勾股定理11
- 格式:doc
- 大小:199.00 KB
- 文档页数:2
勾股定理的证明与应用勾股定理是数学中的一条重要定理,它表明在直角三角形中,直角边的平方和等于斜边的平方。
本文将对勾股定理的证明方法进行探讨,并结合实际应用场景进行具体分析。
一、勾股定理的证明勾股定理最早可以追溯到中国古代。
相传,公元前11世纪的周朝时期,中国古代数学家祖冲之发现了勾股定理,并给出了一种证明方法。
他的证明方法基于图形的几何性质,被称为“割弦法”。
具体来说,首先假设有一个直角三角形,三边分别为a、b、c。
利用割弦法,我们可以得到如下等式:sin A = a / ccos A = b / c根据三角函数的定义,我们可以将上述两个等式相加:sin^2 A + cos^2 A = (a^2 / c^2) + (b^2 / c^2) = (a^2 + b^2) / c^2由于在直角三角形中,sin A 和 cos A 的平方和等于1,即 sin^2 A + cos^2 A = 1,因此可以得到:1 = (a^2 + b^2) / c^2进一步变换得:c^2 = a^2 + b^2因此,勾股定理得证。
二、勾股定理的应用勾股定理在数学和实际生活中都有广泛的应用。
下面将以几个实际场景为例,介绍勾股定理的应用。
1. 测量直角三角形的边长勾股定理可以用于测量一个直角三角形的边长。
假设我们已知一个直角三角形的两个直角边的长度分别为3和4,我们可以利用勾股定理计算出斜边的长度:c^2 = 3^2 + 4^2= 9 + 16= 25因此,斜边的长度为5。
2. 解决几何问题勾股定理在解决几何问题中有重要作用。
例如,我们可以利用勾股定理来判断一个三角形是否为直角三角形。
如果三条边的长度满足勾股定理的条件,即c^2 = a^2 + b^2,那么该三角形就是直角三角形。
3. 工程应用勾股定理在工程中也有广泛的应用。
例如,在建筑设计中,我们需要确保房间的角度为直角。
通过测量房间的两个边长,可以利用勾股定理来判断是否满足直角条件。
勾股定理常用11个公式勾股定理也叫毕达哥拉斯定理,指的是直角三角形中,任意一条直角边的平方等于另外两条边的平方之和。
勾股定理是数学中非常重要的一条定理,广泛应用于各个领域。
以下是勾股定理常用的11个公式:1. 勾股定理的一般形式在直角三角形 ABC 中,设 AB、AC 为直角边,BC 为斜边,则有:BC² = AB² + AC²2. 勾股定理的两个常见形式a. 已知直角边和斜边设直角边 AB = a,AC = b,BC = c,则有:c² = a² + b²b. 已知两条直角边设直角边 AB = a,BC = b,AC = c,则有:c² = a² + b²3. 勾股定理的逆定理如果在一个三角形中,某一边的平方等于另外两边的平方之和,那么这个三角形肯定是直角三角形,即有:若 c² = a² + b²,则三角形 ABC 是直角三角形。
4. 勾股数指满足勾股定理的整数三元组 (a, b, c),其中 a、b、c 都是正整数,称为勾股数。
例如:(3, 4, 5)、(5, 12, 13)。
5. 勾股数的生成公式生成勾股数的公式称为勾股数生成公式。
其中,m 和 n 是正整数,且 m > n,gcd(m, n) = 1,k 是任意正整数,则有:a = k × (m² - n²),b = k × (2mn),c = k × (m² + n²)6. 勾股数的性质a. 勾股数只存在于原始勾股数列中。
b. 勾股数之间不存在公因数。
c. 每个奇数都可以表示为两个勾股数之和。
d. 每个正整数都可以表示为不超过四个勾股数之和。
7. 勾股数的应用a. 构造直角三角形。
b. 计算斜线长度。
c. 解决一些证明问题。
d. 在几何光学中,勾股数用于计算光路长度。
勾股定理20种证明方法1. 最常见的勾股定理证明是基于三角形面积公式的。
利用三角形的底边与高的关系,可以将直角三角形分成两个三角形,然后应用面积公式进行计算得出勾股定理。
2. 通过向直角三角形内部引入一个圆形,利用圆的性质可以得到勾股定理。
3. 将直角三角形中的一条直角边平移到非直角边上,形成一个平行四边形,再利用平行四边形对角线的关系即可得到勾股定理。
4. 利用正弦定理和余弦定理进行推导,可以得出勾股定理。
5. 通过三角形内部的相似三角形进行推导得出勾股定理。
将直角三角形分成两个相似三角形,利用相似三角形的性质进行推导得出勾股定理。
6. 通过归纳法进行证明,即证明勾股定理对于所有自然数n都成立。
7. 利用勾股定理推导其他几何定理,例如正弦定理、余弦定理等,进而证明勾股定理。
8. 利用数学归纳法,可证勾股定理对于所有正整数n都成立。
9. 利用勾股定理证明勾股三角形的存在性,也就是存在一组自然数a、b、c,使得a²+b²=c²。
这可以通过暴力算法或递推算法来实现。
10. 利用反证法证明勾股定理。
假设勾股定理不成立,即假设存在一个直角三角形,其两条直角边的平方和不等于斜边的平方。
通过假设的前提,推导出矛盾的结论,从而证明勾股定理成立。
11. 利用勾股定理证明三角形的周长和面积公式。
将直角三角形分成两个直角三角形,利用勾股定理计算出直角边的长度,然后应用周长和面积公式。
12. 利用勾股定理证明三角形的内心与垂心之间的关系。
将直角三角形分成两个相似三角形,利用勾股定理计算出内心与垂心之间的距离。
13. 利用勾股定理证明三角形的外心与垂心之间的关系。
通过三角形的外接圆,证明外心与垂心之间的距离等于直角边之间距离的一半。
14. 利用圆的性质证明勾股定理。
将三角形中的一条直角边作为直径,表示成圆上的弦长,利用圆的定理得到勾股定理。
15. 通过三角形的相似性质,证明勾股定理。
将直角三角形分成两个与之相似的三角形,利用相似三角形的性质得到勾股定理。
勾股定理常用个公式勾股定理是数学中一个非常重要的定理,它是平面几何中的基础定理,常用来求解直角三角形的边长和角度。
根据勾股定理,我们可以推导出多个相关的公式来解决各种问题。
在本篇文章中,我将介绍11个常用的勾股定理公式,每个公式都会附带一个解析和一个示例。
1.三角形斜边的长度(已知两边长度):c=√(a²+b²),其中a和b分别是直角三角形的两条直角边的长度,c是斜边的长度。
示例:已知一个直角三角形的两条直角边的长度分别为3和4,求斜边的长度。
解析:根据公式,c=√(3²+4²)=√(9+16)=√25=5、因此,斜边的长度为52.直角三角形的直角边长度(已知斜边长度和另一直角边长度):a=√(c²-b²),其中b是已知直角边的长度,c是斜边的长度。
示例:已知一个直角三角形的斜边长度为5,另一直角边的长度为4,求第二个直角边的长度。
解析:根据公式,a=√(5²-4²)=√(25-16)=√9=3、因此,第二个直角边的长度为33.直角三角形的直角边长度(已知斜边长度和另一直角边长度):b=√(c²-a²),其中a是已知直角边的长度,c是斜边的长度。
示例:已知一个直角三角形的斜边长度为5,另一直角边的长度为3,求第二个直角边的长度。
解析:根据公式,b=√(5²-3²)=√(25-9)=√16=4、因此,第二个直角边的长度为44.直角三角形的面积(已知两个直角边的长度):A=1/2*a*b,其中a和b为直角三角形的两个直角边的长度。
示例:已知一个直角三角形的两个直角边的长度分别为3和4,求其面积。
解析:根据公式,A=1/2*3*4=6、因此,直角三角形的面积为65.直角三角形的周长(已知两个直角边的长度):P=a+b+c,其中a和b分别为直角三角形的两个直角边的长度,c为斜边的长度。
勾 股 定 理1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 4.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E题型四:利用勾股定理求线段长度——例题6 如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.BAC7.关于翻折问题例7、如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式:如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长.课后训练: 一、填空题1.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.图(1)2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。
b a22+【证法1】〔课本的证明〕做8a 、b 、c 的正.2a 整以a 、b ab21.把这四个直角三角C 、G、D 三点在一条直线上.∵Rt Δ∴∠AHE = ∠BEF . ∵∠AEH + ∠AHE = 90º, ∴∠AEH + ∠BEF = 90º. ∴∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵Rt ΔGDH ≌Rt ΔHAE, ∴∠HGD = ∠EHA .∵∠HGD + ∠GHD = 90º, ∴∠EHA + ∠GHD = 90º. 又∵∠GHE = 90º,∴∠DHA = 90º+ 90º= 180º.∴ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴222c b a =+.【证法3】〔爽证明〕以a 、b 为直角边〔b>a 〕, 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如下图形状.∵Rt ΔDAH ≌ Rt ΔABE, ∴∠HDA = ∠EAB .∵∠HAD + ∠HAD = 90º, ∴∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴()22214c a b ab =-+⨯.∴222c b a =+. 【证法4】〔1876年美国总统Garfield 证明〕以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如下图形状,使A 、E 、B 三点在一条直线上. ∵Rt ΔEAD ≌Rt ΔCBE, ∴∠ADE = ∠BEC .∵∠AED + ∠ADE = 90º, ∴∠AED + ∠BEC = 90º. ∴∠DEC = 180º―90º= 90º. ∴ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ABCD 是一个直角梯形,它的面积等于()221b a +.∴()222121221c ab b a +⨯=+. ∴222c b a =+.【证法5】〔梅文鼎证明〕 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵D 、E 、F 在一条直线上,且Rt ΔGEF ≌Rt ΔEBD, ∴∠EGF = ∠BED ,∵∠EGF + ∠GEF = 90°,∴∠BED + ∠GEF = 90°,∴∠BEG =180º―90º= 90º.又∵AB = BE = EG = GA = c ,∴ABEG 是一个边长为c 的正方形.∴∠ABC + ∠CBE = 90º. ∵Rt ΔABC ≌Rt ΔEBD, ∴∠ABC = ∠EBD .∴∠EBD + ∠CBE = 90º.即∠CBD= 90º.又∵∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则abS c 2122⨯+=,∴222c b a =+. 【证法6】〔项明达证明〕做两个全等的直角三角形,设它们的两条直角边长分别为a 、b 〔b>a 〕 ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如下图的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P .过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N .∵∠BCA = 90º,QP ∥BC , ∴∠MPC = 90º, ∵BM ⊥PQ ,∴∠BMP = 90º,∴BCPM 是一个矩形,即∠MBC = 90º. ∵∠QBM + ∠MBA = ∠QBA = 90º, ∠ABC + ∠MBA = ∠MBC = 90º, ∴∠QBM = ∠ABC ,又∵∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴Rt ΔBMQ ≌Rt ΔBCA .同理可证Rt ΔQNF ≌Rt ΔAEF . 从而将问题转化为【证法4】〔梅文鼎证明〕. 【证法7】〔欧几里得证明〕做三个边长分别为a 、b 、c 的正方形,把它们拼成如下图形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L .∵AF = AC ,AB = AD ,∠FAB = ∠GAD , ∴ΔFAB ≌ΔGAD , ∵ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形∴222b ac += ,即 222c b a =+. 【证法8】〔利用相似三角形性质证明〕如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ΔADC ∽ΔACB .AD ∶AC = AC ∶AB ,即AB AD AC •=2.同理可证,ΔCDB ∽ΔACB ,从而有AB BD BC •=2.∴()222AB AB DB AD BC AC =•+=+,即 222c b a =+.【证法9】〔作玫证明〕做两个全等的直角三角形,设它们的两条直角边长分别为a 、b 〔b>a 〕,斜边长为c . 再做一个边长为c 的正方形.把它们拼成如下图的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵∠BAD = 90º,∠PAC = 90º, ∴∠DAH = ∠BAC . 又∵∠DHA = 90º,∠BCA = 90º,AD = AB = c ,∴Rt ΔDHA ≌Rt ΔBCA . ∴DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵Rt ΔDGT ≌Rt ΔBCA ,Rt ΔDHA ≌Rt ΔBCA .∴Rt ΔDGT ≌Rt ΔDHA .∴DH = DG = a ,∠GDT = ∠HDA . 又∵∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴DGFH 是一个边长为a 的正方形.∴GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +〔b ―a 〕. 用数字表示面积的编号〔如图〕,则以c 为边长的正方形的面积为543212S S S S S c ++++=①∵()[]()[]a b a a b b S S S -+•-+=++21438=ab b 212-, 985S S S +=,∴824321S ab b S S --=+=812SS b --.② 把②代入①,得=922S S b ++ = 22a b +. ∴222c b a =+. 【证法10】〔锐证明〕设直角三角形两直角边的长分别为a 、b 〔b>a 〕,斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如下图形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号〔如图〕.∵∠TBE = ∠ABH = 90º, ∴∠TBH = ∠ABE .又∵∠BTH = ∠BEA = 90º,BT = BE = b ,∴Rt ΔHBT ≌Rt ΔABE . ∴HT = AE = a . ∴GH = GT ―HT = b ―a .又∵∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90∴∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º,∴Rt ΔHGF ≌Rt ΔBDC . 即27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌Rt ΔQAM .即58S S =.由Rt ΔABE ≌Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴∠FQM = ∠CAR .又∵∠QMF = ∠ARC = 90º,QM = AR = a ,∴Rt ΔQMF ≌Rt ΔARC . 即64S S =.∵543212S S S S S c ++++=,612S S a +=,8732S S S b ++=, 又∵27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++ =2c ,即 222c b a =+. 【证法11】〔利用切割线定理证明〕在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得=()()BD AB BE AB -+ =()()a c a c -+ = 22a c -, 即222a c b -=,∴222c b a =+. 【证法12】〔利用多列米定理证明〕在Rt ΔABC 中,设直角边BC = a ,AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 接于一个圆. 根据多列米定理,圆接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴222AC BC AB +=,即 222b a c +=,∴222c b a =+.【证法13】〔作直角三角形的切圆证明〕在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边O ,切点分别为D 、E 、F 〔如图〕,设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即r c b a 2=-+,∴c r b a +=+2. ∴()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵abS ABC 21=∆, ∴ABC S ab ∆=42, 又∵AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴()ab rc r242=+,∴22222c ab ab b a +=++, ∴222c b a =+. 【证法14】〔利用反证法证明〕如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵∠A = ∠A , ∴假设 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵∠B = ∠B ,∴假设BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵∠ACB = 90º,∴∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴222c b a =+.【证法15】〔辛卜松证明〕ABCD . 把正方形ABCD 划分ABCD 划分成上方右图 ()2b a +∴2a +2c =.【证法〔b>a 〕a 、b 的正方形〔b>a 〕,把它. . D D在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c .∵EM = EH + HM = b + a , ED = a ,∴DM = EM ―ED = ()a b +―a = b .又∵∠CMD = 90º,CM = a ,∠AED = 90º, AE = b , ∴Rt ΔAED ≌Rt ΔDMC .∴∠EAD = ∠MDC ,DC = AD = c . ∵∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ΔABF ≌ΔADE .∴∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵AB = BC = c ,BF = CG = a , ∴Rt ΔABF ≌Rt ΔBCG .∵54322S S S S c +++=, 6212S S S b ++=,732S S a +=, 76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++ =5432S S S S +++ =2c∴222c b a =+.。
勾股定理的所有证明方法勾股定理是数学中的经典定理,也是最为著名的几何定理之一。
它指出,对于一个直角三角形,其斜边的平方等于两腰的平方和。
这个定理的证明方法有很多种,本文将介绍其中的一些。
1. 几何证明法几何证明法是最为直观的证明方法,它通过图形的构造和几何关系的推导来证明定理的正确性。
具体来说,我们可以通过以下步骤来进行证明:(1)画出一个直角三角形ABC,其中∠B为直角,边长分别为a、b、c。
(2)以AB为直角边,画出一个正方形ACDE,使得AE=AB=c。
(3)以BC为直角边,画出一个正方形BFGH,使得BG=BC=a。
(4)连接DG、EF两条线段,交于点I。
(5)由于正方形的对角线相等,因此DI=AF=c,EI=BF=a。
(6)根据正方形的性质可知,DG=GH=EF=EI=a。
(7)因此,三角形ADI、BFI、DGH都是等腰直角三角形,且它们的底边分别为a、b、c。
(8)根据勾股定理可知,ADI和BFI的斜边分别为c和a,因此它们的底边分别为b。
(9)由此可得,b=c-a和b=a-c,即勾股定理成立。
2. 代数证明法代数证明法是通过代数运算来证明定理的正确性。
具体来说,我们可以通过以下步骤来进行证明:(1)假设有一个直角三角形ABC,其中∠B为直角,边长分别为a、b、c。
(2)根据勾股定理可知,c=a+b。
(3)将上式移项得到a=c-b。
(4)同理可得b=c-a。
(5)因此,勾股定理成立。
3. 平面几何证明法平面几何证明法是通过平面几何中的相关定理和性质来证明定理的正确性。
具体来说,我们可以通过以下步骤来进行证明:(1)假设有一个直角三角形ABC,其中∠B为直角,边长分别为a、b、c。
(2)作AC的垂线BD,交于点E。
(3)根据勾股定理可知,c=a+b。
(4)根据相似三角形的性质可知,BDE和ABC相似。
(5)因此,BD/AB=DE/AC,即BD/c=DE/a。
(6)移项得到BD=c/a。
专题11勾股定理的实际应用模型勾股定理将图形与数量关系有机结合起来,在解决实际问题和几何应用中有着广泛的应用。
运用勾股定理解决实际问题的一般步骤:(1)从实际问题中抽象出几何图形(建模);(2)确定要求的线段所在的直角三角形;(3)确定三边,找准直角边和斜边:①若已知两边,则根据勾股定理直接计算第3边;②若已知一边,则根据勾股定理列方程间接求解。
(挖掘两个未知边之间的数量关系,设出一边为未知数,把另一边用含有未知数的式子表示出来)。
模型1、梯子滑动模型相关模型背景:梯子滑动、绳子移动等。
解题关键:梯子的长度为不变量、墙与地面垂直。
梯子滑动模型解题步骤:1)运用勾股定理求出梯子滑动之前在墙上或者地面上的距离;2)运用勾股定理求出梯子滑动之后在墙上或者地面上的距离;3)两者相减即可求出梯子在墙上或者地面上滑动的距离。
例1.(2023春·安徽亳州·八年级校考期中)风华中学八年级(2班)小明同学和他的好朋友小亮一起利用所学知识完成下面的操作,如图,梯子AB斜靠在墙角MON处,4mAB=,梯子底端离墙角的距离 2.4mBO=.(1)求这个梯子顶端A距地面有多高;(2)上下移动梯子的过程中,小明发现梯子上总有一个定点到墙角O的距离始终是不变,你能说出这个点并说明其中的道理吗?(3)若梯子顶端A下滑的距离为m a,底端B向左滑b,小亮认为a与b的值始终相等,小明认为b可能比a的值大,也可能比a的值小,也有可动的距离为m能相等.你认为他们两个谁说的正确,请说明理由.A.2m B.2.5m例3.(2023秋·河南郑州·八年级校考期末)图中的两个滑块平的滑道上滑动.开始时,滑块A时,滑块B滑动了厘米.例4.(2023春·重庆·八年级专题练习)位于沈阳周边的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A子拉船移动,开始时绳子AC的长为D的位置,问此时游船移动的距离模型2、轮船航行模型相关模型背景:轮船航行等。
【学习目标】 1. 通过数格子或割、补等方法探索勾股定理,能正确说出勾股定理。
2. 能运用勾股定理进行简单的计算,解决求直角三角形三边之间的
数量关系的问题。
【学习重点】勾股定理的探索。
【学习难点】运用勾股定理,进行简单的计算。
【自学指导】自学课本2-3页,完成做一做。
完成下列问题:
1. 请你任意画一个直角三角形,分别测量它的三条边,看看三边长的平方之间有怎样的关系?与小组同学交流。
图中每个小方格代表一个单位面积
(1)观察图1,
正方形A中含有个小方格,
即它的面积是个单位面积。
正方形B的面积是个单位面积。
正方形C的面积是个单位面积。
(2)在图2中,正方形A、B、C中各含
几个小方格?它们的面积各是多少?
(3)你能发现两图中三个正方形
A、B、C的面积之间有什么关系吗?
(4)图3,正方形A的面积是个
单位面积,正方形B的面积是个
单位面积,正方形C的面积是个
单位面积。
问题:如何求正方形C的面积?有哪
些方法?正方形 A、B、C的面积之间
有什么关系吗?
3. 勾股定理:
如果用a,b和c分别表示直角三角形的两直角边和斜边,那么
【自学检测】
1. 求下列图中字母所代表的正方形的面积。
2.
4,5,则第三边长的平方为 3. 求下列图中表示边的未知数x 、
【达标检测】
1. 求出下列直角三角形中未知边的长度。
2. 求斜边长为17cm 、一条直角边长为15cm 的直角三角形的面积。
3. 如图,求等腰三角形ABC 的面积。
4. 判断正误并说明理由:
若直角三角形的两条边长为6cm 、8cm ,则第三边长一定为10cm.
5. 直角三角形的两边长为4,5,则第三边长的平方为
【课时小结】 通过本节课学习,你学会了哪些知识?你心中还存在什么疑惑? 【作业】 课本P5习题1.1 【反思】
5
3
z
6
8 5
y
A
B。