MIC基础知识
- 格式:ppt
- 大小:1.64 MB
- 文档页数:34
话筒的基础知识(1)hc360慧聪网音响灯光行业频道 2004-10-19 10:18:45传声器俗称话筒或麦克风(Microphone 简写为MIC ).按换能原理为电动式(动圈式、铝带式),电容式(直流极化式)、压电式(晶体式、陶瓷式)、以及电磁式、碳粒式、半导体式等。
.按声场作用力分为压强式、压差式、组合式、线列式等。
.按电信号的传输方式分为有线、无线。
.按用途来分为测量话筒、人声话筒、乐器话筒、录音话筒等。
.按指向性分为心型、锐心型、超心型、双向(8字型)、无指向(全向型)。
以上分类为较全面,目前常用分类为动圈式、电容式二种。
动圈式传声器主要由线圈、磁钢、外壳组成。
当传声器接受声波时,作用在振膜上,引起振膜振动,带动音圈作相应振动,音圈在磁钢中运动,产生电动势,声音信号转变成电信号。
动圈话筒使用较简单,无需极化电压,牢固可靠、性能稳定、价格相对便宜。
在卡拉OK 方面仍广泛使用着。
但它的瞬态响应和高频特性不及电容式传声器。
电容式传声器主要由振膜、后极板、极化电源、前置放大器组成。
电容传声器的极头,实际上是一只平板电容器,一个固定电极,一个可动电板,可动电板就是极薄的振膜。
声波作用在振膜上引起振动,从而改变两极板间电容量的变化,引起极板上电荷量的改变,电荷量随时间变化形成高变电流,流经电阻R上在两端产生压降,在经过放大器输出高变信号。
由于输出阻抗很高,不能直接输出,因此在传声器壳内装入一个前置放大器进行阻抗变换。
将高阻改变成低阻输出。
电容式传声器其实需要二组电源,一组为预放大器电源(约1.5V~3V)另一组是电容极头的极化电压(约48~52V)。
现在调音台一般都有幻像供电,利用传声器电缆内两根音频芯线作为直流电路的一根芯线,利用屏蔽层作为直流电路的另一根芯线,由调音台向电容传声器馈电,这样既不影响声音的正常传输,又节约了芯线。
所以称为幻像供电。
要提醒注意:当用动圈话筒时,调音台的幻像电源开关一定要关闭,否则话筒容易损坏。
传声器基础知识简介:一,传声器的定义::传声器是一个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的一个器件(电→声)。
是声音设备的两个终端,传声器是输入,喇叭是输出。
传声器又名麦克风,话筒,咪头,咪胆等.二,传声器的分类:1,从工作原理上分:炭精粒式动圈式驻极体式(以下介绍以驻极体式为主)压电式二氧化硅式等.2,从尺寸大小分,驻极体式又可分为若干种.Φ9.7系列产品Φ8系列产品Φ6系列产品Φ4.5系列产品Φ4系列产品每个系列中又有不同的高度3,从传声器的方向性,可分为全向,单向,双向(又称为消噪式)4,从极化方式上分,振膜式,背极式,前极式从结构上分又可以分为栅极点焊式,栅极压接式,极环连接式等5,从对外连接方式分普通焊点式:L型带PIN脚式:P型同心圆式:S型三,驻极体传声器的结构以全向MIC,振膜式极环连接式为例1,防尘网:保护传声器,防止灰尘落到振膜上,防止外部物体刺破振膜,还有短时间的防水作用。
2,外壳:整个传声器的支撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作用。
3,振膜:是一个声-电转换的主要零件,是一个绷紧的特氟窿塑料薄膜粘在一个金属薄圆环上,薄膜与金属环接触的一面镀有一层很薄的金属层,薄膜可以充有电荷,也是组成一个可变电容的一个电极板,而且是可以振动的极板。
4 : 垫片:支撑电容两极板之间的距离,留有间隙,为振膜振动提供一个空间,从而改变电容量。
5: 极板:电容的另一个电极,并且连接到了FET的G极上。
6: 极环:连接极板与FET的G极,并且起到支撑作用。
7: 腔体:固定极板和极环,从而防止极板和极环对外壳短路(FET的S,G极短路)。
8: PCB组件:装有FET,电容等器件,同时也起到固定其它件的作用。
9: PIN:有的传声器在PCB上带有PIN,可以通过PIN与其他PCB焊接在一起,起连接另外前极式,,背极式在结构上也略有不同.四,、传声器的电原理图:FET(场效应管)MIC的主要器件,起到阻抗变换和放大的作用,C;是一个可以通过膜片震动而改变电容量的电容,声电转换的主要部件.C1,C2是为了防止射频干扰而设置的,可以分别对两个射频频段的干扰起到抑制作用.R L:负载电阻,它的大小决定灵敏度的高低.V S:工作电压,MIC提供工作电压:C O:隔直电容,信号输出端.五,驻极体传声器的工作原理:由静电学可知,对于平行板电容器,有如下的关系式:C=ε·S/L 。
微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。
此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。
实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。
由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。
作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。
另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。
在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。
以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。
微波集成电路〔MIC〕:采用管芯及陶瓷基片。
微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。
图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。
固定极板和极环,从而防止极板和极环对外壳短路(FET(场效应管)的S(源极),G(栅)极短路)。
8、PCB组件: 装有FET,电容等器件,同时也起到固定其它件的作用。
9、PIN:有的传声器在PCB上带有PIN(脚),可以通过PIN与其他PCB焊接在一起,起连接另外前极式,背极式在结构上也略有不同。
四、咪头的电原理图: FET(场效应管)MIC的主要器件,起到阻抗变换或放大的作用,5、C;是一个可以通过膜片震动而改变电容量的电容,声电转换的主要部件。
麦克风如何消除2G通话干扰?2G的干扰主要是217Hz的干扰,增加33pf和15pf的电容进行滤波,33pf的电容对GSM900 C1,C2是为了防止射频干扰而设置的,可以分别对两个射频频段的干扰起到抑制作用。
RL:负载电阻,它的大小决定灵敏度的高低。
VS:工作电压,MIC提供工作电压 :CO:隔直电容,信号输出端. 五、驻极体咪头的工作原理: 由静电学可知,对于平行板电容器,有如下的关系式:C=ε.S/L ……①即电容的容量与介质的介电常数成正比,与两个极板的面积成正比,与两个极板之间的距离成反比。
另外,当一个电容器充有Q量的电荷,那么电容器两个极板要形成一定的电压,有如下关系式:C=Q/V ……② 对于一个驻极体咪头,内部存在一个由振膜,垫片和极板组成的电容器,因为膜片上充有电荷,并且是一个塑料膜,因此当膜片受到声压强的作用,膜片要产生振动,从而改变了膜片与极板之间的距离,从而改变了电容器两个极板之间的距离,产生了一个Δd的变化,因此由公式①可知,必然要产生一个ΔC的变化,由公式②又知,由于ΔC的变化,充电电荷又是固定不变的,因此必然产生一个ΔV的变化。
这样初步完成了一个由声信号到电信号的转换。
由于这个信号非常微弱,内阻非常高,不能直接使用,因此还要进行阻抗变换和放大。
FET场效应管是一个电压控制元件,漏极的输出电流受源极与栅极电压的控制。
传声器基础知识简介:一, 传声器的定义::传声器是一个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的一个器件(电→声)。
是声音设备的两个终端,传声器是输入,喇叭是输出。
传声器又名麦克风,话筒,咪头,咪胆等.二, 传声器的分类:1,从工作原理上分:炭精粒式动圈式驻极体式(以下介绍以驻极体式为主)压电式二氧化硅式等.2,从尺寸大小分,驻极体式又可分为若干种.Φ9.7系列产品Φ8系列产品Φ6系列产品Φ4.5系列产品Φ4系列产品Φ3系列产品每个系列中又有不同的高度3,从传声器的方向性,可分为全向,单向,双向(又称为消噪式)4,从极化方式上分,振膜式,背极式,前极式从结构上分又可以分为栅极点焊式,栅极压接式,极环连接式等5,从对外连接方式分普通焊点式:L型带PIN脚式:P型同心圆式:S型三, 驻极体传声器的结构以全向MIC,振膜式极环连接式为例1,防尘网:保护传声器,防止灰尘落到振膜上,防止外部物体刺破振膜,还有短时间的防水作用。
2,外壳:整个传声器的支撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作用。
3,振膜:是一个声-电转换的主要零件,是一个绷紧的特氟窿塑料薄膜粘在一个金属薄圆环上,薄膜与金属环接触的一面镀有一层很薄的金属层,薄膜可以充有电荷,也是组成一个可变电容的一个电极板,而且是可以振动的极板。
4 : 垫片:支撑电容两极板之间的距离,留有间隙,为振膜振动提供一个空间,从而改变电容量。
5: 极板:电容的另一个电极,并且连接到了FET的G极上。
6: 极环:连接极板与FET的G极,并且起到支撑作用。
7: 腔体:固定极板和极环,从而防止极板和极环对外壳短路(FET的S,G极短路)。
8: PCB组件:装有FET,电容等器件,同时也起到固定其它件的作用。
9: PIN:有的传声器在PCB上带有PIN,可以通过PIN与其他PCB焊接在一起,起连接另外前极式,,背极式在结构上也略有不同.四, 、传声器的电原理图:FET(场效应管)MIC的主要器件,起到阻抗变换和放大的作用,C;是一个可以通过膜片震动而改变电容量的电容,声电转换的主要部件.C1,C2是为了防止射频干扰而设置的,可以分别对两个射频频段的干扰起到抑制作用.R L:负载电阻,它的大小决定灵敏度的高低.V S:工作电压,MIC提供工作电压:C O:隔直电容,信号输出端.五, 驻极体传声器的工作原理:由静电学可知,对于平行板电容器,有如下的关系式:C=ε·S/L 。
微波必考知识点复习1、微波是一般指频率从300M至3000GHz范围内的电磁波,其相应的波长从1m 至0.1mm。
从电子学和物理学的观点看,微波有似光性、似声性、穿透性、非电离性、信息性等重要特点。
2、导行波的模式,简称导模,是指能够沿导行系统独立存在的场型,其特点是:(1)在导行系统横截面上的电磁波呈驻波分布,且是完全确定的。
这一分布与频率无关,并与横截面在导行系统上的位置无关;(2)导模是离散的,具有离散谱;当工作频率一定时,每个导模具有唯一的传播常数;(3)导模之间相互正交,彼此独立,互不耦合;(4)具有截止特性,截止条件和截止波长因导行系统和因模式而异。
3、广义地讲,凡是能够导引电磁波沿一定的方向传播的导体、介质或由它们组成的导波系统,都可以称为传输线。
若按传输线所导引的电磁波波形(或称模、场结构、场分布),可分为三种类型:(1)TEM波传输线,如平行双导线、同轴线、带状线和微带线,他们都是双导线传输系统;(2)TE波和TM波传输线,如矩形、圆形、脊形和椭圆形波导等,他们是由金属管构成的,属于单导体传输系统;(3)表面波传输系统,如介质波导(光波导)、介质镜象线等,电磁波聚集在传输线内部及其表面附近沿轴线方向传播,一般是TE或TM波的叠加。
对传输线的基本要求是:工作频带宽、功率容量大、工作稳定性好、损耗小、易耦合、尺寸小和成本低。
一般地,在米波或分米波段,可采用双导线或同轴线;在厘米波段可采用空心金属波导管及带状线和微带线等;在毫米波段采用空心金属波导管、介质波导、介质镜像线和微带线;在光频波段采用光波导(光纤)。
以上划分主要是从减少损耗和结构工艺等方面考虑。
传输线理论主要包括两方面的内容:一是研究所传输波形的电磁波在传输线横截面内电场和磁场的分布规律(也称场结构、模、波型),称横向问题;二是研究电磁波沿传输线轴向的传播特性和场的分布规律,称为纵向问题。
横向问题要通过求解电磁场的边值问题来解决;各类传输线的纵向问题却有很多共同之处。
第一部分射频基本概念第一章常用概念一、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。
对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。
无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。
在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。
当不相等时则会产生反射,造成失真和功率损失。
反射系数(此处指电压反射系数)可以由下式计算得出:z1二、驻波系数驻波系数式衡量负载匹配程度的一个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。
射频很多接口的驻波系数指标规定小于1.5。
三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。
峰值功率即是指以某种概率出现的尖峰的瞬态功率。
通常概率取为0.1%。
四、功率的dB表示射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W,利用dBm表示时其大小为五、噪声噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。
常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。
六、相位噪声相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。
理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。
一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。
相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。
例如晶体的相位噪声可以这样描述:七、噪声系数噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:对于线性单元,不会产生信号与噪声的互调产物及信号的失真,这时噪声系数可以用下式表示:Pno 表示输出噪声功率,Pni 表示输入噪声功率,G 为单元增益。
调音台摘要调音台对于每一路信号的控制分为主控和辅助控制两部分。
每一个通道都有一种或几种规格的信号输入口(MIC IN/ LINE IN),用于连接系统中的录音机、混响器等音频输出口,或者插上动圈式、电容式话筒等。
调音台的概述作用实际上是一个音频信号混合控制台,也称做调声控制台,它是包括录音、扩声等音响系统的控制中心。
它不仅是声音信号的调度司令台,同时也是各种警示信号、监听信号的控制司令台。
主要用来对音频信号进行加工润色和实现各种调节与控制功能,使重放的声音达到更好的音响效果。
工作方式调音台具有多个输入通道,可以接受多路不同阻抗、不同电平的输入声源信号,并对每个输入通道的声音信号进行放大及衰减,均衡等,然后按不同的音量对这些信号进行混合、重新分配或编组,产生一路或多路输出。
输出方式有左右声道输出、编组输出及辅助输出。
并提供多路输出为其他设备做为信号源输入。
通过调音台还可以对各路输入信号进行监听。
调音台的基本功能1对各路音频信号进行放大。
对输入信号源如传声器(话筒)、录音机、CD唱机、调谐器、电子乐器的各种大小不同的信号进行不同程度的放大。
同时,调音台为适应输入信号的不同电平大小,通常在调音台的输入端有高电平输入(线路输入)和低电平输入(传声器输入)两个插口。
前置放大器(输入放大器)节目放大器(混合、中间放大器)线路放大器(输出放大器)2对各路输入/输出信号进行电平控制与混合。
调音台具有多个输入通道或输入端口,例如连接有线话筒的话筒(MIC)输入、连接有源声源设备的线路(LINE)输入、连接信号处理设备的断点插入(INSERT)和信号返回(RETERN)等。
调音台将这些端口的输入信号进行技术上的加工和艺术上的处理后,混合成一路或多路输出。
信号混合是调音台最基本的功能。
3对音频信号的音调音色进行修饰与调整——均衡和滤波最基本的信号处理是频率均衡。
调音台的每一个输入通道都设有频率均衡器(EQ),通过调整可以弥补“缺陷”,提高音频信号的质量,以达到频率平衡这一基本要求。
麦克风、话筒百科全书麦克风,学名为传声器,由Microphone翻译而来。
传声器是将声音信号转换为电信号的能量转换器件,也称话筒,麦克风,微音器。
分类有动圈式、电容式、驻极体和最近新兴的硅微传声器,此外还有液体传声器和激光传声器。
动圈传声器音质较好,但体积庞大。
驻极体传声器体积小巧,成本低廉,在电话、手机等设备中广泛使用。
硅微麦克风基于CMOSMEMS技术,体积更小。
其一致性将比驻极体电容器麦克风的一致性好4倍以上,所以MEMS麦克风特别适合高性价比的麦克风阵列应用,其中,匹配得更好的麦克风将改进声波形成并降低噪声。
激光传声器在窃听中使用。
历史麦克风的历史可以追溯到19世纪末,贝尔(AlexanderGrahamBell)等科学家致力于寻找更好的拾取声音的办法,以用于改进当时的最新发明——电话。
期间他们发明了液体麦克风和碳粒麦克风,这些麦克风效果并不理想,只是勉强能够使用。
二十世纪,麦克风由最初通过电阻转换声电发展为电感、电容式转换,大量新的麦克风技术逐渐发展起来,这其中包括铝带、动圈等麦克风,以及当前广泛使用的电容麦克风和驻极体麦克风。
种类介绍内置麦克风:内置麦克风是指设置在数码摄像机内的麦克风,用作拍摄录音之用。
作为视频和音频的记录装置,数码摄像机的麦克风当然不能马虎。
对于消费级的数码摄像机来说,很多麦克风都安装在机体里面,这样的好处是能节省空间,真正实现,消费数码摄像机方便的理念,但是这样一来,内置麦克风可能会在录音的同时录下机器的转动声音,这些噪音在后期制作中很容易分辨,却跟难分离和去掉的。
要解决这些噪音问题,有以下几个办法:选择录音功能强大的数码摄像机。
在众多数码摄像机中,内置麦克风功能最多的要数松下的机型。
松下内置的广域收音麦克风,在用远摄镜拍摄较远的人物时,较近的环境声都盖过了人物的声音,而松下公司给摄录机均加上ZoomMic功能,可以随镜头变焦,缩窄收音范围,减少杂声,是简单而实用的设备。
基础知识1、MIC电路图和结构图2、测试环境(内置喇叭)3、测试仪可调参数4、在1KHZ频率、外接负载为2.2K,供电电压为2V时,MIC灵敏度为-40dB,电流为0.2mA(最大0.5mA)注:常规灵敏度为-42bB,话机行业常使用4.5V供电供电电压越大,灵敏度略微增加,整体影响不大,外接偏置电阻越大,灵敏度越大,影响比较大5、若MIC反接,灵敏度极大降低至-50dB,电流增加超过0.6mA,影响使用6、测量仪器上有1KHz(黑针)测试灵敏度,70HZ(红针)测试MIC是否密封好7、我司用的6*5mm是非常规尺寸,不备库存,尺寸比较高,容易倒6*2.7mm是常规尺寸,有备库存,小尺寸更容易摆放9.7mm直径由于鼓膜面积大,声音还原度更好8、MIC的品质好坏区分为(1)材料,正极和正极导电圈用铜好,铝差一些;(2)场效应管用的是哪种型号及精确度;(3)负极鼓膜是用哪家的,日本的比较好(4)MIC做的比较好的是通过品质管控跳出来的,且工艺只能优化一点,9、防水MIC是把外壳贴的防尘棉更换为防水材料,且部分点胶,MIC与外壳间做好密封措施,不进水,后端焊盘可不用点防水胶,普通胶即可若单独测试MIC的防水性,后端焊盘点也需要点防水胶10、全向MIC:只有前端(0度)开孔,后端PCB焊盘(180度)位置不开孔,单向MIC:原理图一样,只是后端PCB也开孔,内部增加阻尼等改变结构11、数字MIC优点:一致性好,可贴片加工;12、知名的MIC/SPK厂家(1)共达:山东MIC/SPK(2)歌尔:山东MIC/SPK(3)瑞声(AAC):深圳SPK解决方案(4)全声(待确定):台湾(5)焊接方法:320度±10度,3秒,可使用铁托盘焊接,把热量散出去,不易烫坏内部结构件。
天线和微波技术基础知识概述天线和微波技术是现代通信领域中非常重要的组成部分。
天线作为接收和发射无线信号的关键装置,而微波技术则主要用于传输和处理高频率的电磁信号。
本文将对天线和微波技术的基础知识进行概述,以帮助读者加深对这一领域的了解。
一、天线基础知识1. 天线的定义和作用天线是一种通过电磁辐射和感应的方式,将电磁信号转换为自由空间中的电磁波,或者将电磁波转换为电信号的装置。
它负责将信号从发射源传输到接收源,或者将接收到的信号转换为电信号。
2. 天线的分类根据天线的形式和使用场景,可以将其分为多种类型,如:(1)微带天线:用于无线通信和雷达系统,具有体积小、重量轻、成本低的优点。
(2)偶极子天线:应用广泛,适用于各种频率范围和工作环境。
(3)扩展频带天线:可以在多个频段上工作,适应不同通信需求。
(4)阵列天线:通过组合多个天线单元,实现波束和指向性辐射。
(5)喇叭天线:用于辐射高功率无线信号,可在长距离范围内传输。
3. 天线参数天线的性能主要由以下参数来衡量:(1)增益:表示天线向某个方向传输/接收信号的能力,可以通过增加天线尺寸或精心设计来提高。
(2)方向性:指示天线向某个方向辐射/接收信号的能力,可以通过改变天线结构来实现。
(3)驻波比:用于衡量天线的适配性和效率,一般要求越小越好。
二、微波技术基础知识1. 微波的概念和特点微波是一种频率范围在300 MHz至300 GHz之间的电磁波,具有高频率、短波长和较强的穿透能力。
微波技术在无线通信、雷达、卫星通信等领域有着广泛的应用。
2. 微波器件和系统(1)微波集成电路(MIC):它是一种将微波元器件(如传输线、滤波器、放大器等)集成在同一芯片上的技术,可以实现尺寸小、性能优越的微波电子元器件。
(2)高频开关:用于控制微波信号的通断,具有快速响应、低损耗的特点。
(3)微波天线系统:结合天线和微波技术,用于将微波信号进行传输和接收。
(4)微波滤波器:用于筛选和处理特定频率范围内的微波信号,以满足通信系统的要求。
MIC基础知识简介MIC基础知识简介⼀、传声器的定义::传声器是⼀个声-电转换器件(也可以称为换能器或传感器),是和喇叭正好相反的⼀个器件(电→声)。
是声⾳设备的两个终端,传声器是输⼊,喇叭是输出。
传声器⼜名麦克风,话筒,咪头,咪胆等。
⼆、传声器的分类:1、从⼯作原理上分:炭精粒式电磁式电容式驻极体电容式(以下介绍以驻极体式为主)压电晶体式,压电陶瓷式⼆氧化硅式等2、从尺⼨⼤⼩分,驻极体式⼜可分为若⼲种.Φ9.7系列产品Φ8系列产品Φ6系列产品Φ4.5系列产品Φ4系列产品Φ3系列产品每个系列中⼜有不同的⾼度3、从传声器的⽅向性,可分为全向,单向,双向(⼜称为消噪式)4、从极化⽅式上分,振膜式,背极式,前极式从结构上分⼜可以分为栅极点焊式,栅极压接式,极环连接式等5、从对外连接⽅式分普通焊点式:L型带PIN脚式:P型同⼼圆式: S型三、驻极体传声器的结构以全向MIC,振膜式极环连接式为例1、防尘⽹:保护传声器,防⽌灰尘落到振膜上,防⽌外部物体刺破振膜,还有短时间的防⽔作⽤。
2、外壳:整个传声器的⽀撑件,其它件封装在外壳之中,是传声器的接地点,还可以起到电磁屏蔽的作⽤。
3、振膜:是⼀个声-电转换的主要零件,是⼀个绷紧的特氟窿塑料薄膜粘在⼀个⾦属薄圆环上,薄膜与⾦属环接触的⼀⾯镀有⼀层很薄的⾦属层,薄膜可以充有电荷,也是组成⼀个可变电容的⼀个电极板,⽽且是可以振动的极板。
4、垫⽚:⽀撑电容两极板之间的距离,留有间隙,为振膜振动提供⼀个空间,从⽽改变电容量。
5、极板:电容的另⼀个电极,并且连接到了FET的G极上。
6、极环:连接极板与FET的G极,并且起到⽀撑作⽤。
7、腔体:固定极板和极环,从⽽防⽌极板和极环对外壳短路(FET的S,G极短路)。
8、PCB组件:装有FET,电容等器件,同时也起到固定其它件的作⽤。
9、PIN:有的传声器在PCB上带有PIN,可以通过PIN与其他PCB焊接在⼀起,起连接另外前极式,背极式在结构上也略有不同。