角的概念的推广任意角
- 格式:ppt
- 大小:1.17 MB
- 文档页数:31
任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB,就形成了角α,记作:角α或α∠ 可以简记成α; 2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了;可以将角分为正角、零角和负角;正角:按照逆时针方向转定的角; 零角:没有发生任何旋转的角; 负角:按照顺时针方向旋转的角; 3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴;角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角; 例1、1A={小于90°的角},B={第一象限的角},则A∩B= 填序号. ①{小于90°的角}②{0°~90°的角}③ {第一象限的角}④以上都不对2已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、 C 关系是A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C4、常用的角的集合表示方法 1、终边相同的角:1终边相同的角都可以表示成一个0到360的角与)(Z k k ∈个周角的和; 2所有与终边相同的角连同在内可以构成一个集合{}Z k k S ∈⋅+==,360| αββ即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和 注意:1、Z ∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同;终边相同的角有无数个,它们相差360°的整数倍;4、一般的,终边相同的角的表达形式不唯一; 例1、1若θ角的终边与58π角的终边相同,则在[]π2,0上终边与4θ的角终边相同的角为 ;2若βα和是终边相同的角;那么βα-在例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: 1 210-; 2731484'- .例3、求θ,使θ与 900-角的终边相同,且[]1260180,-∈θ. 2、终边在坐标轴上的点:终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ 终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ 3、终边共线且反向的角:终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ 4、终边互相对称的角:若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 例1、若θα+⋅= 360k ,),(360Z m k m ∈-⋅=θβ 则角α与角β的中变得位置关系是 ;A.重合B.关于原点对称C.关于x 轴对称D.有关于y 轴对称 二、弧度与弧度制 1、弧度与弧度制:弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度 定义:长度等于 的弧所对的圆心角称为1弧度的角;如图:AOB=1rad ,AOC=2rad , 周角=2rad 注意:1、正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是02、角的弧度数的绝对值 rl=αl 为弧长,r 为半径 3、用角度制和弧度制来度量零角,单位不同,但数量相同都是0 用角度制和弧度制来度量任一非零角,单位不同,量数也不同;4、在同一个式子中角度、弧度不可以混用;2、角度制与弧度制的换算弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度 角度与弧度的互换关系:∵ 360= rad 180= rad∴ 1=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.例1、 把'3067 化成弧度例 例2、 把rad π53化成度例3、将下列各角从弧度化成角度 136πrad 2 rad3 rad π533、弧长公式和扇形面积公式orC 2rad1rad rl=2r oAABr l α= ; 22121r lR S α==练习题一、选择题1、下列角中终边与330°相同的角是A .30°B .-30°C .630°D .-630°2、把-1485°转化为α+k ·360°0°≤α<360°, k ∈Z 的形式是A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360° 3、终边在第二象限的角的集合可以表示为: A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 4、下列命题是真命题的是Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角 C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360|αα={}Z k k ∈+⋅=,90180|αα5、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是 A .B=A ∩C B .B ∪C=C C .A ⊂C D .A=B=C6、在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是A.①B.①②C.①②③D.①②③④ 7、若α是第一象限的角,则-2α是 A.第一象限的角 B.第一或第四象限的角 C.第二或第三象限的角 D.第二或第四象限的角 8、下列结论中正确的是A.小于90°的角是锐角B.第二象限的角是钝角C.相等的角终边一定相同D.终边相同的角一定相等 9、集合A={α|α=k ·90°,k ∈N +}中各角的终边都在轴的正半轴上 轴的正半轴上轴或y 轴上 轴的正半轴或y 轴的正半轴上 10、α是一个任意角,则α与-α的终边是A.关于坐标原点对称B.关于x 轴对称C.关于直线y=x 对称D.关于y 轴对称11、集合X={x |x=2n+1·180°,n ∈Z},与集合Y={y |y=4k ±1·180°,k ∈Z}之间的关系是C.X=Y ≠Y 12、设α、β满足-180°<α<β<180°,则α-β的范围是 °<α-β<0° °<α-β<180° °<α-β<0° °<α-β<360° 13、下列命题中的真命题是A .三角形的内角是第一象限角或第二象限角B .第一象限的角是锐角C .第二象限的角比第一象限的角大D .角α是第四象限角的充要条件是2k π-2π<α<2k πk ∈Z 14、设k ∈Z ,下列终边相同的角是A .2k +1·180°与4k ±1·180°B .k ·90°与k ·180°+90°C .k ·180°+30°与k ·360°±30°D .k ·180°+60°与k ·60°15、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是A .2B .1sin 2 C .1sin 2 D .2sin 16、设α角的终边上一点P 的坐标是)5sin ,5(cos ππ,则α等于 A .5πB .5cotπC .)(1032Z k k ∈+ππ D .)(592Z k k ∈-ππ17、若90°<-α<180°,则180°-α与α的终边A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .以上都不对18、设集合M ={α|α=5-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于A .{-105ππ3,}B .{-510ππ4,7} C .{-5-105ππππ4,107,3,} D .{07,031-1ππ } 19、“21sin =A ”“A=30o”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件20、中心角为60°的扇形,它的弧长为2π,则它的内切圆半径为A .2B .3C .1D .23 21、设集合M ={α|α=k π±6π,k ∈Z },N ={α|α=k π+-1k6π,k ∈Z }那么下列结论中正确的是A .M =NB .M NC .N MD .M N 且N M二、填空题22、若角α是第三象限角,则2α角的终边在 . 23、与-1050°终边相同的最小正角是 . 24、已知α是第二象限角,且,4|2|≤+α则α的范围是 .任意角的三角函数练习题一、选择题1. 设α角属于第二象限,且2cos2cosαα-=,则2α角属于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ. 其中符号为负的有 A. ① B. ② C. ③ D. ④3. 02120sin 等于 A. 23±B. 23C. 23-D. 214. 已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 A. 43-B. 34- C. 43D.345.若θ∈错误!,错误!,则错误!等于θ-sin θ θ+cos θθ-cos θ D.-cos θ-sin θ6.若tan θ=错误!,则cos 2θ+sin θcos θ的值是A.-错误!B.-错误!C. 错误!D.错误!二、填空题1. 设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式:①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________.3.若角α的终边在直线y =-x 上,则ααααcos cos 1sin 1sin 22-+-= . 4.使tan x -xsin 1有意义的x 的集合为 . 5.已知α是第二象限的角,且cos 错误!=-错误!,则错误!是第 象限的角.三、解答题1. 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.2. 设cos θ=错误!m >n >0,求θ的其他三角函数值.3.证明1 错误!=错误!2tan 2θ-sin 2θ=tan 2θsin 2θ4. 已知)1,2(,cos sin ≠≤=+m m m x x 且,求1x x 33cos sin +;2x x 44cos sin +的值.。
角的概念的推广,弧度制,任意角的三角函数[本周教学重点]理解角的定义,掌握正角、负角、零角以及象限角、终边相同角的概念,会写出各个象限角及终边相同角的集合的表达式。
理解弧度制的定义,正确进行角度制与弧度制之间的换算,清楚用弧度制度量角,使角的集合与实数集之间建立了一一对应的关系。
熟记任意角的六个三角函数值的定义,会确定三角函数的定义域,掌握各象限角的三角函数值的符号结论,能正确作出已知角的正弦线,余弦线,正切线。
1. 角的概念的推广①角的定义:一条射线绕其端点从一个位置旋转到另一个位置形成的图形叫做角。
射线的端点叫角的顶点,旋转开始时的射线叫角的始边,旋转结束时的射线叫角的终边。
②正角,负角,零角正角:射线按逆时针方向旋转所成的角叫正角。
负角:射线按顺时针方向旋转所成的角叫负角。
零角:射线不作任何方向的旋转,称它形成一个零角。
③象限角:让角的顶点与原点重合,角的始边与x轴的正半轴重合,则角的终边在第几象限,就称这个角是第几象限的角。
第一象限角的集合第二象限角的集合第三象限角的集合第四象限角的集合轴上角:角的顶点与原点重合,角的始边与x轴正半轴重合,终边在坐标轴上的角叫轴上角。
轴上角的集合象限角与轴上角是对角的集合的一种划分{角}={象限角}∪{轴上角}④终边相同的角的集合2. 弧度制①定义:弧长等于半径长时弧所对的圆心角叫做1弧度的角。
②弧度与角度的互化360°=2弧度,180°=弧度,③弧度制下弧长公式与扇形面积公式设圆半径长为r,弧所对圆心角(或扇形)弧度数为,弧长为,扇形面积为S,则3. 任意角三角函数①定义:设是一个任意角,P是终边上除顶点外任意一点,其坐标为(x,y),它与原点间距离为比值比值比值比值比值比值②三角函数定义域正弦函数定义域为R余弦函数定义域为R正切函数③三角函数值的符号④单位圆中三角函数线角终边依次在四个象限内时有向线段MP,OM,AT依次叫角的正弦线,余弦线,正切线即[本周教学例题]例1.判断下列各命题的真假(1)第一象限角是锐角,第二象限角是钝角;(2)小于90°的角是锐角,大于90°的角是钝角;(3)第二象限的角大于第一象限的角;(4)大于0°且小于180°的角是第一象限或第二象限的角。
任意角和弧度制及任意角的三角函数考点与提醒归纳一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. [解析] (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.[答案] (1)C (2)⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选B 当k =2n (n ∈Z )时,2n π≤α≤2n π+π4(n ∈Z ),此时α的终边和0≤α≤π4的终边一样,当k =2n +1(n ∈Z )时,2n π+π≤α≤2n π+π+π4(n ∈Z ),此时α的终边和π≤α≤π+π4的终边一样. 2.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为: β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ), 解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1, 代入得β=-675°或β=-315°. 答案:-675°或-315°考点二 三角函数的定义[典例] 已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解析] ∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-x x 2+36=-513,解得x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213, ∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.[答案] -23[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[题组训练]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C .35D .45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 考点三 三角函数值符号的判定[典例] 若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角[解析] 由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] C[解题技法] 三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.[题组训练]1.下列各选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0 D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin 10<0,故选D. 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意得⎩⎨⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限.[课时跟踪检测]A 级1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 2.(2019·石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C 由sin 150°=12 >0,cos 150°=-32<0,可知角α终边上一点的坐标为⎝⎛⎭⎫12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,因为0°≤α<360°,所以角α为300°.3.(2018·长春检测)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π-π3,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z 解析:选D 当α的终边在射线y =-3x (x ≤0)上时,对应的角为2π3+2k π,k ∈Z ,当α的终边在射线y =-3x (x ≥0)上时,对应的角为-π3+2k π,k ∈Z ,所以角α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z .4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( ) A.3 B .-5 C.5 D.3或5解析:选C 由题意知|OP |=3+y 2,则sin α=y 3+y 2=2y4,解得y =0(舍去)或y =±5,因为α为第二象限角,所以y >0,则y = 5.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,因为角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________. 解析:设此扇形的半径为r (r >0),由3π2=12×3π4×r 2,得r =2.答案:28.(2019·江苏高邮模拟)在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________.解析:∵60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案:39.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0,可得θ=-240°或θ=120°. 答案:120°或-240°10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又因为α是第四象限角,所以m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.12.已知α为第三象限角. (1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.解:(1)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(2)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当角α2在第四象限时,tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.B 级1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4 <α<-π2,所以α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α.2.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( )A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 因为点P 在第一象限,所以⎩⎪⎨⎪⎧ sin α-cos α>0,tan α>0,即⎩⎨⎧sin α>cos α,tan α>0.由tan α>0可知角α为第一或第三象限角,画出单位圆如图.又sin α>cos α,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即角α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.3.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a,3a )(a ≠0),所以x =-4a ,y =3a ,r =5|a |,当a >0时,r =5a ,sin θ+cos θ=35-45=-15; 当a <0时,r =-5a ,sin θ+cos θ=-35+45=15. (2)当a >0时,sin θ=35∈⎝⎛⎭⎫0,π2, cos θ=-45∈⎝⎛⎭⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝⎛⎭⎫-45<0; 当a <0时,sin θ=-35∈⎝⎛⎭⎫-π2,0, cos θ=45∈⎝⎛⎭⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝⎛⎭⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin(cos θ)的符号为正.。