测井解释初步
- 格式:pdf
- 大小:1.14 MB
- 文档页数:59
测井概述1、测井的概念:测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。
简而言之,测井就是测量地层岩石的物理参数,就如同用温度计测量温度是同样的道理;石油钻井时,在钻到设计井深深度后都必须进行测井,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
2、测井的原理任何物质组成的基本单位是分子或原子,原子又包括原子核和电子。
岩石可以导电的。
我们可以通过向地层发射电流来测量电阻率,通过向地层发射高能粒子轰击地层的原子来测量中子孔隙度和密度。
地层含有放射性物质,具有放射性(伽马);地层作为一种介质,声波可以在其中传播,测量声波在地层里传播速度的快慢(声波时差)。
地层里的地层水里面含有离子,它们会和井眼中泥浆中的离子发生移动,形成电流,我们可以测量到电位的高低(自然电位)。
3、测井的方法1)电缆测井是用电缆将测井仪器下放至井底,再上提,上提的过程中进行测量记录。
常规的测井曲线有9条;2)随钻测井(LWD-log while drilling)是将测井仪器连接在钻具上,在钻井的过程中进行测井的方式。
边钻边测,为实时测井(realtime),井眼打好之后起钻进行测井为(tipe log);4、测井的参数1.GR-自然伽马GR是测量地层里面的放射性含量,岩石里粘土含放射性物质最多。
通常,泥岩GR高,砂岩GR低。
2.SP-自然电位地层流体中除油气的地层水中的离子和井眼中泥浆的离子的浓度是不一样的,由于浓度差,高浓度的离子会向低浓度的离子发生转移,于是就形成电流。
自然电位就是测量电位的高低,以分辨砂岩还是泥岩。
测井解释基础知识-概述说明以及解释1.引言1.1 概述测井是石油工程中一项重要的技术手段,它通过使用特殊的工具和设备在钻井过程中获取井内的各种数据,以评估地下地层的性质和含油气性能。
这些数据对于油气田的勘探、开发和生产起着至关重要的作用。
测井技术在油气勘探和开发中扮演着关键的角色。
通过测井可以准确地了解油气藏中地层的性质,包括储集层的厚度、孔隙度、渗透率等。
同时,测井数据可以获得地层的物理性质,如密度、声波速度、电阻率等,从而可以计算出地层的含油气饱和度和产能。
测井数据的获取方法包括电测井、声测井、密度测井、核磁共振测井等多种技术手段。
这些测井工具可以通过装备在钻井井筒中的测井仪器进行数据采集。
测井数据的获取主要依靠钻井过程中向井内发送的信号与地层反射或吸收的物理现象产生的信号之间的相互作用。
测井解释是对测井数据进行分析和解释的过程,以得出地层性质和含油气信息,并为油气田的开发提供决策依据。
通过对测井数据的解释,可以确定油气藏的储量、底部流压、裂缝分布等重要参数,为决策者提供合理的勘探和开发方案。
总之,测井是一项通过获取井内数据进行地层评价的重要技术。
它对于优化勘探开发策略,提高油气田的产能和经济效益具有重要意义。
测井解释作为测井技术的核心环节,为油气田的勘探与开发提供科学依据,为石油工程的发展做出了重要贡献。
1.2文章结构1.2 文章结构本文按以下结构进行组织和讨论:(1)引言:首先介绍本文的背景和目的,概述测井解释的基本概念和重要性。
(2)正文:本部分将详细介绍测井的定义和作用,以及获取测井数据的方法。
其中,关于测井的定义和作用部分,将探讨测井在勘探和开发油气田中的重要作用,以及其对油气储层评价和井筒工程的意义。
关于测井数据的获取方法部分,将介绍目前常用的测井工具及其原理,如电测井、声波测井、核子测井等。
(3)结论:在本节中,将强调测井解释的重要性,并讨论其在油气勘探开发、地质研究及工程应用领域的具体应用。
第一篇测井解释基础与测井方法测井广泛应用于石油地质和油田勘探开发的全过程。
利用测井资料,我们不仅可以划分井孔地层剖面,确定岩层厚度和埋藏深度,确定储层并识别油气水层,进行区域地层对比,而且还可以探测和研究地层主要矿物成分、孔隙度、渗透率、油气饱和度、裂缝、断层、构造特征和沉积环境与砂体的分布等,对于评价地层的储集能力、检测油气藏的开采情况,细致地分析研究油层地质特征等具有重要意义。
随着测井技术及其解释处理方法的飞速发展,测井资料的应用日益深化,其作用也越来越明显。
第一章测井解释的基本理论和方法第一节测井解释的基本任务测井资料解释,就是按照预定的地质任务和评价目标选择几种测井方法采集所需的测井资料,依据已有的测井解释方法,结合地质、钻井、录井、开发等资料,对测井资料进行综合分析,用以解决地层划分、油气层和有用矿藏的评价及其勘探开发中的其它地质、工程问题。
测井解释的基本任务主要有:1.进行产层性质评价。
包括孔隙度、渗透率、有效厚度、孔径分布、粒径大小及分选性、裂缝分布、润湿性等的分析。
2.进行产液性质评价。
包括孔隙流体性质和成分(油、气、水)的确定,可动流体(油、气、水)饱和度、不可动流体(束缚水、残余油)饱和度的计算。
3.进行油藏性质评价。
包括研究构造、断层、沉积相,地层对比,分析油藏和油气水分布规律,计算油气储量、产能和采收率;指导井位部署、制订开发方案和增产措施。
4.进行钻采工程应用。
在钻井工程中,测量井眼的井斜、方位和井径等几何形状,估算地层孔隙流体压力和岩石的破裂压力梯度,指导钻井液密度的合理配制,确定套管下深和水泥上返高度,计算固井水泥用量和检查固井质量等;在采油工程中,进行油气井射孔,生产剖面和吸水剖面测量,识别水淹层位和水淹级别,确定出水层位和串槽层位,检查射孔质量、酸化和压裂效果等。
第二节岩性确定方法储层的岩性评价是指确定储层岩石所属的岩石类别,计算岩石主要矿物成分的含量和泥质含量,进一步确定泥质在岩石中分布的形式和粘土矿物的成分。
测井原理与解释
测井是一种勘探地下介质的物理和化学性质的方法,主要通过测量井眼周围的压强、温度、压力、化学成分和流量等参数来确定地下介质的类型、孔隙结构、类型和含水量等信息。
测井原理主要有以下几种:
1. 地震测井:利用井壁上的地震波的传播规律和反射特性,通过地震仪记录地震波的反射和回波时间等信息来计算压强和温度。
2. 热测井:利用井底温度和地下介质的热传递特性,通过热仪记录井底和地下介质的温度,通过温度变化来计算孔隙度和含水量。
3. 声波测井:利用声波在地下介质中的传播速度和衰减特性,通过声波仪记录声波的传播时间和频率等信息来计算压强、温度和化学成分。
4. 射电测井:利用射电电场和电磁波在地下介质中的传播规律,通过射电仪记录电磁波的传播时间和衰减特性来计算压强、温度、含水量和岩石类型等。
以上这些方法都具有一定的准确度和局限性,根据不同的地质情况和目的,可以选择不同的方法进行测井。
同时,在测井过程中还需要考虑到井壁稳定、井口振动、地震波传播方向等因素。
测井基础知识概述1. 引言测井是指在钻井过程中利用各种测量方法和设备来获取地层信息的技术手段。
通过测井可以获取地层中的物理、化学和工程性质的参数,对地层进行评价和分析,从而为油气勘探和开发提供重要的参考依据。
本文将概述测井的基础知识,包括测井的意义、测井方法和设备、测井参数解释等内容。
2. 测井的意义测井作为一种获取地层信息的重要手段,具有以下几个方面的意义:2.1. 地层评价通过测井可以获取地层中的物理、化学和工程性质的参数,如孔隙度、渗透率、饱和度等,从而评价地层的含油气能力、储层性质等。
这对于油气勘探和开发来说至关重要,可以指导油气田的选址和开发方案的制定。
2.2. 钻井工艺控制在钻井过程中,测井可以提供有关井眼稳定性、岩石力学性质、井壁质量等信息,指导钻井工艺的控制和井壁的完整性保护,减少钻井事故的发生。
2.3. 油藏管理测井还可以为油气田的开发和管理提供重要的数据支持,如油藏压力分布、水驱效果、油藏动态变化等。
这些数据可以帮助油田管理人员了解油田的生产状况,做出相应的调整和决策。
3. 测井方法和设备测井方法是指测井的具体操作方法,而测井设备是指用于测量的仪器和工具。
常用的测井方法和设备包括:3.1. 电测井电测井是利用测井仪器在井中测量电性参数来获得地层信息的方法。
常用的电测井设备包括电阻率测井、自然电位测井和电导率测井等。
3.2. 孔隙度测井孔隙度测井是利用测井仪器测量地层中的孔隙体积的方法。
常用的孔隙度测井设备包括密度测井和中子测井等。
3.3. 岩性测井岩性测井是通过测井仪器来测量地层岩石的物理性质和组成,从而判断岩石的类型和性质的方法。
常用的岩性测井设备包括声波测井和伽马射线测井等。
3.4. 流体识别测井流体识别测井是用于判断油气层位和识别流体类型的方法。
常用的流体识别测井设备包括声波测井、密度测井和中子测井等。
4. 测井参数解释测井仪器测得的数据需要经过解释和分析,才能得到有意义的地层信息。
测井原理与解释
测井原理是石油勘探、开采、利用领域中非常重要的一项技术,
它是用来判断地下各种物质类型、性质、含量等信息的手段。
测井原理的基础是物理学、地质学和工程学,凭借多年的研究和
实践,现代测井技术已经发展成为一门系统化的技术体系。
其基本原
理是通过石油井的井壁和井内测量来解释地层岩石的物理和化学特性,以及油气藏的储量和分布。
其中,最基本的测井原理是利用放射性同位素记录井内物质的密度、自然伽马射线测量地层厚度、电性测井记录地层岩石的孔隙度、
导电率等物理性质的变化。
同时,利用声波并测量它在不同材料中传
播的速度,来判别地层岩石的类型、结构和属性等信息。
除此之外,测井原理还包括测量地层应力和自然放射性,以及废
物管理等方面。
现代测井技术可以计算目标地层储层的物理和化学特性,反映地层不同地带的石油、气等自然资源的分布情况,有助于石
油勘探、开采、利用等各方面的决策。
总的来说,测井原理是石油勘探和开采领域中最重要的技术手段
之一。
借助现代测井技术,我们可以精确地解释地层和岩石的物理、
结构、组成、含量等信息,为石油勘探和开采提供精确的数据依据,
为油气资源开发提供有力的支撑。
同时,也有利于环境保护,精准处
理废物和降低开采过程中的负面影响。
测井解释本文将详细介绍测井解释的四个主要方面:地质分析、地球物理测井、地球化学测井和工程测井。
1.地质分析地质分析是测井解释的基础,主要包括地层对比、地层年龄、地层温度和地层压力等方面的分析。
地层对比主要是根据地层的岩性、电性和声波等特征,对不同地层进行对比和划分。
地层年龄分析主要是利用放射性同位素测定地层的年龄,以确定地层的形成时间和演化过程。
地层温度分析可以通过测量地层的热流或地温梯度来确定地层的温度,进而推断出地层的埋藏深度和岩石热性质。
地层压力分析则是通过测量地层的压力系数或梯度来确定地层的压力状态,以评估地层的稳定性和潜在的工程风险。
2.地球物理测井地球物理测井是通过测量地球物理参数来推断地层特性的方法。
在测井解释中,常用的地球物理测井方法包括电阻率测井、自然电位测井、孔隙度测井和渗透率测井等。
电阻率测井是通过测量地层的电阻率来判断地层的导电性能,进而推断出地层的岩性和孔隙度。
自然电位测井是通过测量地层的自然电位来推断地层的沉积环境和有机质含量。
孔隙度测井是通过测量地层的声波速度和衰减系数等参数,计算出地层的孔隙度,以评估地层的储油气能力。
渗透率测井则是通过测量地层的渗透率来判断地层的流体流动能力和储油气的渗透性。
3.地球化学测井地球化学测井是通过测量地层中的化学成分来推断地层特性的方法。
在测井解释中,常用的地球化学测井方法包括卤素测井、硫化氢测井、二氧化碳测井和氧测井等。
卤素测井是通过测量地层中氯、溴和碘等元素的含量,推断出地层的含盐度和蒸发岩的分布。
硫化氢测井是通过测量地层中硫化氢的含量,判断出地层中有机质的成熟度和储油气能力。
二氧化碳测井是通过测量地层中二氧化碳的含量,推断出地层的碳储存量和地质构造。
氧测井则是通过测量地层中氧的含量,判断出地层的氧化还原环境和有机质的演化程度。
4.工程测井工程测井是通过测量钻孔和井筒的几何参数和物理参数来评估地质钻探工程的施工质量和岩石力学性质的方法。
生产测井解释目录一、生产测井概述二、吸水剖面测井三、变硬剖面测井资料处置与表述四、生产量剖面测井了解五、井内流体的流动特性六、自喷井(气举井)产出剖面测井七、抽油井环空测井八、产出剖面测井资料的应用一、生产测井详述1、测井概念地球物理测井(缩写测井)就是应用领域地球物理学的一个分支,它就是应用领域物理学方法原理,使用电子仪器测量井筒内信息的技术学科。
它所应用领域至科学知识包含:物理学、电子学、信息学、地质工程、石油工程等。
它的最小特点就是科学知识含量低、技术运用崭新。
测井表述的目的就是把各种测井信息转变为地质或工程信息。
如果把测井的数据采集看作就是一个正出演过程,测井表述就是一个反演过程。
因此,测井表述存有着多解性(容许表述发生相同的结果,容许发生表述犯规!),也就存有着表述符合率的问题。
2、测井分类按照油气勘探开发过程,油田测井可分为两大类:油气勘探阶段的勘探测井(又称为裸眼井测井)和油气开发阶段的开发测井(又称为套管井测井)。
裸眼测井主要是为了发现和评价油气层的储集性质及生产能力。
套管井测井主要是为了监视和分析油气层的开发动态及生产状况。
勘探测井变硬剖面测井测井生产动态测井开发测井油层监视测井产出剖面测井钻采工程测井3、生产测井油田研发测井技术就是由生产动态测井、油层监控测井和岩棉工程测井三部分组成。
我们主要讨论开发测井中的生产测井,也就是两个剖面测井。
在油层投入生产以后,其管理对采收率影响非常大。
如是分层采矿,还是合层采矿?就是分层灌水,还是笼统灌水?油井投产后,各生产层段产量就是多少,与否达至了预期的产量?廖成利须要展开措施改建?这些问题对采收率都有著极其重要的影响。
充分利用不好生产测井资料能够为提升采收率提供更多非常大的协助。
它能化解以下问题:(1)生产井的产出剖面,确定各小层产液性质和产量。
(2)备注水井的变硬剖面,确认各小层的相对变硬和绝对喷水量。
(3)掌握生产井的水浸和漏失情况。
测井词汇1.测井:用专门的仪器沿井身测量地层的各种物理参数,根据测量结果及有关资料进行分析解释,找出油、气等储集层的方法称为地球物理测井,简称测井。
2.标准测井:在一个地区,为了进行地层对比,选择几种有效的测井方法,分别对每口井全井段进行该套测井项目的测井,深度比例为1:500,横向比例与综合测井相同。
3.测井仪器:泛指各种测井方法中所使用仪器的总称,每种测井方法的测井仪器应包括测量系统、记录系统和完成这一任务的附属装置。
4.纵波:纵波又称压缩波,它的传播方向与振动方向平行。
5.横波:横波又称剪切波,它的传播方向与振动方向垂直。
6.斯通利波:当井内有声源发射声波时,由于井内流体与地层孔隙流体相互作用,在井壁上产生的一种界面波。
其传播速度低于井内流体速度。
7.杨氏模量:当弹性杆在与轴线垂直的截面上受到均匀分布的应力作用时,所加之力与相对伸长之比。
8.体变模量:当固体均匀受静压时,所加压力与体积相对减小之比。
9.泊松比:侧表面为自由弹性杆,横向相对压缩与纵向相伸长之比。
10.破裂压力:地层岩石原有骨架造成的破坏,超出它的弹性范围的压力。
11.单极声源:单极源只有一个极性在井中形成的波是轴向对称的。
12.偶极声源:偶极源有两个极性的声源,它们的振动相位是相反的、相关180°。
13.核磁共振:对于被磁化后的核自旋系统,在垂直于静磁场方向加一交变电磁场,其频率等于核自旋频率,那么核自旋系统将发生共振吸收能量现象,即处于低能态的核磁距将通过吸收交变电磁场提供的能量,跃迁到高能态,这种现象就是核磁共振。
14.横向驰豫和纵向驰豫:发生核磁共振现象后,撤掉射频脉冲,处于高能态的核磁矩将恢复到共振之前的平衡状态,这个过程叫驰豫,假设静磁场方向为Z轴方向,那么在X—Y平面上核磁矩能量衰减过程叫横向驰豫,驰豫速率为1/T2,T2叫横向驰豫时间,在Z轴方向上核磁矩能量的恢复叫纵向驰豫,驰豫速率为1/T1,T1叫纵向驰豫时间。
测井资料综合解释测井是油田勘探开发中非常重要的技术手段之一。
通过测井可以获取井筒内地层的物理性质和地质信息,帮助油田工程师和地质学家做出准确的解释和预测。
本文将全面介绍测井资料的综合解释方法和技巧。
一、测井资料的分类与应用范围测井资料按测井方法可分为电测井、声测井、核子测井等多种类型。
不同类型的测井方法能提供不同的地层信息。
电测井主要用于测量地层的电性质,如电阻率、自然电位等;声测井则用于测量地层的声学性质,如声波传播速度、衰减系数等;核子测井则用于测量地层的核辐射特性,如自然伽马辐射强度、中子散射截面等。
测井资料的应用范围十分广泛。
在勘探阶段,测井资料可以帮助确定油藏的存在与分布情况;在开发阶段,测井资料可以评价油层的产能、储量和岩石物理性质;在油井改造和采油过程中,测井资料可以指导井筒的完井和油藏的增产措施。
二、测井资料的解释方法1. 初步解释:初步解释是对测井曲线进行质量控制和基本分析的过程。
通过检查测井曲线的合理性、对比相邻测井曲线的关系,可以初步了解地层的特征和可能存在的问题。
初步解释的目的是将测井曲线的主要特征进行定性和定量描述,为后续的综合解释提供基础。
2. 地层分类解释:地层分类解释是根据测井数据中的地层识别信息,将井段划分为不同的地层单元。
通过对测井曲线的综合分析,结合岩心分析结果和模拟数据,确定地层的划分标准和解释模型。
地层分类解释的目的是将复杂的测井数据转化为可操作的地层单元,为后续的油藏评价和井筒设计提供基础。
3. 物性解释:物性解释是根据测井曲线的响应特征,定量计算地层的物理性质。
通过建立地层物性与测井响应之间的关系模型,可以推测地层的孔隙度、饱和度、渗透率等物理性质。
物性解释的目的是为油田工程师提供关键的地层参数,为油藏开发和生产决策提供依据。
4. 地质解释:地质解释是将测井资料与地质模型进行对比和综合,揭示地层的地质特征和构造特征。
通过将测井曲线与地质模型进行匹配,可以推断地质界面的位置、断层的存在以及油藏分布的规律。