南昌大学_数值分析试题
- 格式:doc
- 大小:79.50 KB
- 文档页数:14
数值分析第一章:1.2,计算第二章:2.1、2.3概念;2.2,2.4、2.5理解并会使用;第三章:3.1,最佳平方逼近,理解,并知道推导过程;3.3,概念第四章:4.1.1,4.1.2,4.3理解;4.2,4.4,4.6概念第五章1、高斯消去法利用增广矩阵,变为一个上三角矩阵。
2、LU分解A=LUL为下三角,对角线为1;U为上三角。
步骤:(1)求Ly=b,得y(2)求Ux=y,得x会求L和U矩阵。
3、主元素消去法PAx=Pb (P为置换矩阵)步骤:(1)写A的同阶单位矩阵(2)A第一列找最大,交换(单位矩阵也交换)(3)消去第一列(4)A的第二列开始,重复(2)(3)步骤4、向量范式(书上的公式)(小题)会求一范式,无穷范式。
5、矩阵范式(小题)会求一范式,无穷范式。
6、相容条件(小题)7、条件数(小题)第六章1、迭代法雅克比、高斯-赛德尔(能写出计算公式)2、会写出收敛的原因:严格对角占优第七章1、二分法(了解)2、不动点及收敛性(大题)3、P阶收敛的概念(小题)4、牛顿迭代法(大题)。
第一章1.2数值计算的误差第二章2.1引言拉格朗日插值均差与牛顿插值多项式埃尔米特插值分段低次插值第三章最佳逼近最佳平方逼近及其计算第四章数值积分与数值微分数值积分的基本思想迭代精度的概念牛顿-柯特斯公式复合求积公式龙贝格公式数值分析复习重点(第5~8章)一、解线性方程组的直接方法(第5章)1)、高斯消去法即用逐次消去未知数的方法把原线性方程组Ax=b为与其等价的三角形线性方程组,而求解三角形线性方程组可用回代的方法求解,高斯消去法的可行条件是A的各阶主子式不为0。
2)、列主元消去法第九章关系查询处理和查询优化1、查询处理的步骤:查询分析,查询检查,查询优化,查询执行2、查询优化的基本概念3、代数优化在高斯消元法中,如果在一列中选取规模最大的元素,将其调到主干方程位置再做消元,则称为列主消元法,此法克服了高斯消元法的额外限制(要求A的各阶主子式不为0)只要方程组有解列主元消去法就能畅通无阻地顺利求解,在有限位字长运算时又提高了解的精确度。
一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
数值分析考试题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数值分析考试题1一、 填空题(每空2分,共30分)1. 近似数230.2=*x 关于真值229.2=x 有____________位有效数字;2. 为了减少运算次数,应将表达式181611314181716242345-++---++x x x x x x x x 改写为_________________________________________________________;为了减少舍入误差的影响,应将表达式19992001-改写为__________________________;3. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;4. 对126)(3++=x x x f ,差商=]3,2,1,0[f _________________;5. 已知⎪⎪⎭⎫ ⎝⎛-=-=1223,)3,2(A X T ,则=∞||||AX ________________,=)(1A Cond ______________________ ;6. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;7. 求解线性方程组⎪⎩⎪⎨⎧=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;8. 为使两点数值求积公式:⎰-+≈221100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为______________________________________________ ;9. 记.,,1,0,,n i ih a x na b h i =+=-=计算⎰b a dx x f )(的复化梯形公式为________________________________________________;10.求积公式)]2()1([23)(30f f dx x f +≈⎰是否是插值型的__________,其代数精度为___________。
山东科技大学2008-2009学年第一学期《数值分析》考试一、设x =9.1234, y =10.486均具有5位有效数字。
试分析x - y和x3 y啲绝对误差限和相对误差限。
二、求一条拟合3点A(0,1), B(1,3),C(2,2)的直线。
三、设n _ 2为正整数,c为正数,记x*二n.c1) 说明不能用下面的迭代格式1 _nx k 1 = cx k ,k =Q1,2:= = " =求x*的近似值。
2) 构造一个可以求x*的迭代格式,证明所构造迭代格式的收敛性,并指出收敛阶数四、给定线性方程组_4 -1 0卩1 一2〕-1 a 1 x2 = 64」]X3」:2J】0 1其中a为非零常数。
1) 写出Jacobi迭代格式与Gauss-Seidel迭代格式并分析其收敛性。
2) 分析a在什么范围取值时以上迭代格式收敛。
五、做一个5次多项式H (x)使得H(1) =3,H (2) = —1, H(4) =3,H'(1) =2, H'(2) =1, H *(2) =2,六、求f (x) =x2在区间0,1上的一次最佳一致逼近多项式。
七、给定积分公式:1f(x)d x :Af (-1) Bf (0) f (1)■ -41) 试确定求积系数A,B,C,使其具有尽可能高的代数精度,并指出其代数精度。
2) 试判断该求积公式是否为高斯型求积公式,并说明理由。
3) ................................................................................................ 将区间-1,作n等分,并记h=2,X j =-1 ih,i =0,1,............................................................ ,n,利用该求积公式n 构造一个复化求积公式。
数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析考试题和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,插值法的主要目的是()。
A. 求解线性方程组B. 求解非线性方程C. 构造一个多项式来近似一个函数D. 求解微分方程答案:C2. 线性方程组的高斯消元法中,主元为零时,应采取的措施是()。
A. 停止计算B. 回代求解C. 转置矩阵D. 行交换答案:D3. 以下哪种方法不是数值积分方法()。
A. 梯形规则B. 辛普森规则C. 牛顿法D. 复合梯形规则答案:C4. 以下哪种方法用于求解非线性方程的根()。
A. 欧几里得算法B. 牛顿迭代法C. 高斯消元法D. 线性插值法答案:B5. 在数值分析中,最小二乘法主要用于()。
A. 求解线性方程组B. 求解非线性方程C. 曲线拟合D. 微分方程数值解答案:C6. 以下哪种方法不是数值微分方法()。
A. 前向差分B. 后向差分C. 中心差分D. 欧拉方法答案:D7. 以下哪种方法用于求解常微分方程的初值问题()。
A. 欧拉方法B. 龙格-库塔方法C. 牛顿迭代法D. 高斯消元法答案:B8. 在数值分析中,矩阵的特征值问题可以通过()方法求解。
A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形规则答案:B9. 以下哪种方法不是数值稳定性分析中的方法()。
A. 绝对稳定性B. 相对稳定性C. 条件数D. 牛顿法答案:D10. 在数值分析中,条件数用于衡量()。
A. 算法的效率B. 算法的稳定性C. 算法的准确性D. 算法的复杂度答案:B二、填空题(每题2分,共20分)1. 在数值分析中,插值多项式的次数最高为______,其中n是插值点的个数。
答案:n-12. 线性方程组的高斯消元法中,如果某行的主元为零,则需要进行______。
答案:行交换3. 梯形规则的误差与被积函数的______阶导数有关。
答案:二4. 牛顿迭代法中,每次迭代需要计算______。
答案:函数值和导数值5. 最小二乘法中,残差平方和最小化时,对应的系数向量是______。
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
一、单项选择题(每小题3分,共15分)i
1. 和分别作为的近似数具有()和()位有效数字.
A.4和3 B.3和2
C.3和4 D.4和4
2. 已知求积公式,则=()
A.B. C. D.
3. 通过点的拉格朗日插值基函数满足()
A.=0, B.=0,
C.=1, D.=1,
4. 设求方程的根的牛顿法收敛,则它具有()敛速。
A.超线性 B.平方 C.线性 D.三次
5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程().
A. B.
C. D.
单项选择题答案
二、填空题(每小题3分,共15分)
1. 设, 则,.
2. 一阶均差
3. 已知时,科茨系数,那么
4. 因为方程在区间上满足,所以在区间内有根。
5. 取步长,用欧拉法解初值问题的计算公
式 .
填空题答案
1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值.
计算题1.答案
1. 解,
,
所以分段线性插值函数为
2. 已知线性方程组
(1)写出雅可比迭代公式、高斯-塞德尔迭代公式;
(2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字).
计算题2.答案
1.解原方程组同解变形为
雅可比迭代公式为
高斯-塞德尔迭代法公式
用雅可比迭代公式得
用高斯-塞德尔迭代公式得
3. 用牛顿法求方程在之间的近似根
(1)请指出为什么初值应取2?
(2)请用牛顿法求出近似根,精确到.
计算题3.答案
3. 解,,
,,,故取作初始值
迭代公式为
,
,,
,
方程的根
4. 写出梯形公式和辛卜生公式,并用来分别计算积分.
计算题4.答案
四、证明题(本题10分)
确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度证明题答案
证明:求积公式中含有三个待定系数,即,将分别代入求积公式,并令其左右相等,得
得,。
所求公式至少有两次代数精确度。
又由于
故具有三次代数精确度。
一、填空(共20分,每题2分)
1. 设,取5位有效数字,则所得的近似值x= .
2.设一阶差商,
则二阶差商
3. 设, 则,。
4.求方程的近似根,用迭代公式,取初始值,那么
5.解初始值问题近似解的梯形公式是
6、,则A的谱半径=。
7、设,
则和。
8、若线性代数方程组AX=b 的系数矩阵A为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都。
9、解常微分方程初值问题的欧拉(Euler)方法的局部截断误差
为。
10、为了使计算的乘除法运算次数尽量的少,应将表达式改写
成。
填空题答案
1、
2、
3、6 和
4、
5、
6、
7、 8、收敛 9、
10、
二、计算题(共75 分,每题15分)
1.设
(1)试求在上的三次Hermite插值多项式使满足
以升幂形式给出。
(2)写出余项的表达式
计算题1.答案
1、(1)
(2)
2.已知的满足,试问如何利用构造一个收敛的简单迭代函数,使 0,1…收敛?计算题2.答案
2、由,可得,
3.试确定常数A,B,C和 a,使得数值积分公式
有尽可能高的代数精度。
试问所得的数值积分公式代数精度是多少?它是否为Gauss型的?
计算题3.答案
3、,该数值
求积公式具有5次代数精确度,它是Gauss型的
4.推导常微分方程的初值问题的数值解公式:
(提示:利用Simpson求积公式。
)
计算题4.答案
4、数值积分方法构造该数值解公式:对方程在区间上积分,
得,记步长为h,
对积分用Simpson求积公式得
所以得数值解公式:
5.利用矩阵的LU分解法解方程组
计算题5.答案
5、解:
三、证明题(5分)
1.设,证明解的Newton迭代公式是线性收敛的。
证明题答案
1、
一、填空题(20分)
(1).设是真值的近似值,则
有位有效数字。
(2).对, 差商( )。
(3).设, 则。
(4).牛顿—柯特斯求积公式的系数
和。
填空题答案
(1)3 (2)1 (3)7 (4)1
二、计算题
1).(15分)用二次拉格朗日插值多项式的值。
插值节点和相应的函数值是(0,0),(,),(,)。
计算题1.答案
1)
2).(15分)用二分法求方程区间内的一个根,误差限。
计算题2.答案
2)
3).(15分)用高斯-塞德尔方法解方程组,取,迭代三次(要求按五位有效数字计算).。
计算题3.答案
3)迭代公式
4).(15分)求系数。
计算题4.答案
4)
5). (10分)对方程组
试建立一种收敛的Seidel迭代公式,说明理由
计算题5.答案
5) 解:调整方程组的位置,使系数矩阵严格对角占优
故对应的高斯—塞德尔迭代法收敛.迭代格式为
取,经7步迭代可得:
.
三、简答题
1)(5分)在你学过的线性方程组的解法中, 你最喜欢那一种方法,为什么?
2)(5分)先叙述Gauss求积公式, 再阐述为什么要引入它。
一、填空题(20分)
1. 若a=是的近似值,则a有( )位有效数字.
2. 是以为插值节点的Lagrange插值基函数,则
( ).
3. 设f (x)可微,则求方程的牛顿迭代格式是
( ).
4. 迭代公式收敛的充要条件是。
5. 解线性方程组A x=b (其中A非奇异,b不为0) 的迭代格式中的B称为
( ). 给定方程组,解此方程组的雅可比迭代格式为
( )。
填空题答案
1.3
2.
3.
4.
5.迭代矩阵,
二、判断题(共10分)
1. 若,则在内一定有
根。
( )
2. 区间[a,b]上的三次样条函数是一个次数不超过三次的多项式。
( )
3. 若方阵A的谱半径,则解方程组A x=b的Jacobi迭代法收敛。
( )
4. 若f (x)与g (x) 都是n次多项式,且在n+1个互异点上,
则。
( )
5. 用近似表示产生舍入误
差。
( )
判断题答案
1.×
2.×
3.×
4.√
5.×
三、计算题(70分)
1.(10分)已知f(0)=1,f(3)=,f(4)=,求过这三点的
二次插值基函数l1(x)=( ),
=( ), 插值多项式
P
(x)=( ), 用三点式求得
2
( ).
计算题1.答案
1.
2. (15分)已知一元方程。
1)求方程的一个含正根的区间;
2)给出在有根区间收敛的简单迭代法公式(判断收敛性);
3)给出在有根区间的Newton迭代法公式。
计算题2.答案
2.(1)
(2)
(3)
3. (15分)确定求积公式的待定参数,使其代数精度尽量高,并确定其代数精度.
计算题3.答案
4. (15分)设初值问题 .
(1)写出用Euler方法、步长h=解上述初值问题数值解的公式;
(2)写出用改进的Euler法(梯形法)、步长h=解上述初值问题数值
解的公式,并求解,保留两位小数。
计算题4.答案
4.
5. (15分)取节点,求函数在区间上的二次插值多项式,并估计误差。
计算题5.答案
5.
=1+2(
,
一、填空题( 每题4分,共20分)
1、数值计算中主要研究的误差
有和。
2、设是n次拉格朗日插值多项式的插值基函数,
则;。
3、设是区间上的一组n次插值基函数。
则插值型求积公式的代数精度
为;插值型求积公式中求积系
数;且。
4、辛普生求积公式具有次代数精度,其余项表达式
为。
5、则。
填空题答案
1.相对误差绝对误差
2. 1
3. 至少是n b-a
4. 3
5. 1 0
二、计算题
1、已知函数的相关数据
由牛顿插值公式求三次插值多项式,并计算的近似值。
计算题1.答案
解:差商表
由牛顿插值公式:
2、(10分)利用尤拉公式求解初值问题,其中步长,。
计算题2.答案
解:
3、(15分)确定求积公式。
中待定参数的值,使求积公式的代数精度尽量高;并指出此时求积公式的代数精度。
计算题3.答案
解:分别将,代入求积公式,可得。
令时求积公式成立,而时公式不成立,从而精度为3。
4、(15分)已知一组试验数据如下:
求它的拟合曲线(直线)。
计算题4.答案
解:设则可得
于是,即。
5、(15分)用二分法求方程在区间内的根时,若要求精确到小数点后二位,(1) 需要二分几次;(2)给出满足要求的近似根。
计算题5.答案
解:6次;。
6、(15分)用列主元消去法解线性方程组
计算题6.答案
解:
即。