=90°,∴∠ABE=90°﹣∠BAE=90°﹣(2∠EAC﹣90°)=2(90°﹣∠EAC)=2(90°﹣∠ACB)=2∠CAB=2∠CBD.∴∠ABE=2∠CBD;(2)如图,连接DO并延长交AE于点G,∵∠DOB=2∠BAD,∠ABE=2∠CAB,∴∠DOB=∠ABE,∴DG∥BE,∴∠AGO=∠AEB=90°,∴AG=EG=AE=3,∠AOG=∠DOF,OA=OD,∴△AOG≌△DOF(AAS)∴DF=AG=3,又OF=OB﹣BF=OD﹣,在Rt△DOF中,根据勾股定理,得OD2=DF2+OF2,即OD2=32+(OD﹣)2,解得OD=.答:⊙O的半径长为.13.(1)解:连接AO,四边形AECO是平行四边形.∵四边形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中点,∴AE=AB.∵CD是⊙O的直径,∴OC=CD.∴AE∥OC,AE=OC.∴四边形AECO为平行四边形.(2)证明:由(1)得,四边形AECO为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF ∴△AOD≌△AOF(SAS).∴∠ADO=∠AFO.∵四边形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F在⊙O上,∴AH是⊙O的切线.(3)∵CD为⊙O的直径,∠ADC=∠BCD=90°,∴AD,BC为⊙O的切线,又∵AH是⊙O的切线,∴CH=FH,AD=AF,设BH=x,∵CH=2,∴BC=2+x,∴BC=AD=AF=2+x,∴AH=AF+FH=4+x,在Rt△ABH中,∵AB2+BH2=AH2,∴62+x2=(4+x)2,解得x=.∴.故答案为:.14.解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△PAB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△PAB的面积==.综上所述,在整个运动过程中,△PAB的面积是定值,定值为.15.(1)证明:先作⊙O的直径AE,连接PE,∵AE是直径,∴∠APE=90°.∴∠E+∠PAE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠PAE=90°,即AD⊥AE,∴AD是⊙O的切线;(2)PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)过点D作DH⊥AB于H,由已知可得,∠DAB=∠ACB=60°.在Rt△ADH中,可求得AH=1,DH=.在Rt△BDH中,由BD=4,DH=,可求得BH=,所以AC=AB=AH+BH=1+.16.解(1)如图1,连接BD.∵=,∴∠BDC=∠ADC=45°,∴∠ADB=90°,∴AB是圆O的直径.(2)如图2,连接OG、OD、BD.则OA=OD=OB,∴∠OAD=∠ODA,∠OBD=∠ODB,∴∠DOB=∠OAD+∠ODA=2∠BAD,∵∠FGC=2∠BAD,∴∠DOB=∠FGC=∠BGD,∴B、G、O、D四点共圆,∴∠ODE=∠OBG,∵BE⊥CD,∠BDC=45°,∴∠EBD=45°=∠EDB,∴∠OBE=∠ODE=∠OBG,∴BA平分∠FBE.(3)如图3,连接AC、BC、CO、DO、EO、BD.∵AC=BC,∴AC=BC,∵AB为直径,∴∠ACB=90°,∠CAB=∠CBA=45°,CO⊥AB,延长CO交圆O于点K,则∠DOK=∠OCD+∠ODC=2∠ODC=2∠OBE=2∠FBA,连接DM、OM,则∠MOD=2∠MAD,∵2∠MAD+∠FBA=135°,∴∠MOD+∠FBA=135°,∴2∠MOD+2∠FBA=270°,∴2∠MOD+∠DOK=270°,∵∠AOM+∠DOM+∠KOK=270°,∴∠AOM=∠DOM,∴AM=DM,连接MO并延长交AD于H,则∠MHA=∠MHD=90°,AH=DH,设MH与BC交于点R,连接AR,则AR=DR,∵∠ADC=45°,∴∠ARD=∠ARC=90°,△ADR是等腰直角三角形,∴∠BRH=∠ARH=45°∵∠ACR+∠BCE=∠BCE+∠CBE=90°,∴∠ACR=∠CBE,∴△ACR≌△CBE(AAS),∴CR=BE=ED,作EQ⊥MN于Q,则∠EQN=∠EQM=90°,连接OE,则OE垂直平分BD,∴OE∥AD∥MN,∴四边形OEQM是矩形,∴OM=EQ,OE=MQ,延长DB交MN于点P,∵∠PBN=∠EBD=45°,∴∠BNP=45°,∴△EQN是等腰直角三角形,∴EQ=QN=EN=13,∴OA=OB=OC=OD=OM═13,AB=2OA=26,∴BC=OC=26,∵MN=AB=20,∴OE=MQ=MN﹣QN=20﹣13=7,∵∠ORE=45°,∠EOR=90°,∴△OER是等腰直角三角形,∴RE=OE=14,设BE=CR=x,则CE=14+x,在Rt△CBE中:BC2=CE2+BE2,∴262=(x+14)2+x2,解得x=10,∴CD=CR+RE+DE=10+14+10=34.17.解:(1)当圆心在坐标原点时,直线l为y=0时,∵⊙O的半径为2,点P(4,0).∴M(2,0),N(﹣2,0),PM=2,PN=6,=,∵,∴=,设Q点坐标为(x,y),则QM=|2﹣x|,QN=|x﹣(﹣2)|=|x+2|,∴=,∴|2+x|=3|2﹣x|,∴2+x=6﹣3x,或2+x=3x﹣6,∴x=1,或x=4,∴E(1,0)是点P关于⊙O的密切点.故答案为:E.(2)①依题意直线l:y=kx+b过定点P(4,0),∵k=﹣∴将P(4,0)代入y=﹣x+b得:0=﹣×4+b,∴b=,∴y=﹣x+.如图,作MA⊥x轴于点A,NB垂直x轴于点B,设M(x,﹣x+),由OM=2得:x2+=4,∴5x2﹣4x﹣10=0,则M,N两点的横坐标x M,x N是方程5x2﹣4x﹣10=0的两根,解得x M=,x N=,∴AB=,PA=,PB=,∵,∴=,=,∴=,∴HA=,∴OH=OA﹣HA=﹣=1,∴Q(1,1).②点P关于⊙O的密切点的轨迹为切点弦ST(不含端点),如图所示:∴﹣1≤t<0或2<t≤3.18.解:(1)结论;AM与优弧相切.理由如下:∵AO=6,OM=2,AM=,∴OM2+AM2=OA2,∴∠AMO=90°,∴AM与优弧相切.(2)在△AOB中,∠AOB=90°,AO=6,BO=6,∴tan∠OAB=,∴∠OAB=60°,∠ABO=30°,当MO∥AB时,M点位置有两种情况:Ⅰ.如解图1,过M点作MF⊥AO,交AO于F,∴∠FOM=60°,∵OM=2,∴OF=OM•cos60°=2×=1,MF=OM•sin60°==,∴AF=OA﹣OF=5,∴AM===.的弧长=,Ⅱ.如解图2,过M点作MF⊥AO,交AO延长线于F,同理可得:∠MOF=60°,OF=1,MF=,AM=7,∴AM===.∴.的弧长=,综上所述:当MO∥AB时,点M在优弧上移动的路线长为时,线段AM的长=;点M在优弧上移动的路线长为时,线段AM的长=;(3)由(2)可知∠OAB=60°,∠ABO=30°,AB=12.如解图3,Ⅰ.由图可知,△ABM的AB边最小高为M在D时,∵OD=2,AO=6,∴AD=4=AD•sin∠OAB=,∴DH1∴△ABM的面积为S的最小值为==.Ⅱ.M在过O垂直于AB的直线上,△ABM的AB边的高最大,OH2=OA•sin∠OAB=,∴△ABM的AB边的高最大值为OM+OH2=2+3,∴△ABM的面积为S的最大值为===12+18.∴△ABM的面积为S取值范围为:.19.(1)证明:如图,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS);(2)由(1)知,△DAF≌△DCE,则∠DFA=∠DEC.∵AD是⊙O的直径,∴∠DFA =90°,∴∠DEC =90° ∵AD ∥BC ,∴∠ADE =∠DEC =90°, ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线;(2)解:如图,连接AH , ∵AD 是⊙O 的直径, ∴∠AHD =∠DFA =90°, ∴∠DFB =90°, ∵AD =AB ,DH =, ∴DB =2DH =2,在Rt △ADF 和Rt △BDF 中, ∵DF 2=AD 2﹣AF 2,DF 2=BD 2﹣BF 2, ∴AD 2﹣AF 2=DB 2﹣BF 2, ∴AD 2﹣(AD ﹣BF )2=DB 2﹣BF 2, ∴AD 2﹣(AD ﹣2)2=(2)2﹣22,∴AD =5. ∴AH ===2∴S 四边形ABCD =2S △ABD =2וAH =BD •AH =2×2=20.即四边形ABCD 的面积是20.20.(1)证明:如图,连接OD ,BD ,∵AB是⊙O的直径,∴∠ADB=∠CDB=90°,∵BM是⊙O的切线,∴∠ABC=90°,∵点E是BC的中点,∴DE=BC=BE=CE,∴∠EDB=∠EBD,又∵OD=OB,∴∠ODB=∠OBD,∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:如图2,连接BD,∵∠A+∠ABD=∠ABD+∠CBD=90°,∴∠A=∠CBD,∵DC=4,tan∠A=,∴tan∠CBD=tan∠A=,∴BD=8,∴BC==4,∴DE=,∴AB=,∴BO=OD=4,又∵DE是⊙O的切线,∴∠HDE=90°,∴tan∠DHE==,设DH=x,则,∴BH=2x,在Rt△BOH中,OB2+BH2=OH2,即,解得:x=或x=0(舍去),∴DH=;(3)解:如图3,连接BF,取AF中点N,构造圆N,连接NG,∵FG⊥AD于点G,∴当点D在弧AB上运动时,点G在圆N上运动,∴当点N、G、B三点共线时,BG有最小值,∵AB=8,点F是弧AB的中点,∴∠AFB=90°,AF=BF=,∴NG=NF=,BN===2,∴BG=BN﹣NG=2.。
2020年九年级中考数学压轴题专项训练:圆的综合卷(含答案)1.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π)(1)证明:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵∠ACD=90°,∴OD⊥BC,∴BC与⊙O相切;(2)解:连接OE,ED,∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°,又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴四边形OAED是菱形,∴OE⊥AD,且AM=DM,EM=OM,∴S△AED =S△AOD,∴阴影部分的面积=S扇形ODE==π.2.如图,已知AB是⊙O的直径,AC是⊙O的弦,点E在⊙O外,连接CE,∠ACB的平分线交⊙O于点D.(1)若∠BCE=∠BAC,求证:CE是⊙O的切线;(2)若AD=4,BC=3,求弦AC的长.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠OAC=∠OCA,∵∠BAC=∠BCE,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:连接BD,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴=,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴△ADB是等腰直角三角形,∴AB=AD=4,∵BC=3,∴AC===.3.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.(1)证明:连接OE .∵OA =OE ,∴∠OAE =∠OEA ,又∵∠DAE =∠OAE ,∴∠OEA =∠DAE ,∴OE ∥AD ,∴∠ADC =∠OEC ,∵AD ⊥CD ,∴∠ADC =90°,故∠OEC =90°.∴OE ⊥CD ,∴CD 是⊙O 的切线;(2)解:∵∠C =45°,∴△OCE 是等腰直角三角形,∴CE =OE =2,∠COE =45°,∴阴影部分面积=S △OCE ﹣S 扇形OBE =2×2﹣=2﹣.4.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.解:(1)△FAG等腰三角形;理由:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(2)成立;∵BC为直径,∴∠BAC=90°∴∠ABE+∠AGB=90°∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,又∵AF=FG,∴F为BG的中点∵△BAG为直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠DBA,∠BAC=∠ADB=90°∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直径BC=.5.如图,已知矩形ABCD的边AB=6,BC=4,点P、Q分别是AB、BC边上的动点.(1)连接AQ、PQ,以PQ为直径的⊙O交AQ于点E.①若点E恰好是AQ的中点,则∠QPB与∠AQP的数量关系是∠QPB=2∠AQP;②若BE=BQ=3,求BP的长;(2)已知AP=3,BQ=1,⊙O是以PQ为弦的圆.①若圆心O恰好在CB边的延长线上,求⊙O的半径;②若⊙O与矩形ABCD的一边相切,求⊙O的半径.解:(1)①∵点E恰好是AQ的中点,∠ABQ=90°,∴BE=AE=EQ,∴∠EAB=∠EBA,∴∠QEB=2∠EBP,∵以PQ为直径的⊙O交AQ于点E,∴∠QPB=∠QEB,∠PBE=∠PQA,∴∠QPB=2∠AQP,故答案为:∠QPB=2∠AQP;②∵BE=BQ,∴∠BEQ=∠BQE,且∠BPQ=∠BEQ,∴∠BPQ=∠BQE,∴tan∠BPQ=tan∠BPQ,∴,∴,∴BP=(2)①如图1,过点O作OE⊥PQ,∵AP=3,AB=6,∴BP=3,∴PQ===,∵OE⊥PQ,∴QE=PE=,∵cos∠PQB==,∴=∴OQ=5,∴⊙O的半径为5;②如图2,若⊙O与BC相切于点Q,连接OQ,过点O作OE⊥PQ于E,∴EQ=PE=,∵BC是⊙O切线,∴OQ⊥BC,且AB⊥BC,∴OQ∥AB,∴∠OQP=∠BPQ,∴cos∠OQP=cos∠BPQ,∴,∴∴OQ=;如图3,若⊙O与AB相切于点P,连接OP,过点O作OE⊥PQ于E,∴EQ=PE=,∵AB是⊙O切线,∴OP⊥AB,且AB⊥BC,∴OP∥BC,∴∠OPQ=∠PQB,∴cos∠OPQ=cos∠PQB,∴∴,∴OP=5;如图4,若⊙O与AD相切于点M,连接OM,OQ,OP,延长MO交BC于F,作OH⊥AB于H 点,∴OM⊥AD,且BC∥AD,∴OF⊥BC,∵∠A=∠B=∠AMO=∠OFB=∠OHB=90°,∴四边形AHOM,OHBF是矩形,∴OM=AH,OH=BF,∵OQ2=OF2+FQ2,OP2=OH2+PH2,∴OQ2=(6﹣OQ)2+(BF﹣1)2,OQ2=BF2+(OQ﹣3)2,∴OQ=5﹣若图5,若⊙O与CD相切于点N,连接ON,OQ,OP,延长NO交BC于E,作OH⊥BC于H 点,同理可得:OP2=PE2+OE2,OQ2=OH2+QH2,∴OQ2=(3﹣OH)2+(4﹣OQ)2,OQ2=OH2+(4﹣OQ﹣1)2,∴OQ=35﹣6.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O 相切,并说明理由.(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.8.如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.(1)证明:连接OC,∵直线MC与⊙O相切于点C,∴∠OCM=90°,∵AD⊥CD,∴∠ADM=90°,∴∠OCM=∠ADM,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAB,即AC是∠DAB的平分线;(2)解:连接BC,连接BE交OC于点F,∵AB是⊙O的直径,∴∠ACB=∠AEB=90°,∵AB=10,AC=4,∴BC===2,∵OC∥AD,∴∠BFO=∠AEB=90°,∴∠CFB=90°,F为线段BE中点,∵∠CBE=∠EAC=∠CAB,∠CFB=∠ACB,∴△CFB∽△BCA.∴=,即=,解得,CF=2,∴OF=OC﹣CF=3.∵O为直径AB中点,F为线段BE中点,∴AE=2OF=6.9.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.10.如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,∠B=30°,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.解:(1)连结OE,∵DE垂直OA,∠B=30°,∴CE=DE=3,,∴∠AOE=2∠B=60°,∴∠CEO=30°,OC=OE,由勾股定理得OE=2;(2)∵EM∥BD,∴∠M=∠B=30°,∠M+∠AOE=90°,∴∠OEM=90°,即OE⊥ME,∴EM是⊙O的切线;(3)再连结OF,当∠APD=45°时,∠EDF=45°,∴∠EOF=90°,S=π(2)2﹣(2)2=3π﹣6.阴影11.如图,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点D,交△ABC的外接圆于点E,过点E作EF⊥BC交BC的延长线于点F.请补全图形后完成下面的问题:(1)求证:EF是△ABC外接圆的切线;(2)若BC=5,sin∠ABC=,求EF的长.(1)证明:补全图形如图所示,∵△ABC是直角三角形,∴△ABC的外接圆圆心O是斜边AB的中点.连接OE,∴OE=OB.∴∠2=∠3,∵BE平分∠ABC,∴∠1=∠2,∴∠1=∠3.∴OE∥BF.∵EF⊥BF,∴EF⊥OE,∴EF是△ABC外接圆的切线;(2)解:在Rt△ABC中,BC=5,sin∠ABC=,∴=.∵AC2+BC2=AB2,∴AC=12.∵∠ACF=∠CFE=∠FEH=90°,∴四边形C FEH是矩形.∴EF=HC,∠EHC=90°.∴EF=HC=AC=6.12.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知⊙O的两条弦AB⊥CD,则AB、CD互为“十字弦”,AB是CD的“十字弦”,CD也是AB的“十字弦”.(1)若⊙O的半径为5,一条弦AB=8,则弦AB的“十字弦”CD的最大值为10 ,最小值为 6 .(2)如图1,若⊙O的弦CD恰好是⊙O的直径,弦AB与CD相交于H,连接AC,若AC=12,DH=7,CH=9,求证:AB、CD互为“十字弦”;(3)如图2,若⊙O的半径为5,一条弦AB=8,弦CD是AB的“十字弦”,连接AD,若∠ADC=60°,求弦CD的长.解:(1)如图a,当CD是直径时,CD的长最大,则CD的最大值为10;如图b,当点D与点A重合时,CD有最小值,过点O作OE⊥CD于E,OF⊥AB于F,∴AF=BF=4,DE=CE,∴OF===3,∵OE⊥CD,OF⊥AB,∠CDB=90°,∴四边形CEOF是矩形,∴CE=OF=3,∴CD=6,∴CD最小值为6,故答案为:10,6;(2)如图1,连接AD,∵DH=7,CH=9,∴CD=16,∵CD是直径,∴∠CAD=90°,∴AD===4,∵,=,∴,∠ADH=∠ADC,∴△ADH∽△CDA,∴∠AHD=∠CAD=90°,∴AB⊥CD,∴AB、CD互为“十字弦”;(3)如图2,过点O作OE⊥CD于E,过点O作OF⊥AB于点F,连接AO,CO,过点O作ON⊥AC于N,∵∠ADC=60°,AB⊥CD,∴AF=DF,∵OE⊥CD,OF⊥AB,AB⊥CD,∴四边形OEHF是矩形,AF=BF=4,CE=ED,∴OF=EH,∵OF===3,∴EH=3,∴ED=CE=3+DH,∴CF=3+2DH,∵∠AOC=2∠ADC=120°,且AO=CO=5,ON⊥AC,∴∠CAO=30°,AN=CN,∴NO=,AN=,∴AC=5,∵AH2+CH2=AC2,∴75=3DH2+(3+2DH)2,∴DH=2﹣,∴CD=2CE=2(3+2﹣)=.13.如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB =30°,设图中阴影部分的面积为y.(1)⊙O的半径为 4 ;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.解:(1)∵∠AOB=2∠APB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=4,即⊙O的半径为4;故答案为4;(2)过点O作OH⊥AB,垂足为H,如图,则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°,∵OA=OB,OH⊥AB,∴AH=BH=AB=2,在Rt△AHO中,∠AHO=90°,AO=4,AH=2,∴OH==2,∴y=﹣×4×2+×4×x=2x+π﹣4(0<x≤2+4).14.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=,AB=6,求⊙O的半径.(1)解:结论:DE与⊙O相切证:连接OD在⊙O中,∵D为的中点,∴=,∴AD=DC,∵AD=DC,点O是AC的中点,∴OD⊥AC,∴∠DOA=∠DOC=90°,∵DE∥AC,∴∠DOA=∠ODE=90°,∵∠ODE=90°,∴OD⊥DE,∵OD⊥DE,DE经过半径OD的外端点D,∴DE与⊙O相切.(2)解:连接BD.∵四边形ABCD是⊙O的内接四边形,∴∠DAB+∠DCB=180°,又∵∠DCE+∠DCB=180°,∴∠DAB=∠DCE,∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°,∵=,∴∠ABD=∠CBD=45°,∵AD=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∵DE∥AC,∴∠DCA=∠CDE=45°,在△ABD和△CDE中,∵∠DAB=∠DCE,∠ABD=∠CDE=45°,∴△ABD∽△CDE,∴=,∴=,∴AD=DC=4,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC===8,∴⊙O的半径为4.15.(1)如图①,点A,B,C在⊙O上,点D在⊙O外,比较∠A与∠BDC的大小,并说明理由;(2)如图②,点A,B,C在⊙O上,点D在⊙O内,比较∠A与∠BDC的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点M(1,0),N(4,0),点P在y轴上,试求当∠MPN度数最大时点P的坐标.解:(1)∠A>∠BDC,理由如下:设CD交⊙O于E,连接BE,如图1所示:∠BEC=∠BDC+∠DBE,∴∠BEC>∠BDC,∵∠A=∠BEC,∴∠A>∠BDC;(2)∠A<∠BDC,理由如下:延长CD交⊙O于点F,连接BF,如图2所示:∵∠BDC=∠BFC+∠FBD,∴∠BDC>∠BFC,又∵∠A=∠BFC,∴∠A<∠BDC;(3)由(1)、(2)可得:当点P是经过M、N两点的圆和y轴相切的切点时,∠MPN度数最大,①当点P在y轴的正半轴上时,如图3所示:设⊙O′为点P是经过M、N两点的圆和y轴相切的切点的圆,连接O′P、O′M、O′N,作O′H⊥MN于H,则四边形OPO′H是矩形,MH=HN,∴OP=O′H,O′P=OH=O′M,∵M(1,0),N(4,0),∴OM=1,MN=3,∴MH=HN=MN=,设O′P=OH=O′M=x,MH=OH﹣OM=x﹣1,∴x﹣1=,∴x=,∴O′H===2,∴OP=2,∴点P的坐标为(0,2);②当点P在y轴的负半轴上时,如图4所示:同理可得O′H=OP=2,∴点P的坐标为(0,﹣2);综上所述,当∠MPN度数最大时点P的坐标为(0,2)或(0,﹣2).。
2020年九年级数学典型中考压轴题专练:圆有关题型1、如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC 交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.2、如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.3、如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.4、如图,在四边形ABCD 中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD 为直径作圆O ,过点D 作DE ∥AB 交圆O 于点E(1)证明点C 在圆O 上;(2)求tan ∠CDE 的值;(3)求圆心O 到弦ED 的距离.5、如图,AB 是半圆O 的直径,点P 是BA 延长线上一点,PC 是⊙O 的切线,切点为C. 过点B 作BD ⊥PC 交PC 的延长线于点D ,连接BC. 求证:(1)∠PBC =∠CBD;(2)BC 2=AB ·BD6、如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E ,弧AC 射线EP 交于点F ,交过点C 的切线于点D.(1)求证DC=DP(2)若∠CAB=30°,当F 是 的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;7、如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF .AC(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.8、如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.9、如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.10、如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD 到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.11、已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.12、如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x 的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.13、如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由;(2)若CD=15,BE=10,tanA=,求⊙O的直径.14、如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.15、如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?16、在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.答案:1、【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.2、【解答】(1)证明:∵∠AFB=∠ABC,∠ABC=∠ADC,∴∠AFB=∠ADC,∴CD∥BF,∴∠AFD=∠ABF,∵CD⊥AB,∴AB⊥BF,∴直线BF是⊙O的切线.(2)解:连接OD,∵CD⊥AB,∴PD=CD=,∵OP=1,∴OD=2,∵∠PAD=∠BAF,∠APO=∠ABF,∴△APD∽△ABF,∴=,∴=,∴BF=.3、【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)解:∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得:x=.∴⊙O的半径为.4、【解答】(1)证明:如图1,连结CO.∵AB=6,BC=8,∠B=90°,∴AC=10.又∵CD=24,AD=26,102+242=262,∴△ACD是直角三角形,∠C=90°.∵AD为⊙O的直径,∴AO=OD,OC为Rt△ACD斜边上的中线,∴OC=AD=r,∴点C在圆O上;(2)解:如图2,延长BC、DE交于点F,∠BFD=90°.∵∠BFD=90°,∴∠CDE+∠FCD=90°,又∵∠ACD=90°,∴∠ACB+∠FCD=90°,∴∠CDE=∠ACB.在Rt△ABC中,tan∠ACB==,∴tan∠CDE=tan∠ACB=;(3)解:如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,∴=,即=,∴CF=,∴BF=BC+CF=8+=.∵∠B=∠F=∠AE D=90°,∴四边形ABFE是矩形,∴AE=BF=,∴OG=AE=,即圆心O到弦ED的距离为.5、【解答】证明:(1)连接OC,∵PC是⊙O的切线,∴∠OCD=90°.又∵BD⊥PC∴∠BDP=90°∴OC∥BD.∴∠CBD=∠OCB.∴OB=OC .∴∠OCB=∠PBC.∴∠PBC=∠CBD.(2)连接AC∵AB 是直径,∴∠BDP=90°.又∵∠BDC=90°,∴∠ACB=∠BDC.∵∠PBC=∠CBD,∴△ABC ∽△CBD. ∴BC AB =BD BC .∴BC 2=AB ·BD6、【解析】 (1) 如图连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE⊥AB ,点D在EP的延长线上,∴∠DEA=90º,∴∠DPC=∠APE=90º-∠OAC.∵OA=OC , ∴∠OCA=∠OAC.∴∠DCA=∠DPC ,∴DC=DP.(2) 如图四边形AOCF是菱形.连接CF、AF,∵F是弧AC的中点,∴弧AF=弧CF ∴ AF=FC .∵∠BAC=30º,∴弧BC =60º,又AB是⊙O的直径,∴弧ACB =120º,∴弧AF=弧CF= 60º,∴∠ACF=∠FAC =30º .∵OA=OC, ∴∠OCA=∠BAC=30º,∴⊿OAC≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF是菱形.7、【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.8、【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.9、【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.10、【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,[来源:学科网]∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∵BE是⊙O的切线,∴BE===.11、【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.12、【解答】解:(1)过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6×=3,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=6,∴PB+CP=x+=6,∴y=﹣x+3,∵BD=2BH=x<6,∴x<2,∴x的取值范围是0<x<2;(2)∵BP=2,∴CP=4,∴PE=PC=2=PB,∴射线CA与⊙P相切;(3)当D点在线段BA上时,连接AP,∵S△ABC=BC•AF=××3=9,∵S△APE=AE•PE=y•×(6+y)=S△ABC=,解得:y=,代入y=﹣x+3得x=4﹣.当D点BA延长线上时,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=6,∴y=x﹣3,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AE•PE=x•=y•(6﹣y)=S△ABC=,解得y=或,代入y=x﹣3得x=3或5.综上可得,BP的长为4﹣或3或5.13、【解答】(1)证明:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线;(2)如图,过点D作DG⊥BE于G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴sin∠EDG=sinA==,即CE=13,在Rt△ECG中,∵DG==12,∵CD=15,DE=13,∴DE=2,∵△ACE∽△DGE,∴=,∴AC=•DG=,∴⊙O的直径2OA=4AD=.4、【解答】(1)①证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.②证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(2)作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===4.15、【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d=(r﹣r)=r,(2)假设C n D n与点E间的距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴n=6,此时C n D n与点E间的距离=r﹣4×r=r.16、【解答】解:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1;(3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).。
2020届中考数学 几何专题:与圆有关的性质(含答案)一、选择题1.如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是( )A .15°B .30°C .45°D .60°2.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=,则弦AB 所对圆周角的度数为()A.30°B.60° C.30°或150° D.60°或120°3.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP .若阴影部分的面积为,则弦AB 的长为( )A .3B .4C .6D .94.如图,△ABC 内接于⊙O ,若∠OAB =28°,则∠C 的大小为( )A .28°B .56°C .60°D .62°5.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD ,则AB 的长为( ) A .2 B .3 C .4 D .53 96.如图,∠AOB 是⊙0的圆心角,∠AOB =80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80°7.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =70o ,∠C =50o,那么sin ∠AEB 的值为( )A. B. C. D.8.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米, 拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .5米9.如图,△ABC 内接于⊙O ,连结OA 、OB ,若∠ABO=25°,则∠C 的度数为( )A .55°B .60°C .65°D .70°10.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ).213322233A .0.4米B .0.5米C .0.8米D .1米11.如图,AB 是半圆O 的直径,点P 从点O 出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )12.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是( )A .AD =BDB .∠ACB =∠AOEC .D .OD =DE13.如图,⊙O 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的 长是( )A .B .C .D .14.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5B .4C .3D .2OA AB BO --OP s t s t AE BE =O A . B .C .D .15.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( )A .2B .3C .4D .516.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O的半径为,则弦CD 的长为( )A .B .C .D .二、填空题1.如图,AB 为半圆O 的直径,延长AB 到点P ,使BP =AB ,PC 切半圆O 于点C ,点D 是上和点C 不重合的一点,则的度数为 .2.如图,在⊙O 中,∠ACB =20°,则∠AOB =______度.3.如图所示,A 、B 、C 、D 是圆上的点,则 度. cm 33cm 23cm 9cm 12AC D ∠17040A ∠=∠=°,°,C ∠=4.在⊙O 中,已知⊙O 的直径AB 为2,弦AC 长为,弦AD 长为.则DC 2=______5.如图,AB 是⊙O 的直径,点C 在⊙O 上 ,OD∥AC ,若BD =1,则BC 的长为6.已知的直径为上的一点,,则= _ .7.如图,的半径弦点为弦上一动点,则点到圆心的最短距离是 cm .8.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为上一点,若∠CEA =,则∠ABD =°.9.如图,AB 是⊙O 的直径,AC 是弦,若∠A CO =32°,则∠COB 的度数等于 . 32O ⊙8cm AB C =,O ⊙30BAC ∠=°BC cm O 5cm OA =,8cm AB =,P AB P O BC 28BABCD 1三、解答题1.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F .(1)求证:CF =BF ;(2)若AD =2,⊙O 的半径为3,求BC 的长.2.已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 1的纵坐标为.求⊙O 1的半径.3.已知:如图,⊙O 的直径AD =2,,∠BAE =90°.(1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?5图2 BC CD DE ==4.如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:.【参考答案】选择题1. B2.DBF BG BC ⋅=23. C4. D5. B6. A7. D8. B9. C10. D11. C12. D13. D14. A15. A16. B填空题1. 30°2. 403. 304.5. 26. 47. 38. 289. 64º解答题1. 证明:(1) 连结AC ,如图。
备考2020年中考数学复习专题《圆》综合练习题一.选择题1.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.102.如图,在⊙O中,弦AB长6cm,圆心O到AB的距离是3cm,⊙O的半径是()A.3cm B.C.4cm D.3.如图为球形灯笼的截面图,过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,则⊙O半径为()A.2dm B.dm C.dm D.dm4.下列判断中不正确的是()A.半圆是弧,但弧不一定是半圆B.平分弦的直径垂直于弦C.在平面内,到圆心的距离等于半径的点都在圆上D.在同圆或等圆中,相等的圆心角所对的弦相等5.如图,点A、B、C在⊙O上,D是的中点,若∠ACD=20°,则∠AOB的度数为()A.60°B.70°C.80°D.90°6.在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A.C与∠α的大小有关B.当∠α=45°时,S=C.A,B,C,D四个点可以在同一个圆上D.S随∠α的增大而增大7.如图在一次游园活动中有个投篮游戏,活动开始时四个人A、B、C、D在距篮筐P都是5米处站好,篮球放在AC和BD的交点O处,已知取篮球时A要走6米,B要走3米,C要走2米,则D要走()A.2米B.3米C.4米D.5米8.⊙O半径为5,圆心O的坐标为(0,0),点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或外9.给定下列条件可以确定一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上三点10.如图,△ABC是⊙O的内接三角形,半径OE⊥AB,垂足为点F,连结弦AE,已知OE =1,则下面的结论:①AE2+BC2=4 ②sin∠ACB=③cos∠B=,其中正确的是()A.①②B.①③C.②③D.②11.若半径为5m的圆,其圆心到直线的距离是5m,则直线和圆的位置关系为()A.相离B.相交C.相切D.无法确定12.如图,圆上有A、B、C三点,直线l与圆相切于点A,CD平分∠ACB,且与l交于点D,若=80°,=60°,则∠ADC的度数为()A.80°B.85°C.90°D.95°二.填空题13.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.14.如图,⊙O的半径OA垂直于弦BC,垂足是D,OA=5,AD:OD=1:4,则BC的长为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在墙壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”问题题意为:如图,有一圆柱形木材埋在墙壁中,不知其直径大小.用锯去锯这木材,锯口深1寸(即CD=1寸),锯道长1尺(即AB=1尺),问这圆形木材直径是多少?(注:1尺=10寸)由此,可求出这圆形木材直径为为寸.16.′如图,在平面直角坐标系xOy中,扇形OAB的圆心角∠AOB=60°,点A在x轴正半轴上且OA=2,带你C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在扇形OAB内(不含边界),则点E的横坐标x取值范围为.17.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB =4,则阴影部分的面积是.18.在一个圆内接四边形ABCD中,已知∠A=100°,则∠C的度数为.三.解答题19.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm 的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).20.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.21.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.22.如图,已知⊙O的弦AB,E,F是弧AB上两点,=,OE、OF分别交于AB于C、D两点,求证:AC=BD.23.如图,CD为⊙O的弦,P为⊙O上一点,OP∥CD,∠PCD=15°(1)求∠POC的度数;(2)若=,AB⊥CD,点A在CD的上方,直接写出∠BPA的度数.24.如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.25.已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.参考答案一.选择题1.解:因为五边形的各边长都和小圆的周长相等,所以小圆在每一边上滚动正好一周,在五条边上共滚动了5周.由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周.因此,总共是滚动了6周.故选:C.2.解:如图所示,由题意知OC=3,且OC⊥AB,∵AB=6,∴AC=AB=3,则OA===3,故选:B.3.解:∵过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,∴BD=AD=1dm,在Rt△ODB中,OD2+DB2=OB2,即(4﹣r)2+12=r2,解得:r=dm,故选:C.4.解:A、半圆是弧,但弧不一定是半圆,正确;B、平分弦的直径垂直于弦,不正确.需要添加条件:此弦非直径;C、在平面内,到圆心的距离等于半径的点都在圆上,正确;D、在同圆或等圆中,相等的圆心角所对的弦相等,正确,故选:B.5.解:连接OD,∴∠AOD=2∠ACD,∵D是的中点,∴∠AOB=2∠AOD=4∠ACD=80°,故选:C.6.【解答】解:A、错误.菱形的周长=8,与∠α的大小无关;B、错误,∠α=45°时,菱形的面积=2•2•sin45°=2;C、错误,A,B,C,D四个点不在同一个圆上;D、正确.∵0°<α<90°,S=菱形的面积=2•2•sinα,∴菱形的面积S随α的增大而增大.故选:D.7.解:根据题意得:A、B、C、D在以P为圆心,半径是5米的圆上.∴OA•OC=OB•OD,即6×2=3×OD.解得OD=4.故选:C.8.解:∵点P的坐标为(3,4),∴由勾股定理得,点P到圆心O的距离==5,∴点P在⊙O上,故选B.9.解:A、不能确定.因为半径不确定,故不符合题意;B、不能确定.因为圆心的位置不确定,故不符合题意;C、不能确定,因为圆心的位置不确定,故不符合题意;D.不在同一直线上三点可以确定一个圆.故符合题意;故选:D.10.解:连接AO,延长AO交⊙O于M,连接BM、CM、EM.∵AM是直径,∴∠AEM=90°,∴AE2+EM2=AM2,∴AE2+EM2=4,显然无法判定BC=EM,故①错误,∵∠ACB=∠AMB,∴sin∠ACB=sin∠AMB==,故②正确,∵∠ABC=∠AMC,∴cos∠ABC=cos∠AMC==,显然无法判断CM=AE,故③错误,故选:D.11.解:根据圆心到直线的距离等于圆的半径,则直线和圆相切.故选:C.12.解:设圆心为O,连接OA、OC,∵=80°,=60°,∴∠AOC=140°,∠ACB=40°,∵OA=OC,∴∠OAC=20°,∵直线l与圆相切于点A,∴OA⊥l,∴∠OAD=90°,∴∠CAD=70°,∵CD平分∠ACB,∴∠ACD=∠ACB=20°,∴∠ADC=180°﹣∠CAD﹣∠ACD=90°,故选:C.二.填空题(共6小题)13.解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.14.解:连接OB,∵OA=5,AD:OD=1:4,∴AD=1,OD=4,OB=5,在Rt△ODB中,由勾股定理得:OB2=OD2+BD2,52=42+BD2,解得:BD=3,∵OD⊥BC,OD过O,∴BC=2BD=6,故答案为:6.15.解:延长CD,交⊙O于点E,连接OA,由题意知CE过点O,且OC⊥AB,则AD=BD=AB=5(寸),设圆形木材半径为r,则OD=r﹣1,OA=r,∵OA2=OD2+AD2,∴r2=(r﹣1)2+52,解得r=13,所以⊙O的直径为26寸,故答案为:26.16.解:当点E落在半径OA上时,连接OC,如下图1所示,∵∠ADC=90°,∠AOB=60°,点C为弧AB的中点,点A(2,0),∴∠COD=30°,OA=OC=2,∴CD=OC•sin30°=2×=1,∴OD=O C•cos30°=2×=,∴AD=OA﹣OD=2﹣,∵DE=DA,∴OE=OD﹣OE=﹣(2﹣)=2﹣2,即点E的坐标为(2﹣2,0);当点E落在半径OB上时,连接OC,CD,如图2所示,由已知可得,CE=CA=CB,由上面的计算可知,OE=2﹣2,∴点E的横坐标为:(2﹣2)×cos60°=﹣1,点E的纵坐标为:(2﹣2)×sin60°=3﹣,∴E(﹣1,3﹣),∴满足条件的点E的横坐标x取值范围为﹣1<x<2﹣2.故答案为﹣1<x<2﹣2.17.解:如图,连接OD,OE,DE.∵△ABC是等边三角形,∴∠A=∠B=60°,∵OA=OD=OB=OE=2,∴△AOD,∠EOB都是等边三角形,∴∠AOD=∠EOB=60°,∴∠DOE=60°,△DOE是等边三角形,∴∠DOE=∠EOB,∴弓形DE与弓形BE的面积相等,∵CD=DE=CE=2,∴△CDE是等边三角形,∴S阴=S△CDE=×22=,故答案为.18.解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠C=180°﹣100°=80°.故答案为:80°三.解答题(共7小题)19.解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:20.解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.21.解:如图:作OE⊥AB于E,交CD于F,∵AB=12m,OE⊥AB,OA=1m,∴OE=8m.∵水管水面上升了2m,∴OF=8﹣2=6m,∴CF==8m,∴CD=16m.22.证明:连接OA、OB,∵OA=OB,∴∠A=∠B,∵=,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD.23.解:(1)∵OP∥CD,∴∠OPC=∠PCD=15°,∵OP=OC,∴∠OPC=∠OCP=15°,∴∠OCD=30°.(2)①如图1中,当AB在点O的左侧时,连接PA,PB,OD,OA,OB.∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,∵=,∴∠AOB=∠COD=120°,∴∠APB=∠AOB=60°.②如图2中,当AB在点O的右侧时,同法可得∠ACB=60°,∵∠APB+∠ACB=180°,∴∠APB=120°,综上所述,∠APB=60°或120°.24.解:∵四边形ABCD内接于⊙O,∠ABC=135°,∴∠D=180°﹣∠ABC=45°,∴∠AOC=2∠D=90°,∵OA=OC,且AC=4,∴OA=OC=AC=2,即⊙O的半径长为2.25.解:(1)连接AD、BC.∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2 ∴CD=CM===由(1)知AM•MB=CM•MD.∴AM•MB=•=5.。
2020年全国中考数学试题分类(11)——圆一.圆心角、弧、弦的关系(共1小题)1.(2020•广安)如图,点A,B,C,D四点均在⊙O上,∠AOD=68°,AO∥DC,则∠B的度数为()A.40°B.60°C.56°D.68°二.圆周角定理(共9小题)2.(2020•巴中)如图,在⊙O中,点A、B、C在圆上,∠ACB=45°,AB=2√2,则⊙O的半径OA的长是()A.√2B.2 C.2√2D.33.(2020•贵港)如图,点A,B,C均在⊙O上,若∠ACB=130°,则∠α的度数为()A.100°B.110°C.120°D.130°̂上任意一4.(2020•临沂)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为BB 点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°5.(2020•陕西)如图,点A、B、C在⊙O上,BC∥OA,连接BO并延长,交⊙O于点D,连接AC,DC.若∠A=25°,则∠D的大小为()A.25°B.30°C.40°D.50°6.(2020•兰州)如图,AB是⊙O的直径,若∠BAC=20°,则∠ADC=()A .40°B .60°C .70°D .80°7.(2020•阜新)如图,AB 为⊙O 的直径,C ,D 是圆周上的两点,若∠ABC =38°,则锐角∠BDC 的度数为( )A .57°B .52°C .38°D .26°8.(2020•赤峰)如图,⊙A 经过平面直角坐标系的原点O ,交x 轴于点B (﹣4,0),交y 轴于点C (0,3),点D 为第二象限内圆上一点.则∠CDO 的正弦值是( )A .35B .−34C .34D .45 9.(2020•眉山)如图,四边形ABCD 的外接圆为⊙O ,BC =CD ,∠DAC =35°,∠ACD =45°,则∠ADB的度数为( )A .55°B .60°C .65°D .70°10.(2020•河池)如图,AB 是⊙O 的直径,点C ,D ,E 都在⊙O 上,∠1=55°,则∠2= °.三.圆内接四边形的性质(共2小题)11.(2020•广西)如图,已知四边形ABCD 为⊙O 的内接四边形,BD 平分∠ABC ,DH ⊥AB 于点H ,DH =√3,∠ABC=120°,则AB+BC的值为()A.√2B.√3C.2 D.√512.(2020•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.四.点与圆的位置关系(共1小题)13.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.五.三角形的外接圆与外心(共3小题)14.(2020•赤峰)如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为()A.3πB.4πC.6πD.9π̂的长为.15.(2020•锦州)如图,⊙O是△ABC的外接圆,∠ABC=30°,AC=6,则BB16.(2020•黄石)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,̂的长等于.作△ABC的外接圆,则BB六.直线与圆的位置关系(共1小题)17.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.七.切线的性质(共4小题)18.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC 的度数是()A.60°B.65°C.70°D.75°19.(2020•眉山)如图,点P为⊙O外一点,过点P作⊙O的切线P A、PB,点A、B为切点,连接AO并延长交PB的延长线于点C,过点C作CD⊥PO,交PO的延长线于点D.已知P A=6,AC=8,则CD的长为.20.(2020•呼和浩特)已知AB为⊙O的直径且长为2r,C为⊙O上异于A,B的点,若AD与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形AOC的顶角为120度,则CD=12r,②若△AOC为正三角形,则CD=√32r,③若等腰三角形AOC的对称轴经过点D,则CD=r,④无论点C在何处,将△ADC沿AC折叠,点D一定落在直径AB上,其中正确结论的序号为.21.(2020•济南)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.八.切线的判定与性质(共9小题)22.(2020•兰州)如图,在Rt△AOB中,∠AOB=90°,OA=OB,点C是AB的中点,以OC为半径作⊙O.(1)求证:AB是⊙O的切线;(2)若OC=2,求OA的长.23.(2020•西藏)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.24.(2020•葫芦岛)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.(2020•镇江)如图,▱ABCD 中,∠ABC 的平分线BO 交边AD 于点O ,OD =4,以点O 为圆心,OD 长为半径作⊙O ,分别交边DA 、DC 于点M 、N .点E 在边BC 上,OE 交⊙O 于点G ,G 为BB̂的中点. (1)求证:四边形ABEO 为菱形;(2)已知cos ∠ABC =13,连接AE ,当AE 与⊙O 相切时,求AB 的长. 26.(2020•宁夏)如图,在△ABC 中,∠B =90°,点D 为AC 上一点,以CD 为直径的⊙O 交AB 于点E ,连接CE ,且CE 平分∠ACB .(1)求证:AE 是⊙O 的切线;(2)连接DE ,若∠A =30°,求BB BB .27.(2020•烟台)如图,在▱ABCD 中,∠D =60°,对角线AC ⊥BC ,⊙O 经过点A ,B ,与AC 交于点M ,连接AO 并延长与⊙O 交于点F ,与CB 的延长线交于点E ,AB =EB .(1)求证:EC 是⊙O 的切线;(2)若AD =2√3,求BB ̂的长(结果保留π).28.(2020•广东)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧BB̂上一点,AD =1,BC =2.求tan ∠APE 的值.29.(2020•株洲)AB是⊙O的直径,点C是⊙O上一点,连接AC、BC,直线MN过点C,满足∠BCM=∠BAC=α.(1)如图①,求证:直线MN是⊙O的切线;(2)如图②,点D在线段BC上,过点D作DH⊥MN于点H,直线DH交⊙O于点E、F,连接AF并延长交直线MN于点G,连接CE,且CE=53,若⊙O的半径为1,cosα=34,求AG•ED的值.30.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BB̂的中点,过点C作CE ⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.九.三角形的内切圆与内心(共1小题)31.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是()A.h=R+r B.R=2r C.r=√34a D.R=√3 3a一十.正多边形和圆(共7小题)32.(2020•济南)如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.33.(2020•黄石)匈牙利著名数学家爱尔特希(P.Erdos,1913﹣1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是.34.(2020•株洲)据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为尺.(结果用最简根式表示)35.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.̂上一点(点P与点D,点E不重合),连36.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为BB接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.37.(2020•成都)如图,六边形ABCDEF是正六边形,曲线F A1B1C1D1E1F1…叫做“正六边形的渐开线”,BB 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .38.(2020•通辽)中心为O 的正六边形ABCDEF 的半径为6cm ,点P ,Q 同时分别从A ,D 两点出发,以1cm /s 的速度沿AF ,DC 向终点F ,C 运动,连接PB ,PE ,QB ,QE ,设运动时间为t (s ).(1)求证:四边形PBQE 为平行四边形;(2)求矩形PBQE 的面积与正六边形ABCDEF 的面积之比.一十一.弧长的计算(共4小题)39.(2020•盘锦)如图,在△ABC 中,AB =BC ,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,点E 为线段OB 上的一点,OE :EB =1:√3,连接DE 并延长交CB 的延长线于点F ,连接OF 交⊙O 于点G ,若BF =2√3,则BB̂的长是( ) A .B 3 B .B 2 C .2B 3 D .3B 440.(2020•沈阳)如图,在矩形ABCD 中,AB =√3,BC =2,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则BB̂的长为( ) A .4B 3 B .π C .2B 3 D .B 3 41.(2020•潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:BB 1̂的圆心为点A ,半径为AD ;B 1B 1̂的圆心为点B ,半径为BA 1;B 1B 1̂的圆心为点C ,半径为CB 1;B 1B 1̂的圆心为点D ,半径为DC 1;⋯BB 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则B 2020B 2020̂的长是 .42.(2020•河南)如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BB̂于点D ,点E 为半径OB 上一动点.若OB =2,则阴影部分周长的最小值为 .一十二.扇形面积的计算(共6小题)43.(2020•山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC =BD =12cm ,C ,D 两点之间的距离为4cm ,圆心角为60°,则图中摆盘的面积是( )A .80πcm 2B .40πcm 2C .24πcm 2D .2πcm 244.(2020•日照)如图,AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,若CD =6√3,AE =9,则阴影部分的面积为( ) A .6π−92√3 B .12π﹣9√3C .3π−94√3D .9√3 45.(2020•西藏)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .43π−√3B .43π﹣2√3C .83π−√3D .83π﹣2√3 46.(2020•呼伦贝尔)若一个扇形的弧长是2πcm ,面积是6πcm 2,则扇形的圆心角是 度.47.(2020•鄂尔多斯)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠BCD =30°,CD =2√3,则阴影部分面积S 阴影= .48.(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 .(结果保留π)一十三.圆锥的计算(共1小题)49.(2020•广东)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .一十四.圆的综合题(共1小题)50.(2020•呼和浩特)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比√5−12≈0.618.如图,圆内接正五边形ABCDE ,圆心为O ,OA 与BE 交于点H ,AC 、AD 与BE 分别交于点M 、N .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)(1)求证:△ABM 是等腰三角形且底角等于36°,并直接说出△BAN 的形状;(2)求证:BB BB =BB BB ,且其比值k =√5−12;(3)由对称性知AO ⊥BE ,由(1)(2)可知BB BB 也是一个黄金分割数,据此求sin18°的值.2020年全国中考数学试题分类(11)——圆参考答案与试题解析一.圆心角、弧、弦的关系(共1小题)1.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=68°,∵OD=OC,∴∠ODC=∠OCD=68°,∴∠COD=44°,∴∠AOC=112°,∴∠B=12∠AOC=56°.故选:C.二.圆周角定理(共9小题)2.【解答】解:根据圆周角定理得:∠AOB=2∠ACB,∵∠ACB=45°,∴∠AOB=90°,∵AB=2√2,OA=OB,∴2OA2=AB2,∴OA=OB=2,故选:B.3.【解答】解:在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:A.4.【解答】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦AC的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE =x ,则∠COE =100°﹣x ,∠DOE =100°﹣x +40°, ∵OC =OE ,∠COE =100°﹣x ,∴∠OEC =∠OCE =40°+12x ,∵OD <OE ,∠DOE =100°﹣x +40°=140°﹣x ,∴∠OED <20°+12x , ∴∠CED =∠OEC ﹣∠OED >(40°+12x )﹣(20°+12x )=20°,∵∠CED <∠ABC =40°,∴20°<∠CED <40°故选:C .5.【解答】解:∵BC ∥OA ,∴∠ACB =∠A =25°,∠B =∠AOB =2∠ACB =50°,∵BD 是⊙O 的直径,∴∠BCD =90°,∴∠D =90°﹣∠B =90°﹣50°=40°,故选:C .6.【解答】解:∵AB 是直径,∴∠ACB =90°,∵∠BAC =20°,∴∠ABC =90°﹣20°=70°,∴∠ADC =∠ABC =70°,故选:C .7.【解答】解:连接AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =38°,∴∠BAC =90°﹣∠ABC =52°,∴∠BDC =∠BAC =52°.故选:B .8.【解答】解:连接BC ,如图,∵B (﹣4,0),C (0,3),∴OB =4,OC =3,∴BC =√32+42=5,∴sin ∠OBC =BB BB =35, ∵∠ODC =∠OBC ,∴sin ∠CDO =sin ∠OBC =35.故选:A .9.【解答】解:∵BC =CD , ∴BB̂=BB ̂, ∵∠ABD 和∠ACD 所对的弧都是BB̂, ∴∠BAC =∠DAC =35°,∵∠ABD =∠ACD =45°,∴∠ADB =180°﹣∠BAD ﹣∠ABD =180°﹣70°﹣45°=65°. 故选:C .10.【解答】解:如图,连接AD .∵AB 是直径,∴∠ADB =90°,∵∠1=∠ADE ,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.三.圆内接四边形的性质(共2小题)11.【解答】解:延长BA 到E ,使AE =BC ,连接DE ,如图,∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =12×120°=60°,∵∠DAC =∠DBC =60°,∠DCA =∠DBA =60°,∴△DAC 为等边三角形,∴DA =DC ,在△ADE 和△BCD 中,{BB =BB BBBB =BBBB BB =BB ,∴△ADE ≌△BCD (SAS ),∴∠E =∠DBC =60°,而∠DBA =60°,∴△DBE 为等边三角形,∵DH ⊥AB ,∴BH =EH ,在Rt △BDH 中,BH =√33DH =√33×√3=1,∴BE =2BH =2,∴AB +BC =2.故选:C .12.【解答】(1)证明:∵四边形ABCD 内接于圆.∴∠ABC +∠ADC =180°,∵∠ABC =60°,∴∠ADC =120°,∵DB 平分∠ADC ,∴∠ADB =∠CDB =60°,∴∠ACB =∠ADB =60°,∠BAC =∠CDB =60°,∴∠ABC =∠BCA =∠BAC ,∴△ABC 是等边三角形.(2)过点A 作AM ⊥CD ,垂足为点M ,过点B 作BN ⊥AC ,垂足为点N . ∴∠AMD =90°,∵∠ADC =120°,∴∠ADM =60°,∴∠DAM =30°,∴DM =12AD =1,AM =√BB 2−BB 2=√22−12=√3,∵CD =3,∴CM =CD +DM =1+3=4,∴S △ACD =12CD •AM =12×3×√3=3√32,Rt △AMC 中,∠AMD =90°,∴AC =√BB 2+BB 2=√3+16=√19,∵△ABC 是等边三角形,∴AB =BC =AC =√19,∴BN =√32BC =√572,∴S △ABC =12×√19×√572=19√34, ∴四边形ABCD 的面积=19√34+3√32=25√34, ∵BE ∥CD ,∴∠E +∠ADC =180°,∵∠ADC =120°,∴∠E =60°,∴∠E =∠BDC ,∵四边形ABCD 内接于⊙O ,∴∠EAB =∠BCD ,在△EAB 和△DCB 中,{∠B =∠BBBBBBB =BBBB BB =BB,∴△EAB ≌△DCB (AAS ),∴△BDE 的面积=四边形ABCD 的面积=25√34. 四.点与圆的位置关系(共1小题)13.【解答】解:如图,连接BE ,BD .由题意BD =√22+42=2√5,∵∠MBN =90°,MN =4,EM =NE ,∴BE =12MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的弧, ∴当点E 落在线段BD 上时,DE 的值最小,∴DE 的最小值为2√5−2.(也可以用DE ≥BD ﹣BE ,即DE ≥2√5−2确定最小值) 故答案为2√5−2.五.三角形的外接圆与外心(共3小题)14.【解答】解:∵AB =AC ,AD 是∠BAC 的平分线, ∴BD =CD ,AD ⊥BC ,∵EF 是AC 的垂直平分线,∴点O 是△ABC 外接圆的圆心,∵OA =3,∴△ABC 外接圆的面积=πr 2=π×32=9π.故选:D .15.【解答】解:连接OC ,OA .∵∠AOC =2∠ABC ,∠ABC =30°,∴∠AOC =60°,∵OA =OC ,∴△AOC 是等边三角形,∴OA =OC =AC =6,∴BB ̂的长=60⋅B ⋅6180=2π, 故答案为2π.16.【解答】解:∵每个小方格都是边长为1的正方形, ∴AB =2√5,AC =√10,BC =√10,∴AC 2+BC 2=AB 2,∴△ACB 为等腰直角三角形,∴∠A =∠B =45°,∴连接OC ,则∠COB =90°,∵OB =√5,∴BB̂的长为:90⋅B ×√5180=√52π, 故答案为:√52π. 六.直线与圆的位置关系(共1小题)17.【解答】解:∵直线a ⊥b ,O 为直线b 上一动点, ∴⊙O 与直线a 相切时,切点为H ,∴OH =1cm ,当点O 在点H 的左侧,⊙O 与直线a 相切时,如图1所示:OP =PH ﹣OH =4﹣1=3(cm );当点O 在点H 的右侧,⊙O 与直线a 相切时,如图2所示:OP =PH +OH =4+1=5(cm );∴⊙O 与直线a 相切,OP 的长为3cm 或5cm ,故答案为:3cm 或5cm .七.切线的性质(共4小题)18.【解答】解:∵AC 与⊙O 相切于点A ,∴AC ⊥OA ,∴∠OAC =90°,∵OA =OB ,∴∠OAB =∠OBA .∵∠O =130°,∴∠OAB=180°−BB2=25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.19.【解答】解:连接OB,如图,∵P A、PB为⊙O的切线,∴PB=P A=6,OB⊥PC,OA⊥P A,∴∠CAP=∠CBO=90°,在Rt△APC中,PC=√BB2+BB2=√62+82=10,∴BC=PC﹣PB=4,设⊙O的半径为r,则OA=OB=r,OC=8﹣r,在Rt△BCO中,42+r2=(8﹣r)2,解得r=3,∴OA=3,OC=5,在Rt△OP A中,OP=√BB2+BB2=√32+62=3√5,∵CD⊥PO,∴∠CDO=90°,∵∠COD=∠POA,∠CDO=∠P AO,∴△COD∽△POA,∴CD:P A=OC:OP,即CD:6=5:3√5,∴CD=2√5.故答案为2√5.20.【解答】解:①如图1,∵∠AOC=120°,∴∠CAO=∠ACO=30°,∵CD和圆O相切,AD⊥CD,∴∠OCD=90°,AD∥CO,∴∠ACD=60°,∠CAD=30°,∴CD=12AC,∵C为⊙O上异于A,B的点,∴AC<AB,∴CD≠12r,故①错误;②如图2,过点A作AE⊥OC,垂足为E,若△AOC为正三角形,∠AOC=∠OAC=60°,AC=OC=OA=r,∴∠OAE=30°,∴OE=12AO,AE=√32AO=√32r,∵四边形AECD为矩形,∴CD=AE=√32r,故②正确;③若等腰三角形AOC的对称轴经过点D,如图3,∴AD=CD,而∠ADC=90°,∴∠DAC=∠DCA=45°,又∠OCD=90°,∴∠ACO=∠CAO=45°∴∠DAO=90°,∴四边形AOCD为矩形,∴CD=AO=r,故③正确;④如图4,过点C作CE⊥AO,垂足为E,连接DE,∵OC⊥CD,AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO,∵OC=OA,∴∠ACO=∠CAO,∴∠CAD=∠CAO,∴CD=CE,在△ADC和△AEC中,∠ADC=∠AEC=90°,CD=CE,AC=AC,∴△ADC≌△AEC(HL),∴AD=AE,∴AC垂直平分DE,则点D和点E关于AC对称,即点D一定落在直径上,故④正确.故正确的序号为:②③④,故答案为:②③④.21.【解答】解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD =90°,∴∠ACD +∠ACO =90°,∵AD ⊥DC ,∴∠ADC =90°,∴∠ACD +∠DAC =90°,∴∠ACO =∠DAC ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠DAC =∠OAC ,∴AC 是∠DAB 的角平分线;(2)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠D =∠ACB =90°,∵∠DAC =∠BAC ,∴Rt △ADC ∽Rt △ACB ,∴BB BB =BB BB ,∴AC 2=AD •AB =2×3=6,∴AC =√6.八.切线的判定与性质(共9小题)22.【解答】(1)证明:∵OA =OB ,点C 是AB 的中点,∴OC ⊥AB ,∵OC 为⊙O 的半径,∴AB 是⊙O 的切线;(2)∵△AOB 是等腰直角三角形,点C 是AB 的中点,∴OC ⊥AB ,AB =2OC =4,∵12OA 2=12BB ⋅BB , ∴OA =√2×4=2√2.23.【解答】(1)证明:连接OD ,OE ,∵AD 切⊙O 于A 点,AB 是⊙O 的直径,∴∠DAB =90°,∵AD =DE ,OA =OE ,OD =OD ,∴△ADO ≌△EDO (SSS ),∴∠OED =∠OAD =90°,∴CD 是⊙O 的切线;(2)解:过C 作CH ⊥AD 于H ,∵AB 是⊙O 的直径,AD 和BC 分别切⊙O 于A ,B 两点,∴∠DAB =∠ABC =∠CHA =90°,∴四边形ABCH 是矩形,∴CH =AB =12,AH =BC =4,∵CD 是⊙O 的切线,∴AD =DE ,CE =BC ,∴DH =AD ﹣BC =AD ﹣4,CD =AD +4,∵CH 2+DH 2=CD 2,∴122+(AD ﹣4)2=(AD +4)2,∴AD =9.24.【解答】(1)证明:连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AC是直径,∴∠ADC=90°,∵∠EDA=∠ACD,∴∠ADO+∠ODC=∠EDA+∠ADO=90°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵BBB∠BBB=BB BB,∴BB=BBB45°⋅BB=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵BBB∠BBB=BB BB,∴BB=BBB45°⋅BB=3√2,∴BB=BB=3√2,在Rt△ABF中,BB2=BB2−BB2=(5√2)2−(3√2)2=32,∴BB=4√2,∴BB=BB+BB=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°﹣∠DBC,∠CBH=90°﹣∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD =CH ,BD =BH ,∵AD =6,CD =8,∴DH =CD +CH =14,在Rt △BDH 中,∵BD 2=DH 2﹣BH 2,BD =BH ,则BD 2=98.∴BB =7√2.25.【解答】解:(1)证明:∵G 为BB̂的中点, ∴∠MOG =∠MDN .∵四边形ABCD 是平行四边形.∴AO ∥BE ,∠MDN +∠A =180°,∴∠MOG +∠A =180°,∴AB ∥OE ,∴四边形ABEO 是平行四边形.∵BO 平分∠ABE ,∴∠ABO =∠OBE ,又∵∠OBE =∠AOB ,∴∠ABO =∠AOB ,∴AB =AO ,∴四边形ABEO 为菱形;(2)如图,过点O 作OP ⊥BA ,交BA 的延长线于点P ,过点O 作OQ ⊥BC 于点Q ,设AE 交OB 于点F ,则∠P AO =∠ABC ,设AB =AO =OE =x ,则∵cos ∠ABC =13,∴cos ∠P AO =13,∴BB BB =13,∴P A =13x , ∴OP =OQ =2√23x当AE 与⊙O 相切时,由菱形的对角线互相垂直,可知F 为切点,∴在Rt △OBQ 中,由勾股定理得:(43B )2+(2√23B )2=82, 解得:x =2√6(舍负).∴AB 的长为2√6.26.【解答】(1)证明:连接OE ,如图1所示:∵CE 平分∠ACB ,∴∠ACE =∠BCE ,又∵OE =OC ,∴∠ACE =∠OEC ,∴∠BCE =∠OEC ,∴OE ∥BC ,∴∠AEO =∠B ,又∵∠B =90°,∴∠AEO =90°,即OE ⊥AE ,∵OE 为⊙O 的半径,∴AE 是⊙O 的切线;(2)解:连接DE ,如图2所示:∵CD 是⊙O 的直径,∴∠DEC =90°,∴∠DEC =∠B ,又∵∠DCE =∠ECB ,∴△DCE ∽△ECB ,∴BB BB =BB BB ,∵∠A =30°,∠B =90°,∴∠ACB =60°,∴∠DCE =12∠ACB =12×60°=30°,∴BB BB =cos ∠DCE =cos30°=√32,∴BB BB =√32.27.【解答】(1)证明:连接OB ,连接OM ,∵四边形ABCD 是平行四边形,∴∠ABC =∠D =60°,∵AC ⊥BC ,∴∠ACB =90°,∵BE =AB ,∴∠E =∠BAE ,∵∠ABC =∠E +∠BAE =60°,∴∠E =∠BAE =30°,∵OA =OB ,∴∠ABO =∠OAB =30°,∴∠OBC =30°+60°=90°,∴OB ⊥CE ,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形,∴BC =AD =2√3,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC =2√3,∴OA =BB BBB60°=4,∠AOM =2∠AOH =60°,∴BB ̂的长度=60⋅B ×4180=4B 3. 28.【解答】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD ∥BC ,∠DAB =90°,∴∠OBC =180°﹣∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠BBB =∠BBBBBBB =BBBB BB =BB,∴△OCE ≌△OCB (AAS ),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图2所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC ﹣BF =2﹣1=1,∵AD ∥BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD 、BC 是⊙O 的切线,由(1)得:CD 是⊙O 的切线,∴ED =AD =1,EC =BC =2,∴CD =ED +EC =3,∴DF =√BB 2−BB 2=√32−12=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=BBBB=√22.29.【解答】(1)证明:连接OC,如图①,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠B=∠OCB,∵∠BCM=∠A,∴∠OCB+∠BCM=90°,即OC⊥MN,∴MN是⊙O的切线;(2)解:如图②,∵AB是⊙O的直径,⊙O的半径为1,∴AB=2,∵cos∠BAC=BBBB=BBBB=34,即BB2=34,∴BB=3 2,∵∠AFE=∠ACE,∠GFH=∠AFE,∴∠GFH=∠ACE,∵DH⊥MN,∴∠GFH+∠AGC=90°,∵∠ACE+∠ECD=90°,∴∠ECD=∠AGC,又∵∠DEC=∠CAG,∴△EDC∽△ACG,∴BB BB =BB BB ,∴BB ⋅BB =BB ⋅BB =32×53=52.30.【解答】解:(1)连接BF ,OC ,∵AB 是⊙O 的直径,∴∠AFB =90°,即BF ⊥AD ,∵CE ⊥AD ,∴BF ∥CE ,连接OC ,∵点C 为劣弧BB ̂的中点,∴OC ⊥BF ,∵BF ∥CE ,∴OC ⊥CE ,∵OC 是⊙O 的半径,∴CE 是⊙O 的切线;(2)连接OF ,CF ,∵OA =OC ,∠BAC =30°,∴∠BOC =60°,∵点C 为劣弧BB ̂的中点,∴BB ̂=BB ̂,∴∠FOC =∠BOC =60°,∵OF =OC ,∴∠OCF =∠COB ,∴CF ∥AB ,∴S △ACF =S △COF ,∴阴影部分的面积=S 扇形COF ,∵AB =4,∴FO =OC =OB =2,∴S 扇形FOC =60⋅B ×22360=23B , 即阴影部分的面积为:23B . 九.三角形的内切圆与内心(共1小题)31.【解答】解:如图,∵△ABC 是等边三角形,∴△ABC 的内切圆和外接圆是同心圆,圆心为O ,设OE =r ,AO =R ,AD =h ,∴h =R +r ,故A 正确;∵AD ⊥BC ,∴∠DAC =12∠BAC =12×60°=30°,在Rt △AOE 中,∴R =2r ,故B 正确;∵OD =OE =r ,∵AB =AC =BC =a ,∴AE =12AC =12a ,∴(12a )2+r 2=(2r )2,(12a )2+(12R )2=R 2, ∴r =√3B 6,R =√33a ,故C 错误,D 正确;故选:C .一十.正多边形和圆(共7小题)32.【解答】解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r ,∴120B ×B 2360×2=24π,解得r =6.则正六边形的边长为6.33.【解答】解:由题意知点A 、B 、C 、D 为正五边形任意四个顶点,且O 为正五边形中心, ∴∠AOB =∠BOC =∠COD =360°5=72°,∴∠AOD =360°﹣3∠AOB =144°,又∵OA =OD ,∴∠ADO =180°−BBBB 2=180°−144°2=18°, 故答案为:18°.34.【解答】解:如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE为直径,∠ECD=45°,由题意得AB=2.5,∴CE=2.5﹣0.25×2=2,∴CD=CE⋅BBB∠BBB=2×√22=√2,∴正方形CDEF周长为4√2尺.故答案为:4√2.35.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BF,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°=√3,∴BF=2BT=2√3,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=12•EF•BF=12×2×2√3=2√3,故答案为2√3.36.【解答】解:连接OC、OD,如图所示:∵ABCDE是正五边形,∴∠COD=360°5=72°,∴∠CPD=12∠COD=36°,∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,故答案为:54.37.【解答】解:BB 1̂的长=60⋅B ⋅1180=B 3,B 1B 1̂的长=60⋅B ⋅2180=2B 3, B 1B 1̂的长=60⋅B ⋅3180=3B 3,B 1B 1̂的长=60⋅B ⋅4180=4B 3,B 1B 1̂的长=60⋅B ⋅5180=5B 3, B 1B 1̂的长=60⋅B ⋅6180=6B 3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=B 3+2B 3+⋯+6B 3=21B 3=7π, 故答案为7π.38.【解答】(1)证明:∵六边形ABCDEF 是正六边形,∴AB =BC =CD =DE =EF =F A ,∠A =∠ABC =∠C =∠D =∠DEF =∠F ,∵点P ,Q 同时分别从A ,D 两点出发,以1cm /s 速度沿AF ,DC 向终点F ,C 运动, ∴AP =DQ =t ,PF =QC =6﹣t ,在△ABP 和△DEQ 中,{BB =BBBB =BB BB =BB ,∴△ABP ≌△DEQ (SAS ),∴BP =EQ ,同理可证PE =QB ,∴四边形PEQB 为平行四边形.(2)解:连接BE 、OA ,则∠AOB =360°6=60°,∵OA =OB ,∴△AOB 是等边三角形,∴AB =OA =6,BE =2OB =12,当t =0时,点P 与A 重合,Q 与D 重合,四边形PBQE 即为四边形ABDE ,如图1所示: 则∠EAF =∠AEF =30°,∴∠BAE =120°﹣30°=90°,∴此时四边形ABDE 是矩形,即四边形PBQE 是矩形.当t =6时,点P 与F 重合,Q 与C 重合,四边形PBQE 即为四边形FBCE ,如图2所示: 同法可知∠BFE =90°,此时四边形PBQE 是矩形.综上所述,t =0s 或6s 时,四边形PBQE 是矩形,∴AE =√122−62=6√3,∴矩形PBQE 的面积=矩形ABDE 的面积=AB ×AE =6×6√3=36√3;∵正六边形ABCDEF 的面积=6△AOB 的面积=6×14矩形ABDE 的面积=6×14×36√3=54√3, ∴矩形PBQE 的面积与正六边形ABCDEF 的面积之比=23.一十一.弧长的计算(共4小题)39.【解答】解:连接OD 、BD ,∵在△ABC 中,AB =BC ,∠ABC =90°,∴∠A =∠C =45°,∵AB 是直径,∴∠ADB =90°,∵OA =OB ,∴OD ⊥AB ,∴∠AOD =90°,∴∠AOD =∠ABC ,∴OD ∥FC ,∴△DOE ∽△FBE ,∴BB BB =BB BB ,∵OB =OD ,OE :EB =1:√3,∴tan ∠BOF =BB BB =√3, ∴∠BOF =60°,∴BF =2√3,∴OB =2,∴BB̂的长=60B ×2180=23π, 故选:C .40.【解答】解:∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴AE =AD =2,∵AB =√3,∴cos ∠BAE =BB BB =√32, ∴∠BAE =30°,∴∠EAD =60°,∴BB̂的长=60⋅B ×2180=2B 3, 故选:C .41.【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故B 2020B 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,B 2020B 2020̂的弧长=90180×8078B =4039B . 故答案为:4039π.42.【解答】解:如图,作点D 关于OB 的对称点D ′,连接D ′C 交OB 于点E ′,连接E ′D 、OD ′, 此时E ′C +E ′D 最小,即:E ′C +E ′D =CD ′,由题意得,∠COD =∠DOB =∠BOD ′=30°,∴∠COD ′=90°,∴CD ′=√BB 2+BB′2=√22+22=2√2,BB ̂的长l =30B ×2180=B 3, ∴阴影部分周长的最小值为2√2+B 3=6√2+B 3. 故答案为:6√2+B 3.一十二.扇形面积的计算(共6小题)43.【解答】解:如图,连接CD .∵OC =OD ,∠O =60°,∴△COD 是等边三角形,∴OC =OD =CD =4cm ,∴S 阴=S 扇形OAB ﹣S 扇形OCD =60⋅B ⋅162360−60⋅B ⋅42360=40π(cm 2), 故选:B .44.【解答】 解:∵AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E , ∴CE =DE =12BB =3√3. 设⊙O 的半径为r ,在直角△OED 中,OD 2=OE 2+DE 2,即B 2=(9−B )2+(3√3)2, 解得,r =6,∴OE =3,∴cos ∠BOD =BB BB =36=12,∴∠EOD =60°,∴B 扇形BBB =16B ×36=6B ,B BB △BBB =12×3×3√3=92√3,∴B 阴影=6B −92√3,故选:A .45.【解答】解:∵OD ⊥AC , ∴∠ADO =90°,BB̂=BB ̂,AD =CD , ∵∠CAB =30°,OA =4,∴OD =12OA =2,AD =√32OA =2√3, ∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =60⋅B ×42360−12×2√3×2=8B 3−2√3,故选:D .46.【解答】解:设圆心角都度数为n 度,扇形的面积=12BB =6π,解得:r =6,又∵B =BB ×6180=2π, ∴n =60.故答案为:60.47.【解答】解:连接OC .∵AB ⊥CD ,∴BB̂=BB ̂,CE =DE =√3, ∴∠COB =∠BOD ,∵∠BOD =2∠BCD =60°,∴∠COB =60°,∵OC =OB =OD ,∴△OBC ,△OBD 都是等边三角形,∴OC =BC =BD =OD ,∴四边形OCBD 是菱形,∴OC ∥BD ,∴S △BDC =S △BOD ,∴S 阴=S 扇形OBD ,∵OD =BB BBB60°=2,∴S 阴=60⋅B ⋅22360=2B 3,故答案为2B 3. 48.【解答】解:S 扇形=90⋅B ⋅42360=4π, 故答案为:4π.一十三.圆锥的计算(共1小题)49.【解答】解:如图,连接OB ,OC ,OA ,∵OB =OA ,OA =OC ,AB =AC ,∴△ABO ≌△ACO (SSS ),∴∠BAO =∠CAO =60°,∵AO =BO ,∴△ABO 是等边三角形,∴AB =AO =1,由题意得,阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120B ×1180, 而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120B ×1180, 解得,r =13,故答案为:13. 一十四.圆的综合题(共1小题)50.【解答】解:(1)连接圆心O 与正五边形各顶点, 在正五边形中,∠AOE =360°÷5=72°,∴∠ABE =12∠AOE =36°,同理∠BAC =12×72°=36°,∴AM =BM ,∴△ABM 是等腰三角形且底角等于36°,∵∠BOD =∠BOC +∠COD =72°+72°=144°,∴∠BAD =12∠BOD =72°, ∴∠BNA =180°﹣∠BAD ﹣∠ABE =72°,∴AB =NB ,即△ABN 为等腰三角形;(2)∵∠ABM =∠ABE ,∠AEB =12∠AOB =36°=∠BAM , ∴△BAM ∽△BEA ,∴BB BB =BB BB ,而AB =BN , ∴BB BB =BB BB ,设BM =y ,AB =x ,则AM =AN =y ,AB =AE =BN =x ,∵∠AMN =∠MAB +∠MBA =72°=∠BAN ,∠ANM =∠ANB , ∴△AMN ∽△BAN ,∴BB BB =BB BB ,即B B =B −B B ,则y 2=x 2﹣xy ,两边同时除以x 2,得:(B B )2=1−B B ,设B B=t , 则t 2+t ﹣1=0,解得:t =√5−12或−1−√52(舍), ∴BB BB =BB BB =B B =√5−12; (3)∵∠MAN =36°,根据对称性可知:∠MAH =∠NAH =12∠MAN =18°, 而AO ⊥BE ,∴sin18°=sin ∠MAH =BB BB =12BB BB =12(B −B )B =B −B 2B =12×B B −12=12×√5−1−12=√5−14.。
2020年中考数学复习:《圆》解答题压轴专题训练1.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F 交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=,求CF的长.(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵OC⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BED=,∴tan∠C=,∴tan∠C==,且OA=AB=6,∴,解得AC=8,∴=10,∵OC•AF=OA•AC,∴.∴==.2.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D 为弧BE的中点,连接AD交BC于F,AC=FC,连接BD.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径R=5cm,AB=8cm,求△ABD的面积.(1)证明:连接OA,OD.∵点D是弧BE的中点,∴∠BOD=∠EOD=90°,∴∠ODF+∠OFD=90°又∵∠OFD=∠AFC,∴∠ODF+∠AFC=90°又∵AC=FC,∴∠AFC=∠CAF,∵OA=OD,∴∠ODF=∠OAF,∴∠OAF+∠CAF=90°,即∠OAC=90°,故AC是⊙O的切线;(2)解:过点B作BG⊥AD于G,∵∠BOD=90°,OB=OD=R=5,∴,∵点D是弧BE的中点,∴∠BAD=45°,∵∠AGB=90°,∴∠ABG=∠BAD=45°,即BG=AG.∴又∵,∴=AD•BG==28(cm2).故S△ABD3.如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G过C作CE∥BD交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=8,求BE的长.(1)证明:连接OC,∵∠A=∠CBD,∴=,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:∵AB为直径,∵CF⊥AB,∴∠ACB=∠CFB=90°,∵∠ABC=∠CBF,∴∠A=∠BCF,∵∠A=∠CBD,∴∠BCF=∠CBD,∴CG=BG;(3)解:连接AD,∵AB为直径,∴∠ADB=90°,∵∠DBA=30°,∴∠BAD=60°,∵=,∴∠DAC=∠BAC=∠BAD=30°,∴=tan30°=,∵CE∥BD,∴∠E=∠DBA=30°,∴AC=CE,∴=,∵∠A=∠BCF=∠CBD=30°,∴∠BCE=30°,∴BE=BC,∴△CGB∽△CBE,∴==,∵CG=8,∴BC=8,∴BE=8.4.如图,B,E是⊙O上的两个定点,A为优弧BE上的动点,过点B作BC⊥AB交射线AE于点C,过点C作CF⊥BC,点D在CF上,且∠EBD=∠A.(1)求证:BD与⊙O相切;(2)已知∠A=30°.①若BE=3,求BD的长;②当O,C两点间的距离最短时,判断A,B,C,D四点所组成的四边形的形状,并说明理由.(1)证明:如图1,作直径BG,连接GE,则∠GEB=90°,∴∠G+∠GBE=90°,∵∠A=∠EBD,∠A=∠G,∴∠EBD=∠G,∴∠EBD+∠GBE=90°,∴∠GBD=90°,∴BD⊥OB,∴BD与⊙O相切;(2)解:如图2,连接AG,∵BC⊥AB,∴∠ABC=90°,由(1)知∠GBD=90°,∴∠GBD=∠ABC,∴∠GBA=∠CBD,又∵∠GAB=∠DCB=90°,∴△BCD∽△BAG,∴==tan30°=,又∵Rt△BGE中,∠BGE=30°,BE=3,∴BG=2BE=6,∴BD=6×=2;(3)解:四边形ABCD是平行四边形,理由如下,由(2)知=,=,∴=,∵B,E为定点,BE为定值,∴BD为定值,D为定点,∵∠BCD=90°,∴点C在以BD为直径的⊙M上运动,∴当点C在线段OM上时,OC最小,此时在Rt△OBM中,==,∴∠OMB=60°,∴MC=MB,∴∠MDC=∠MCD=30°=∠A,∵AB⊥BC,CD⊥BC,∴∠ABC=∠DCB=90°,∴AB∥CD,∴∠A+∠ACD=180°,∴∠BDC+∠ACD=180°,∴AC∥BD,∴四边形ABCD为平行四边形.5.如图,在△ABC中,A B=AC,⊙O是△ABC的外接圆,连结OA、OB、OC,延长BO与AC 交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.(1)求证:FG是⊙O的切线;(2)若⊙O的径为4.①当OD=3,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.(1)证明:连接AF,∵BF为⊙O的直径,∴∠BAF=90°,∠FAG=90°,∴∠BGF+∠AFG=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠AFB,∠BGF=∠ABC,∴∠BGF=∠AFB,∴∠AFB+∠AFG=90°,即∠OFG=90°,又∵OF为半径,∴FG是⊙O的切线;(2)解:①连接CF,则∠ACF=∠ABF,∵AB=AC,AO=AO,BO=CO,∴△ABO≌△ACO(SSS),∴∠ABO=∠BAO=∠CAO=∠ACO,∴∠CAO=∠ACF,∴AO∥CF,∴=,∵半径是4,OD=3,∴DF=1,BD=7,∴==3,即CD=AD,∵∠ABD=∠FCD,∠ADB=∠FDC,∴△ADB∽△FDC,∴=,∴AD•CD=BD•DF,∴AD•CD=7,即AD2=7,∴AD=(取正值);②∵△ODC为直角三角形,∠DCO不可能等于90°,∴存在∠ODC=90°或∠COD=90°,当∠ODC=90°时,∵∠ACO=∠ACF,∴OD=DF=2,BD=6,∴AD=CD,∴AD•CD=AD2=12,∴AD=2,AC=4,=×4×6=12;∴S△ABC当∠COD=90°时,∵OB=OC=4,∴△OBC是等腰直角三角形,∴BC=4,延长AO交BC于点M,则AM⊥BC,∴MO=2,∴AM=4+2,=×4×(4+2)=8+8,∴S△ABC∴△ABC的面积为12或8+8.6.如图⊙O的直径AB=10cm,弦BC=6cm,∠ACB的平分线交⊙O于D,交AB于E,P是AB 延长线上一点,且PC=PE.(l)求证:PC是⊙O的切线;(2)求AC、AD的长.(1)证明:连结OC,如图所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线;(2)连结BD,如图所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm).7.如图,在Rt△ABC中,∠BAC=90°,CD平分∠ACB,交AB于点D,以点D为圆心,DA 为半径的圆与AB相交于点E,与CD交于点F.(1)求证:BC是⊙D的切线;(2)若EF∥BC,且BC=6,求图中阴影部分的面积.(1)证明:过D作DG⊥BC于G,∵DA⊥AC,∠ACD=∠BCD,∴DG=DA,∴BC是⊙D的切线;(2)解:连接EF,∵EF∥BC,由(1)DG⊥BC,∴DG⊥EF,∴=.∴∠EDG=∠CDG.由(1)∠ACD=∠BCD,∠ACD+∠ADC=∠BCD+∠CDG=90°,∴∠CDG=∠ADC,∴∠CDG=∠ADC=∠BDG=60°.∵EF∥BC,∴∠DEF=∠B,∠DFE=∠DCB,在⊙D中,DE=DF,∴∠DFE=∠DEF.∴∠B=∠DCB,∴DB=DC.∵DG⊥BC,∴CG=BC=3.在Rt△DCG中,D G=CG/=.∴S=×3×﹣π()2=﹣.阴影8.请阅读下列材料,并完成相应的任务.人类会作圆并且真正了解圆的性质是在2000多年前,由我国的墨子给出圆的概念:“一中同长也.”.意思说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下的定义要早100年.与圆有关的定理有很多,弦切角定理就是其中之一.我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.弦切角定理:弦切角的度数等于它所夹弧所对的圆周角度数.下面是弦切角定理的部分证明过程:证明:如图①,AB与⊙O相切于点A.当圆心O在弦AC上时,容易得到∠CAB=90°,所以弦切角∠BAC的度数等于它所夹半圆所对的圆周角度数.如图②,AB与⊙O相切于点A,当圆心O在∠BAC的内部时,过点A作直径AD交⊙O于点D,在上任取一点E,连接EC,ED,EA,则∠CED=∠CAD.任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图③,AB与⊙O相切于点A.当圆心O在∠BAC的外部时,请写出弦切角定理的证明过程.解:(1)如图②,∵AD是⊙O直径,∴∠DEA=90°.∵AB与⊙O相切于点A,∴∠DAB=90°.∴∠CED+∠DEA=∠CAD+∠DAB,即∠CEA=∠CAB,∴弦切角的度数等于它所夹弧所对的圆周角度数;(2)证明:如图③,过点A作直径AF交⊙O于点F,连接FC,∵AF是直径,∴∠ACF=90°,∴∠CFA+∠FAC=90°,∵AB与⊙O相切于点A,∴∠FAB=90°,∴∠CAB+∠FAC=90°,∴∠CAB=∠CFA,即弦切角的度数等于它所夹弧所对的圆周角度数.9.【问题背景】(1)如图1,⊙O与∠P的两边分别切与A,B两点.求证:PA=PB.【深入探究】(2)在(1)的条件下,若∠APB=60°,连接PO,以PO为一条边向上作等边三角形POQ,连接AO,AQ.求证:AO=AQ.(3)若在(1)的条件下,以OP为斜边向上作等腰直角三角形POQ,取OP中点M,连接MB,MQ,BQ,求证:∠MQB=∠MBQ.【拓展延伸】在(3)的条件下,连接AO,AQ,探索AO,AQ,AP之间的数量关系.解:【问题背景】(1)连接OA,OB,OP,∵PA、PB是切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,在Rt△PAO和Rt△PBO中,,∴Rt△PAO≌Rt△PBO(HL),∴PA=PB;【深入探究】(2)∵Rt△PAO≌Rt△PBO,∴∠APO=∠BPO,∵∠APB=60°,∴∠APO=∠BPO=30°,∵△POQ是等边三角形,∴∠OPQ=60°,PO=PQ,∴∠APQ=∠APO=30°,且PO=PQ,∴PA垂直平分OQ,∴AO=AQ;(3)如图3,连接OB,∵PB是⊙O是切线,∴PB⊥OB,且点M是OP的中点,∴BM=PO,∵△OPQ是等腰直角三角形,且点M是OP的中点,∴QM=OP,∴QM=BM,∴∠MQB=∠MBQ;拓展延伸】AO+AQ=AP,理由如下:过点Q作QH⊥AQ交AP于点H,∴∠AQH=∠PQO=90°,∴∠AQO=∠PQH,∵∠QPO+∠QOP=90°,∠AOP+∠APO=90°,∴∠APQ+∠APO=∠APO+∠AOQ,∴∠APQ=∠AOP,且∠AQO=∠PQH,QP=OQ,∴△AOQ≌△HPQ(ASA)∴QH=AQ,AO=PH,∴AH=AQ,∵AP=PH+AH,∴AO+AQ=AP.10.如图,AB、CE是⊙O的直径,过点C的切线与AB的延长线交于点P,AD⊥PC于D,连接AC、OD、PE.(1)求证:AC是∠DAP的角平分线;(2)求证:PC2=PA•PB;(3)若AD=3,PE=2DO,求⊙O的半径.证明:(1)∵PC是圆的切线,AD⊥PD,∴AD∥OC,∴∠DAC=∠ACO,∵AO=CO,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∴AC是∠DAP的平分线;(2)如右图,连接BC,∵OC=OB,∴∠OCB=∠OBC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠OBC=90°,∵PC是⊙O的切线,∴∠OCB+∠BCP=90°,∴∠CAB=∠BCP,又∵∠CPB=∠APC,∴△CPB∽△APC,∴=,∴PC2=PA•PB;(3)设半径为r,在Rt△PCE中,PE2=(2r)2+PC2=4r2+PC2,∵PE=2DO,∴4DO2=4r2+PC2,∴4(DO2﹣r2)=PC2,∴4DC2=PC2,∴PC=2CD,∵AD∥OC,∴△PCO∽△PDA,∴=,∴=,∴r=2.11.如图,AB是直经,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于点F.(1)求证:DE是⊙O的切线.(2)试探究AE,AD,AB三者之间的等量关系.(3)若DE=3,⊙O的半径为5,求BF的长.(1)证明:如图1,连接OC,OD,BC,∵AB是直径,∵DE⊥AC于E,∴∠E=90°,∴∠ACB=∠E,∴BC∥DE,∵点D是的中点,∴,∴∠COD=∠BOD,又∵OC=OB,∴OD垂直平分BC,∵BC∥DE,∴OD⊥DE,∴DE是⊙O的切线;(2)AD2=AE•AB,理由如下:如图2,连接BD,由(1)知,,∴∠EAD=∠DAB,∵AB为直径,∴∠ADB=∠E=90°,∴△AED∽△ADB,∴=,即AD2=AE•AB;(3)由(1)知,∠E=∠ECH=∠CHD=90°,∴四边形CHDE为矩形,∴ED=CH=BH=3,∴OH===4,∴CE=HD=OD﹣OH=5﹣4=1,AC===8,∵BF是⊙O的切线,∴∠FBA=∠E=90°,又∵∠EAD=∠DAB,∴△EAD∽△BAF,∴=,即=,∴BF=.12.如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?解:(1)连接GD,EC.∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;∵A(2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,由勾股定理可得:AB===设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=2(﹣r),∴r=,∵AC是直径,∴∠AEC=∠AOB=90°,∴EC∥OB,∴==,∴==,∴EC=2,AE=,∴OE=2﹣=,∴C的坐标为(,2);(2)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=∴∠AEC=∠AFC=90°∵∠FEA=45°∴∠FCA=45°∴在Rt△AEH中,由勾股定理可知:AF=CF=,设OE=a∴AE=2﹣a∵CE∥OB∴△ACE∽△ABO∴=,∴CE=,∵CE2+AE2=AC2,∴(2﹣a)2+(2﹣a)2=∴a=或a=(不合题意,舍去)∴AE=∴在Rt△AEH中,由勾股定理可得,AH=EH=,∴在Rt△AEH中,由勾股定理可知:FH2=AF2﹣AH2=()2﹣()2=2,∴FH=,∴EF=EH+FH=.13.如图I,四边形ADBC内接于⊙O,E为BD延长线上一点,AD平分∠EDC,(1)求证:AB=AC;(2)如图2,若CD为直径,过A点的圆的切线交BD延长线于E,若DE=1,AE=2.求⊙O的半径.(1)证明:∵四边形ADBC内接于⊙O,∴∠EDA=∠ACB,由圆周角定理得,∠CDA=∠ABC,∵AD平分∠EDC,∴∠EDA=∠CDA,∴∠ABC=∠ACB,∴AB=AC;(2)解:连接AO并延长交BC于H,AM⊥CD于M,∵AB=AC,∴AH⊥BC,又AH⊥AE,∴AE∥BC,∵CD为⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC=90°,∴四边形AEBH为矩形,∴BH=AE=2,∴BC=4,∵AD平分∠EDC,∠E=90°,AM⊥CD,∴DE=DM=1,AE=AM=2,在Rt△ABE和Rt△ACM中,∴Rt△ABE≌Rt△ACM(HL),∴BE=CM,设BE=x,CD=x+2,在Rt△BDC中,x2+42=(x+2)2,解得,x=3,∴CD=5,∴⊙O的半径为2.5.14.如图,AB为⊙O的直径,弦CD⊥AB,垂足为F,CG⊥AE,交弦AE的延长线于点G,且CG=CF.(1)求证:CG是⊙O的切线;(2)若AE=2,EG=1,求由弦BC和所围成的弓形的面积.解:(1)证明:连接OC.∵CD⊥AB,CG⊥AE,CG=CF,∴∠CAG=∠BAC,∠AFC=∠G=90°,∵OA=OC,∴∠ACO=∠BAC.∴∠CAG=∠ACO,∴OC∥AG,∴∠OCG=180°﹣∠G=90°,∴CG是⊙O的切线;(2)过点O作OM⊥AE,垂足为M,则AM=ME=AE=1,∠OMG=∠OCG=∠G=90°.∴四边形OCGM为矩形,∴OC=MG=ME+EG=2.在Rt△AGC和Rt△AFC中∴Rt△AGC≌Rt△AFC(HL),∴AF=AG=AE+EG=3,∴OF=AF﹣OA=1,在Rt△COF中,∵cos∠COF==.∴∠COF=60°,CF=OC•sin∠COF=2×=,=﹣×2×=π﹣.∴S弓形BC15.如图,AB、AC是⊙O的两条弦,M是的中点,N是的中点,弦MN分别交AB、AC 于点P、D.(1)求证:AP=AD;(2)连接PO,当AP=3,OP=,⊙O的半径为5,求MP的长.(1)证明:连AM,AN,∵=,=,∴∠BAM=∠ANM,∠AMN=∠CAN,∵∠APD=∠AMN+∠BAM,∠ADP=∠CAN+∠ANM,∴∠APD=∠ADP,∴AP=AD.(2 )解:连AO,OM交AB于E,设PE=x,∵=,∴OM⊥AB,∴∠AEO=90°,∵OE2=OA2﹣AE2=OP2﹣PE2∴52﹣(x+3)2=()2﹣x2,∴x=1,∴AE=4,OE=3,ME=2,∴MP===.16.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在AB上,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)求证:∠BDE=∠ADP;(3)设DE=x,DF=y.请求出y关于x的函数解析式.解:(1)设直线AB的函数解析式为y=kx+4,将点B(4,0)代入y=kx+4,得:4k+4=0,解得:k=﹣1,则直线AB的函数解析式为y=﹣x+4;(2)由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BOD≌△COD(SAS),∴∠BDO=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP;(3)如图2,连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,∴DF=DE,即y=x.17.如图1,AB为⊙O的弦,弧AC=弧BC,G为弧BC上一点,连接AG交BC于点D,连接CG、BG.(1)求证:∠GCB+∠GBC=∠CBA;(2)如图2,若AB为⊙O的直径,求证:AG=CG+BG;(3)如图3,在(2)的条件下,F为圆上一点,连接CF交AB于点E,若CD:DB=5:7,∠ACF=∠CAG,AE=,求线段CG的长.证明:(1)∵=,∴∠CAB=∠CBA,∵∠GCB=∠GAB,∠CBG=∠CAG,∴∠GCB+∠GBC=∠GAB+∠CAG=∠CAB=∠CBA;(2)如图2,过点C作CH⊥CG交AG于点H,∵AB为⊙O的直径,∴∠AGB=∠ACB=90°,且AC=BC,∴∠ABC=∠BAC=45°.∵∠AGC=∠ABC,∴∠AGC=45°,且CH⊥CG,∴∠CHG=∠AGC=45°,∴CH=CG,∠AHC=135°∴GH=CG.∵∠CGB=∠CGA+∠AGB=135°,∴∠AHC=∠CGB,CH=CG,∠CAH=∠CBG,∴△ACH≌△BCG(AAS)∴AH=BG,∴AG=CG+BG;(3)∵CD:DB=5:7,∴设CD=5a,DB=7a,∴BC=AC=12a,∴AD===13a.如图3,过点E作EH⊥AC于H,作AP平分∠GAC,交BC于P,作PQ⊥AD于Q,∴∠CAP=∠DAP=∠CAG,∠PQA=90°=∠ACB,且AP=AP,∴△CAP≌△QAP(AAS)∴AC=AQ=12a,CP=PQ,∴QD=AD﹣AQ=a.∵PD2=PQ2+QD2,∴(5﹣PQ)2=PQ2+a2,∴PQ=a,∴CP=a,∵HE⊥AC,∠CAB=45°,∴∠HEA=∠CAB=45°,∴AH=HE,∵AE2=AH2+HE2=(3)2,∴AH=HE=3,∵∠ACF=∠CAG,∠CAP=∠DAP=∠CAG,∴∠ACF=∠CAP,∴tan∠CAP=tan∠ACF=,∴∴CH=15,∴AC=3+15=18=12a,∴a=,∴CD=,BD=,AD=.∵∠ACD=∠AGB=90°,∠CAD=∠DBG,∴△ACD∽△BGD,∴,∴,∴BG=,DG=,∴AG=AD+DG=+=,∵AG=CG+BG,∴==CG,∴CG=.18.如图1,在△ABC中,∠ACB=90°,∠ABC的角平分线交AC上点E,过点E作BE的垂线交AB于点F,△BEF的外接圆⊙O与CB交于点D.(1)求证:AC是⊙O的切线;(2)若BC=9,EH=3,求⊙O的半径长;(3)如图2,在(2)的条件下,过C作CP⊥AB于P,求CP的长.(1)证明:连接OE.如图1所示:∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC⊥OE,∴AC是⊙O的切线;(2)解:∵∠ACB=90°,∴EC⊥BC,∵BE平分∠ABC,EH⊥AB,∴EH=EC,∠BHE=90°,在Rt△BHE和Rt△BCE中,,∴Rt△BHE≌Rt△BCE(HL),∴BH=BC=9,∵BE⊥EF,∴∠BEF=90°=∠BHE,BF是圆O的直径,∴BE===3,∵∠EBH=∠FBE,∴△BEH∽△BFE,∴=,即=,解得:BF=10,∴⊙O的半径长=BF=5;(3)解:连接OE,如图2所示:由(2)得:OE=OF=5,EC=EH=3,∵EH⊥AB,∴OH===4,在Rt△OHE中,cos∠EOA==,在Rt△EOA中,cos∠EOA==,∴OA=OE=,∴AE===,∴AC=AE+EC=+3=,,∵AB=OB+OA=5+=,∠ACB=90°,∴△ABC的面积=AB×CP=BC×AC,∴CP===.19.△ABC内接于⊙O,弦BD与AC相交于点E,连接BO,且AC⊥BD.(1)如图1,求证:∠OBC=∠ABD;(2)如图2,作CG⊥AB于G,交BD于F,若∠BAC=∠ABO+30°,求证:BO=BF;(3)如图3,在(2)的条件下,直线OF与AB相交于点M,与BC相交于点N,若NC:MA=5:3,且S=16,求线段AE的长.△BMN解:(1)延长BO交⊙O于点K,连接CK,则BK为⊙O的直径,∴∠BCK=90°,∴∠OBC+∠K=90°,∵AC⊥BD,∴∠AEB=90°,∴∠ABE+∠A=90°,∵,∴∠A=∠K∴∠OBC=∠ABD;(2)作OH⊥BC于H,则BC=2BH,∵∠K+∠KBC=90°,∴∠BAC+∠KBC=90°,∴∠ABO+30°+∠KBC=90°,∴∠ABC=60°∴BC=2BG,∴BG=BH,且∠ABD=∠OBC,∠BGF=∠BHO=90°,∴△BFG≌△BOH(AAS)∴BO=BF;(3)作OH⊥BC于H,∵△BFG≌△BOH,∴BF=BO,∴∠MFB=∠BON,且BF=BO,∠ABD=∠OBN,∴△BFM≌△BON(ASA)∴BM=BN,且∠ABC=60°,∴△MBN为等边三角形,∴S=BM2=16,△BMN∴BM=BN=8,∵NC:MA=5:3,∴设NC=5x,AM=3x,∴BC=8+5x,BH==BG,CG=BG=•()∴GM=HN=8﹣=,∵∠MNB=60°,∴OH=HN=•(),∵∠OBC=∠ABD=∠ACG,∴tan∠OBC=tan∠ACG,∴,∴=,∴x=1,∴AM=3,CN=5,HN=GM=,OH=,BH=∴OB===7,∵sin∠OBH=sin∠ABD,∴∴AE==.20.如图1,AB为⊙O的直径,BC为⊙O的切线,过点B作OC的垂线与⊙O的另一交点为点E,连接CE.(1)求证:CE为⊙O的切线;(2)如图2,过点C作BC的垂线交AE的延长线于点F,若BC=AB,求的值.解:(1)证明:如图,连接OE,设OC与BE的交点为M∵OB=OE∠OBM=∠OEM∵BE⊥OC∴∠BMO=∠EMO∴∠BOC=∠EOC∴在△OBC和△OEC中∴△OBC≌△OEC(SAS)∴∠OEC=∠OBC∵BC为⊙O的切线∴OB⊥BC∴∠OBC=90°∴∠OEC=90°∴CE为⊙O的切线;(2)∵AB为⊙O的直径,∴∠BEA=90°∵OB⊥BC∴AF∥OC∵AB⊥BC,CF⊥BC∴AO∥CF∴四边形AOCF为平行四边形∴AF=OC∵BC=AB∴设BC=AB=2k,则OB=OA=k在Rt△OBC中,由勾股定理得:OC==k∴AF=k∵∠ABE+∠CBE=90°,∠CBE+∠BCO=90°∴∠ABE=∠BCO∴sin∠ABE=sin∠BCO∵=sin∠BCO==∴=sin∠ABE=∴AE=×2k=∴EF=AF﹣AE=∴=.。
专题十一圆一、单选题1.(2019·高新模拟)如图,O为圆心,是直径,是半圆上的点,是上的点.若,则的大小为()A. B. C. D.2.(2020·南通模拟)如图,点A,B,C,D都在⊙O上,BD为直径,若∠A=65°,则∠DBC的值是( )A. 65°B. 25°C. 35°D. 15°3.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A. B. 2 C. 6 D. 84.(2020九上·奉化期末)如图,在菱形ABCD中,已知AB=4,∠B=60°,以AC为直径的⊙O与菱形ABCD 相交,则图中阴影部分的面积为( )A. B. C. D.5.(2019九上·温州月考)如图,△ABC内接于⊙O中,AB=AC,=60°,则∠B=( )A. 30°B. 45°C. 60°D. 75°6.(2020九上·中山期末)如图,AD是半圆的直径,点C是弧BD的中点,∠ADC=55°,则∠BAD等于()A. 50°B. 55°C. 65°D. 70°7.(2020九上·海曙期末)平面直角坐标系中,⊙P的圆心坐标为(-4,-5),半径为5,那么⊙P与y轴的位置关系是()A. 相交B. 相离C. 相切D. 以上都不是8.(2019九上·驻马店期末)如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A. 3πB.C. 6πD. 24π9.(2020九上·北仑期末)下列四个结论,不正确的是()①过三点可以作一个圆;②圆内接四边形对角相等③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等A. ②③B. ①③④C. ①②④D. ①②③④10.(2020九上·诸暨期末)如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A. 106°B. 116°C. 126°D. 136°11.(2019九上·武汉月考)如图,O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB 于点C,则△ABC的最大面积是()A. B. C. D.12.如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D. 若⊙O的半径为,AB=8,则BC的长是()A. B. C. D.13.(2019九上·如皋期末)如图,▱ABCD中,,,,是边AB上的两点,半径为2的过点A,半径为1的过点、E、F分别是边CD,和上的动点则的最小值等于A. B. 6 C. D. 914.(2019·武汉模拟)点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A. B. C. D.15.(2019·武汉模拟)如图,⊙O内切于正方形ABCD,边AD,CD分别与⊙O切于点E,F,点M、N 分别在线段DE,DF上,且MN与⊙O相切,若△MBN的面积为8,则⊙O的半径为()A. B. 2 C. D. 216.(2020·长兴模拟)如图,AB为☉O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交☉O 于点D,过点D作DE∥AB交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A. -8B. -3C. 2D. 12-17.(2019九上·宜兴月考)在平面直角坐标系中,直线经过点A(-3,0),点B(0,),点P的坐标为(1,0),与轴相切于点O,若将⊙P沿轴向左平移,平移后得到(点P的对应点为点P′),当⊙P′与直线相交时,横坐标为整数的点P′共有()A. 1个B. 2个C. 3个D. 4个18.(2019·海州模拟)如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.19.(2019·高台模拟)如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为6cm,AB=6 cm,则阴影部分的面积为()A. B. C. D.20.(2019九下·深圳月考)如图,△ABC内接于圆O,∠BOC=120°,AD为圆O的直径.AD交BC于P 点且PB=1,PC=2,则AC的长为( )A. B. C. 3 D. 2二、填空题21.(2019·嘉定模拟)如图,的半径长为5cm,内接于,圆心O在的内部,如果,cm,那么的面积为________cm22.(2019九上·黄石期末)如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°.求∠P的度数________.23.(2020九上·东台期末)如图,⊙O是△ABC的外接圆,已知∠ABO=40°,则∠ACB的大小为________.24.(2019·台江模拟)如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是________.25.(2019九上·道里期末)如图,已知,在中,,,,是ABC的内切圆,则这个圆的半径是________.26.(2020九上·北仑期末)如图,四边形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB 于F,若BC=2CD,AE=2,则线段BF=________。
B. 110°C. 120°D. 135°A. AC=CDB. OM=BMC. ∠A= ∠ACDD. ∠A=∠BOD5.在⊙O中,AB、CD是两条相等的弦,则下列说法中错误的是( )A. AB、CD所对的弧一定相等B. AB、CD所对的圆心角一定相等C. △AOB和△COD能完全重合D. 点O到AB、CD的距离一定相等6.过圆内一点A可以作出圆的最长弦有( )A. 1条B. 2条C. 3条D. 1条或无数条7.一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()A. 6cmB. 12cmC. cmD.cm8.如图,是半圆,O为AB中点,C、D两点在上,且AD∥OC,连接BC、BD.若=62°,则的度数为何?( )A. B. C. D.二、填空题9.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(-2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是________.10.制作一个圆锥模型,要求圆锥母线长9cm,底面圆直径为10cm,那么要制作的这个圆锥模型的侧面展开扇形的纸片圆心角度数是________度.11.如图,PA、PB是⊙0的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC=________ .12.如图,PA、PB切⊙O于A、B,,点C是⊙O上异于A、B的任意一点,则=________.13.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为________.14.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为________15.如图所示,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列说法:①PA=PB,②∠1=∠2,③OP垂直平分AB,其中正确说法的序号是________16.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则△PCD的周长等于________ cm.17.已知:扇形OAB的半径为12厘米,∠AOB=150°,若由此扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径是________ 厘米.18.已知扇形的半径是3厘米,如果弧长是6.28厘米,这个扇形的面积是________平方厘米.三、解答题19.如图,在⊙O中,C﹑D为⊙O上两点,AB是⊙O的直径,已知∠AOC=130°,AB=2.求:(1)的长;(2)∠D的度数.20.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,求平移的距离.21.如图所示,已知甲、乙、丙三种图案的地砖,它们都是边长为4的正方形.①甲地砖以正方形的边长为半径作弧得到甲图所示的阴影部分;②乙地砖以正方形的边长为直径作弧得到乙图所示的阴影部分;③丙地砖以正方形边长的一半为直径作弧得到丙图所示的阴影部分;设三种地砖的阴影部分面积分别为S甲、S乙和S丙.(1)求S甲.(结果保留π)(2)请你直接将S甲和S乙的数量关系填在横线上:________.(3)由题(2)中面积的数量关系,可直接求得S丙=________.(结果保留π)四、综合题22.如图,D是⊙O直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线.(2)若E是劣弧上一点,AE与BC相交于点F,△BEF的面积为9,且cos∠BFA=,求△ACF的面积.23.如图,在△ABC中,点O在边AC上,⊙O与△ABC的边BC,AB分别相切于C,D 两点,与边AC交于E点,弦CF与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是的中点,BC=a,写出求AE长的思路.24.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.BCD=OA==∴∠ODC=90°,∠COD=∠BOD=50°,∴∠OCD=40°,故答案为:A.【分析】连接OB,由同弧所对的圆周角等于圆心角的一半得出∠BOC=100°,由垂径定理得出∠ODC=90°,∠COD=∠BOD=50°,根据三角形内角和即可的得出∠OCD的度数.4.【答案】D【考点】垂径定理,圆周角定理【解析】【解答】∵直径AB⊥弦CD,∴CM=DM,弧AC=弧AD ,弧BC=弧BD ,A、根据垂径定理不能推出AC=CD,故不符合题意;B、题中没有说明M的具体位置,不能得到OM=BM,故不符合题意;C、根据垂径定理得不到,因此也就得不到∠A= ∠ACD ,故不符合题意;D、因为弧BC=弧BD,所以∠A= ∠BOD,故D符合题意,故答案为:D.【分析】根据垂径定理得出CM=DM,弧AC=弧AD ,弧BC=弧BD ,根据等弧所对的圆周角等于圆心角的一半,由弧BC=弧BD,得出∠A=∠BOD,即可一一判断。
5.【答案】A【考点】圆心角、弧、弦的关系【解析】【解答】解:A、AB、CD所对的弧对应相等,所以A选项的说法错误;B、AB、CD所对的圆心角一定相等,所以B选项的说法正确;C、△AOB和△COD全等,所以C选项的说法正确;D、点O到AB、CD的距离一定相等,所以D选项的说法正确.故选A.【分析】根据一条弦对两条弧可对A进行判断;根据圆心角、弧、弦的关系对B进行判断;根据三角形全等可对C、D进行判断.6.【答案】D【考点】圆的认识【解析】【解答】解:分两种情况:①点A不是圆心时,由于两点确定一条直线,所以过点A的最长弦只有1条;②点A是圆心时,由于过一点可以作无数条直线,所以过点A的最长弦有无数条.即过圆内一点A可以作出圆的最长弦有1条或无数条.故选D.【分析】由于直径是圆中最长的弦,过圆心的弦即是直径,根据点A与圆心的位置分两种情况进行讨论:①点A不是圆心;②点A是圆心.7.【答案】A【考点】弧长的计算【解析】【分析】由已知的扇形的圆心角为60°,它所对的弧长为2πcm,代入弧长公式即可求出半径R.【解答】由扇形的圆心角为60°,它所对的弧长为2πcm,即n=60°,l=2π,根据弧长公式l=,得2π=,即R=6cm.故选A.【点评】此题考查了弧长的计算,解题的关键是熟练掌握弧长公式,理解弧长公式中各个量所代表的意义8.【答案】A【考点】圆心角、弧、弦的关系【解析】【解答】解:以AB为直径作圆,如图,作直径CM,连接AC,∵AD∥OC,∴∠1=∠2,∴弧AM=弧DC=62°,∴弧AD的度数是180°﹑62°﹑62°=56°,故选A.【分析】以AB为直径作圆,如图,作直径CM,连接AC,根据平行线求出∠1=∠2,推出弧DC=弧AM=62°,即可求出答案.二、填空题9.【答案】(-1,1)【考点】垂径定理【解析】【解答】如图线段AB的垂直平分线和线段CD的垂直平分线的交点M,即圆心的坐标是(-1,1),【分析】根据图形作线段AB和BC的垂直平分线,两线的交点即为圆心,根据图形得出即可.10.【答案】200【考点】弧长的计算【解析】【解答】解:根据周长公式可得:周长=10π,即为侧面展开扇形弧长,再根据弧长公式列出方程得:10π=,解得n=200°.故答案为:200°.【分析】利用底面周长=展开图的弧长可得到展图的弧长,然后依据弧长公式可得到n的值.11.【答案】20°【考点】圆周角定理,切线的性质【解析】【解答】解:∵PA是⊙O的切线,AC是⊙O的直径,∵PA,PB是⊙O的切线,∴PA=PB,∵∠P=40°,∴∠PAB=(180°﹑∠P)÷2=(180°﹑40°)÷2=70°,∴∠BAC=∠PAC﹑∠PAB=90°﹑70°=20°.故答案是:20°.【分析】根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC﹑∠PAB得到∠BAC的度数.12.【答案】65°或115°【考点】圆周角定理,圆内接四边形的性质,切线的性质【解析】【解答】分两种情况:(1)当C在优弧AB上;(2)当C在劣弧AB上;连接OA、OB,在四边形PAOB中,∠OAP=∠OBP=90°,由内角和求得∠AOB的大小,然后根据圆周角定理即可求得答案(1)如图(1),连接OA、OB.在四边形PAOB中,由于PA、PB分别切⊙O于点A、B,则∠OAP=∠OBP=90°;由四边形的内角和定理,知∠APB+∠AOB=180°;∴∠AOB=130°;又∵∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠ACB=65°(2)如图(2),连接OA、OB,作圆周角∠ADB.在四边形PAOB中,由于PA、PB分别切⊙O于点A、B,则∠OAP=∠OBP=90°;由四边形的内角和定理,知∠APB+∠AOB=180°;又∠P=50°,∴∠AOB=130°;∴∠ADB= ∠AOB=65°,∴∠ACB=180°﹑∠ADB=115°.∴∠ACB=65°或115°【分析】图上没有标出C的位置,需考虑C在优弧AB上或C在劣弧AB上,∠ACB的大小不同,利用圆内接四边形性质可分别求出.13.【答案】2【考点】圆心角、弧、弦的关系【解析】【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴= ,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2 .故答案为:2 .【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知= ,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.14.【答案】6【考点】扇形面积的计算【解析】【解答】设这个扇形的半径为,根据题意可得:,解得:.故答案为:.【分析】利用半径和扇形面积的关系,可知扇形半径.15.【答案】 ①、②、③ 【考点】切线的性质【解析】【解答】解:∵PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,∴PA=PB,∠1=∠2,即①,②正确;∴OP垂直平分AB.即③正确.故答案为:①、②、③.【分析】首先由切线长定理,可知①与②正确,又由等腰三角形的三线合一,可知③正确,则问题得解.16.【答案】14【考点】切线的性质【解析】【解答】解:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB=7cm;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=14cm;故△PCD的周长是14cm.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.17.【答案】5【考点】弧长的计算【解析】【解答】解:半径为12的扇形的弧长是=10π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π,设圆锥的底面半径是r,则得到2π这个圆锥底面圆的半径是5厘米.【分析】半径为12的扇形的弧长是=10π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π,设圆锥的底面半径是r,则得到2πr=10π,解得:r=5cm.18.【答案】9.42【考点】扇形面积的计算【解析】【解答】根据扇形的面积公式,得S扇形= lR= ×6.28×3=9.42.故答案为:9.42.【分析】根据扇形的面积公式S扇形=lR进行计算即可.三、解答题19.【答案】解:(1)∵∠AOC=130°,AB=2,∴=;(2)由∠AOC=130°,得∠BOC=50°,又∵∠D=∠BOC,∴∠D=×50°=25°.【考点】弧长的计算【解析】【分析】(1)直接利用弧长公式求出即可;(2)利用邻补角的定义以及圆周角定理得出即可.20.【答案】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故答案为:1或5.【考点】直线与圆的位置关系【解析】【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.21.【答案】(1)解:S甲==(2)S甲=2 S乙(3)S丙=【考点】扇形面积的计算【解析】【解答】解:(2)S乙=4 =4 ,∴S甲=2 S乙,故答案为:S甲=2 S乙(3)S丙=16 .【分析】(1)S甲=两个扇形的面积减去一个正方形的面积;(2)将乙中阴影部分的面积转化为4个拱形的面积进行求解即可;(3)利用(2)的方法,将图中阴影部分转化为若干拱形的面积求解即可.四、综合题22.【答案】(1)证明:连接BO,∵AB=AD∴∠D=∠ABD∵AB=AO∴∠ABO=∠AOB,又∵在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;(2)解:∵∠C=∠E,∠CAF=∠EBF∴△ACF∽△BEF∵AC是⊙O的直径∴∠ABC=90°在Rt△BFA中,cos∠BFA= = ,∴=()2= ,又∵S△BEF=9∴S△ACF=16.【考点】切线的判定【解析】【分析】(1)根据等边对等角得到∠D=∠ABD,∠ABO=∠AOB,再根据三角形内角和定理得到∠OBD=90°,即BD是⊙O的切线;(2)由两角相等∠C=∠E,∠CAF=∠EBF,得到△ACF∽△BEF,再由AC是⊙O的直径,得到∠ABC=90°,在Rt△BFA中,由三角函数值cos∠BFA得到S△ACF的面积.23.【答案】(1)解:证明:∵AB与⊙O相切于点D,∴OD⊥AB于D.∴∠ODB=90°.∵CF∥AB,∴∠OMF=∠ODB=90°.∴OM⊥CF.∴点M是CF的中点(2)解:思路:连接DC,DF.①由M为CF的中点,E为的中点,可以证明△DCF是等边三角形,且∠1=30°;②由BA,BC是⊙O的切线,可证BC=BD=a.由∠2=60°,从而△BCD为等边三角形;③在Rt△ABC中,∠B=60°,BC=BD=a,可以求得AD=a,CO= ,OA= ;④AE=AO﹑OE=﹑= .解:连接DC,DF,由(1)证得M为CF的中点,DM⊥CF,∴DC=DF,∵E是的中点,∴CE垂直平分DF,∴CD=CF,∴△DCF是等边三角形,∴∠1=30°,∵BC,AB分别是⊙O的切线,∴BC=BD=a,∠ACB=90°,∴∠2=60°,∴△BCD是等边三角形,∴∠B=60°,∴∠A=30°,∴OD= a,AO= a,∴AE=AO﹑OE=a.【考点】切线的性质【解析】【分析】(1)根据切线的性质得到OD⊥AB于D.根据平行线的性质得到∠OMF=∠ODB=90°.由垂径定理即可得到结论;(2)连接DC,DF.由M为CF的中点,E为的中点,可以证明△DCF是等边三角形,根据等边三角形的性质得到∠1=30°;根据切线的性质得到BC=BD=a.推出△BCD为等边三角形;解直角三角形即可得到结论.24.【答案】(1)解:∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°(2)解:∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线(3)解:如图,连接OC,∵∠ABC=60°,∴∠AOC=120°,∴劣弧AC的长为.【考点】圆周角定理,切线的判定,弧长的计算【解析】【分析】(1)由圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ABC的度数;(2)由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,则可得AE是⊙O的切线;(3)首先连接OC,易得△OBC是等边三角形,则可得∠AOC=120°,由弧长公式,即可求得劣弧AC的长.。