螺旋弹簧与减振器
- 格式:doc
- 大小:32.00 KB
- 文档页数:4
前减震的原理构造汽车前减震器是汽车悬挂系统中的重要组成部分,主要起到减震和稳定车身的作用。
它通过吸收和减少汽车在行驶过程中遇到的颠簸和震动,减少车身的摇晃和抖动,提供舒适的乘坐感受,提高车辆的操控性和稳定性。
下面将从前减震器的原理和构造两个方面详细介绍。
一、前减震器的工作原理前减震器是通过阻尼器将汽车遇到的震动和颠簸转化为热能散发出去,从而减少车身的震动和抖动。
前减震器主要依靠弹簧和阻尼器的作用来实现减震。
工作原理如下:1.弹簧的作用:汽车前减震器中通常采用螺旋式弹簧。
当汽车经历不平坦路面上的震动时,弹簧会变形,并储存能量。
当车辆通过不平坦路面时,弹簧会向下挤压,吸收震动,起到减震的作用。
当车辆通过平坦路面时,弹簧弹回原状,将储存的能量释放出来。
2.阻尼器的作用:阻尼器通过阻碍弹簧的振动来减少车身的震动。
阻尼器内有一根活塞杆和阻尼油。
当车辆行驶过程中遇到颠簸时,活塞杆会上下运动,同时使阻尼油通过阻尼孔流动。
阻尼油的流动会产生阻尼力,减缓车身的上下运动,从而减少车身的震动。
阻尼器中的阻尼油还可以起到冷却和润滑的作用,延长减震器使用寿命。
二、前减震器的构造前减震器通常由弹簧、阻尼器和配重器组成。
具体构造如下:1.弹簧:汽车前减震器的弹簧通常采用螺旋簧。
螺旋簧通过与减震器固定在一起的法兰盖连接,固定在车身和车轮悬挂系统之间。
它的长度、直径和线圈的数量可以根据汽车的重量和悬挂要求进行调整。
2.阻尼器:阻尼器是前减震器中的关键部件,通过阻止弹簧的振动来减缓车身的震动。
阻尼器内部包含有活塞杆、阻尼油、阻尼孔等。
活塞杆连接着车轮悬架和车身的上部,通过大约40多个塞孔与阻尼油室相连接。
当车辆经过不平整路面时,活塞杆会上下运动,使阻尼油通过阻尼孔流动,从而产生阻尼力。
3.配重器:配重器用于调整和平衡弹簧和阻尼器之间的关系,以保证减震器的稳定性和工作效果。
配重器通常位于减震器的上部,由金属和橡胶等材料制成。
配重器的设计和制造需要考虑到汽车的负载和悬挂系统的要求。
螺旋弹簧减震器的拆装实训心得
1. 准备工作:首先需要将车辆抬起,将螺旋弹簧减震器所在的车轮离地。
然后需要准备相应的工具,如扳手、起子等。
2. 拆卸:依次拆卸减震器上的各个部件,包括固定螺栓、弹簧座、减震器上部的各种零件等。
3. 观察零件:在拆卸过程中需要仔细观察每个零件的状况和位置,确保之后安装正确。
4. 清洗:清洗减震器各个零件,在清洗之前可以先用刷子或气压清除灰尘和污垢,注意不要使用过度的清洁液。
需要注意的是,气压清洗时需要戴好防护镜、手套等。
5. 更换零件:如果旧的零件已经损坏或出现问题,需要对其进行更换,更换后需要确保零件型号、规格和质量等与原品一致,以确保减震器的稳定性和安全性。
6. 安装:根据拆卸时观察和记录的位置和顺序,安装减震器各个零件。
需要注意的是,安装时需要保持各个部件处于平衡状态,避免出现装配不当的情况。
7. 调试:安装完成后需要进行调试,检查减震器的性能和稳定性,并进行试车。
如果发现问题需要及时处理。
总之,螺旋弹簧减震器的拆装实训需要仔细、耐心、谨慎,不能出现任何过失,在操作过程中一定要保证安全。
如果您要进行该实训,请确保有专业人员指导,并按照相关操作规程进行实际操作。
减震器工作原理及类型减震器是一种用于减少或抑制振动和冲击的设备,广泛应用于车辆、建筑、机械设备等领域。
减震器的工作原理和类型多种多样,下面将详细介绍。
减震器的工作原理主要有两种,一种是通过减振材料的吸能特性来消耗能量,减少振动和冲击的传导;另一种是通过改变振动传导路径,将振动转化为其他形式的能量。
具体来说,减震器在接受振动或冲击时,会使减震器内部材料发生相对移动或变形,从而消耗掉一部分能量。
通常,减震器内部有减振材料,如:弹簧、橡胶、液体、气体等,这些材料具有弹性或吸能特性,能够有效减轻振动和冲击。
减震器的类型包括:机械减震器、弹簧减震器、液压减震器、空气减震器等。
机械减震器是一种基本的减振装置,它通过刚性或柔性连接件连接和支撑振动的两个装置,通过限制和分散振动的传递路径来减少振动和冲击。
常见的机械减震器包括橡胶垫片、弹性支撑座等。
弹簧减震器主要利用弹性材料的弹性特性来吸收和分散振动能量。
它由弹簧和阻尼装置组成。
弹簧负责支撑载荷和吸收小幅振动,阻尼装置则用于吸收大幅振动和冲击。
常见的弹簧减震器有螺旋弹簧减震器、弹簧阻尼器等。
液压减震器利用液体的可压缩特性和流动阻力来减轻振动和冲击。
它由活塞、缸筒、液体等组成。
当受到振动或冲击时,活塞在缸筒内运动,通过液体的流动和粘滞阻力来吸收和减轻振动能量。
液压减震器可以根据需要,调节液体的流动阻力和压力,以适应不同的振动和冲击条件。
空气减震器利用气体的压缩和膨胀特性来减少振动和冲击。
它由气体室、气压控制装置等组成。
当受到振动或冲击时,气体室内的气体会产生压缩和膨胀,通过气压的调节来减轻振动和冲击能量。
空气减震器具有可调节性好的特点,适用于一些需要精确控制振动和冲击的场合。
除了上述减震器类型外,还有一些其他特殊的减震器,如:液气混合减震器、磁流变减震器等。
这些减震器在特定的领域和需求下,具有特殊的减震性能和优势。
综上所述,不同类型的减震器有各自的工作原理和特点,可以根据实际需求选择适合的减震器,以减少振动和冲击对设备和结构的损伤,提高安全性和舒适性。
浅析弹簧液压式减震器的不足对于现代运动型多用于汽车而言,传统的弹簧液压式减震器无法解决舒适性和运动性之间的矛盾,存在诸多难以克服的弊端:
一.螺旋弹簧受到冲击后会产生振动,持续的振动易导致骑乘者疲劳和烦躁,潜伏不安全隐患;
二.减震器的阻尼力越大,振动消减得越快,但却使并联在减震器外部的螺旋弹簧不能充分发挥作用,同时过大的阻尼力,还可能导致减震器连接零件及车架损坏;
三.液压阻尼力随着温度的变化而变化,长时间使用后,液压油与细小孔壁之间的摩擦以及液体分子内摩擦产生大量的热量,导致液压油温度升高,粘度迅速降低,阻尼力也随之减少,减震器的减振性能随之恶化;
四.反应迟钝,无法适应复杂多变的运动型摩托车行驶工况要求,如高速行驶中突遇障碍物,往往易于导致减震器击穿,完全失去减振作用;
五.调节非常有限,现有的多级可调减震器一般只能调节螺旋弹簧的预载荷,增大弹簧的刚度,无法真正满足不同路面、不同载荷的行驶工况要求;更多资讯请关注中国减振器交易网。
减震弹簧工作原理减震弹簧是一种基本的机械元件,广泛应用于汽车、工程机械、军工等领域。
减震弹簧的主要作用是在载荷作用下减少弹性变形,并通过削减能量,使振动能量转化为热能和声能,从而减少被振动物体的振幅和能量。
本文将介绍减震弹簧的工作原理和应用领域。
减震弹簧的结构和分类1. 螺旋弹簧:由一根螺旋状轴线上的弹簧组成。
螺旋弹簧主要应用于振动频率较高、载荷较小的场合。
3. 液压减震器:由液压缸和螺旋弹簧组成。
液压减震器主要应用于振动频率较高、需要更精密的控制和调节的场合。
减震弹簧的工作原理是通过将能量从振动物体转移至弹簧上,并将这些能量削减为不活跃状态的热能和声能。
在汽车、工程机械等行业中,减震弹簧主要起到两个作用:1. 吸收冲击力:当汽车行驶在不平路面上时,车轮会受到路面的冲击力,这些冲击力会传递到车身。
减震弹簧可以吸收这些冲击力,保证驾乘的舒适感。
2. 辅助悬架系统:汽车的悬架系统由多个部件组成,其中包括减震弹簧。
减震弹簧可以通过调节其自身的刚度和阻尼,帮助悬架系统更好地完成缓冲和支撑作用。
1. 初始状态:假设一辆汽车运动到不平路面上,车轮受到冲击力。
在这个过程中,车身和减震弹簧都处于初始的静止状态。
2. 变形阶段:当车轮接触到不平路面时,车轮会受到冲击力,使得车身和弹簧发生变形。
在这个过程中,弹簧会储存能量。
3. 释放阶段:弹簧受到的冲击力会迅速释放,并将储存的能量转移至弹簧上,消耗掉一部分振动能量。
4. 平稳阶段:在汽车通过不平路面的过程中,弹簧会不断地吸收并削减振动能量,让振幅逐渐减小,从而保证驾乘的舒适感。
应用领域汽车领域减震弹簧在汽车领域的应用主要包括四个方面:1. 悬架系统:减震弹簧作为悬架系统的关键部件之一,通过其自身的刚度和阻尼,帮助车轮更好地适应路面不平,保证车身稳定性和驾乘舒适性。
2. 底盘系统:汽车的底盘系统包括了车轮、车体及连接它们的部件。
减震弹簧在汽车的底盘系统中有着重要的作用,主要是通过吸收振动和冲击力保证驾乘舒适感。
减震器内置弹簧工作原理减震器是一种常见的汽车零部件,它的主要功能是减少车辆行驶时由路面不平造成的震动,提高行车的稳定性和乘坐的舒适性。
其中,减震器内置弹簧起着重要作用。
减震器内置弹簧的工作原理是通过弹性变形来吸收和分散来自路面的冲击力,从而减少车身的震动。
当车辆行驶在不平坦的路面上时,车轮会受到来自路面的冲击力,这些冲击力会传递到减震器上。
减震器内置的弹簧会根据受力的大小和方向发生弹性变形,从而吸收和分散这些冲击力。
减震器内置弹簧的工作原理可以通过以下几个步骤来解释。
首先,当车轮受到冲击力时,减震器内部的弹簧开始变形。
弹簧的变形可以将冲击力转化为弹性势能,从而将冲击力储存起来。
其次,当车轮通过不平顺的路面时,弹簧会向上或向下弹起,释放储存的弹性势能,并将其转化为动能,从而帮助车辆保持平稳的行驶。
最后,减震器内置弹簧通过反复的弹性变形和释放,不断吸收和分散来自路面的冲击力,使车辆能够平稳地行驶。
减震器内置弹簧的工作原理可以通过弹簧的材质和结构来进一步解释。
弹簧通常由高强度的钢材制成,具有良好的弹性和抗变形能力。
弹簧的结构可以分为螺旋弹簧和叶片弹簧两种。
螺旋弹簧由一根或多根弹簧圈组成,通过弹簧的螺旋形变实现弹性变形。
叶片弹簧由一片或多片金属叶片组成,通过叶片的弯曲变形实现弹性变形。
这些弹簧的结构特点使其能够承受较大的压缩或拉伸力,并恢复到原始状态。
减震器内置弹簧的工作原理还与减震器的其他部件密切相关。
减震器内部还有阻尼器,它的作用是控制弹簧的变形速度,使车辆能够平稳过渡。
当弹簧变形时,阻尼器会产生阻尼力,减缓弹簧的变形速度,防止车辆产生剧烈的抖动。
此外,减震器还具有外壳和密封装置,用于保护内部部件免受外界环境的侵害,并保持减震器的正常工作。
减震器内置弹簧是减震器中的重要部件,它通过弹性变形吸收和分散来自路面的冲击力,提高车辆行驶的稳定性和乘坐的舒适性。
弹簧的材质和结构以及与其他部件的配合,使减震器能够有效地工作。
弹簧减震知识点总结一、弹簧减震概述弹簧减震是一种机械减震系统,通过利用弹簧和减震器来减少汽车、摩托车等车辆在行驶中产生的震动,并提高行驶的舒适性和稳定性。
弹簧减震系统在车辆悬挂和悬架系统中起着非常重要的作用,它对车辆的操控性、安全性和乘坐舒适性都有着直接的影响。
二、弹簧减震的原理1. 弹簧的作用弹簧是弹簧减震系统中的重要组成部分,它的作用是通过弹簧的弹性来吸收和减缓车辆在行驶过程中所受到的冲击和振动,减少车身的摇晃和颠簸感。
弹簧的弹性系数和设计参数直接影响着车辆的悬挂性能和乘坐舒适性。
2. 减震器的作用减震器是弹簧减震系统中另一个重要的组成部分,它通过内部的活塞和阻尼油来减少弹簧弹性的弹射效应,降低车辆在行驶时的颠簸和震动。
减震器的阻尼力和回弹力是决定车辆行驶稳定性和舒适性的关键因素。
三、弹簧减震系统的类型1. 螺旋弹簧螺旋弹簧是一种常见的弹簧减震系统,它主要应用于轿车、SUV和小型货车等汽车,可以通过调节螺旋弹簧的弹簧预载量和弹簧刚度来实现对车辆悬挂性能和行驶舒适性的调节。
2. 悬架弹簧悬架弹簧是一种应用于摩托车和自行车等两轮车辆的弹簧减震系统,它一般由前后悬挂、前叉和后桥等部件组成,可以通过调节挂架弹簧的预载量和弹簧刚度来实现对车辆行驶稳定性和舒适性的调节。
四、弹簧减震系统的优缺点1. 优点弹簧减震系统具有结构简单、维护方便、成本低和适应性强等优点,能够在各种路况下提供较好的悬挂性能和行驶舒适性。
2. 缺点弹簧减震系统在遇到大幅度颠簸和冲击时,其减震效果和阻尼性能相对较差,容易产生弹簧弹射效应和车身短暂的颠簸感。
同时,弹簧减震系统的调节范围相对有限,无法满足高速、运动型和重型车辆的悬挂性能要求。
五、弹簧减震系统的维护保养1. 定期检查对弹簧减震系统进行定期检查,包括弹簧的预载量、弹簧刚度、减震器的阻尼力和回弹力等关键参数的检测和调整,以确保系统的正常运行和良好的减震效果。
2. 润滑保养及时对减震器内部的活塞和阻尼油进行润滑和更换,以确保减震器的阻尼力和回弹力处于良好的状态,提高其工作效率和使用寿命。
方向盘螺旋弹簧的作用原理方向盘螺旋弹簧是安装在汽车方向盘上的一个重要部件,主要起到防震和回弹的作用。
它的作用原理是通过其特殊结构设计和材料弹性来实现的。
方向盘螺旋弹簧的结构通常由一根圆柱形弹簧组成,上端固定在方向盘上,下端连接到转向齿轮中心。
当司机转动方向盘时,方向盘螺旋弹簧就会发挥作用。
方向盘螺旋弹簧在汽车行驶过程中起到减震的作用。
当车辆行驶在不平坦的路面上或者通过颠簸的路段时,车辆底盘会受到外力的振动和冲击。
这些振动和冲击力很容易传导到方向盘上,使得司机手握方向盘时感受到剧烈的震动。
方向盘螺旋弹簧的存在可以减轻这些冲击和振动的传导,使得司机在驾驶过程中感受到的震动明显减少,提高了驾驶的舒适性。
另外,方向盘螺旋弹簧还具有回弹的作用。
当司机将方向盘从一个方向转向另一个方向时,方向盘螺旋弹簧会在一定程度上提供回弹力。
这种回弹力可以帮助方向盘回到中性位置,在一定程度上降低了方向盘在驾驶过程中的抖动和偏移。
同时,司机通过感受回弹力也能够更好地掌握方向盘的转向情况,提高了操控的灵敏度和准确性。
方向盘螺旋弹簧的作用原理可以从材料弹性和结构设计两方面来解释。
首先,方向盘螺旋弹簧采用了特殊的材料,通常是优质的合金钢。
这种合金钢具有较高的弹性模量和弹性极限,能够在受到外力作用时产生较大的变形,并在去除外力后恢复原状。
这种弹性特性使得方向盘螺旋弹簧能够承受和吸收来自道路的冲击和震动,减少对方向盘和司机手部的传导。
其次,方向盘螺旋弹簧的结构设计也非常精巧。
它通常采用螺旋形状,这样在受到旋转力矩时可以产生相反的扭矩,从而起到回弹的作用。
同时,螺旋形状的设计还能够使得弹簧具有较大的变形量和回复力,进一步提高了减震和回弹效果。
此外,方向盘螺旋弹簧还可以通过调整螺旋的角度和弹簧的螺距来实现不同的减震和回弹效果,以适应不同车型和驾驶需求。
总结起来,方向盘螺旋弹簧的作用原理主要是通过材料的弹性和结构设计的合理安排来实现的。
它可以减轻方向盘传导的冲击和震动,提高驾驶的舒适性;同时,它还可以提供回弹力,帮助方向盘回到中性位置,提高操控的灵敏度和准确性。
自行车中的物理减震原理自行车的减震原理是通过减震系统来缓解路面的震动对车身和骑行者的影响,提供更加舒适和稳定的骑行体验。
减震系统通常由减震器和弹簧组成,其工作原理可以分为弹性减震和液压减震两种类型。
弹性减震是较为常见的一种减震原理,主要是通过弹簧的弹性变形来吸收路面震动。
在自行车减震系统中,常见的弹簧类型有螺旋弹簧和气压弹簧。
当车轮经过起伏路面时,路面的不平坦会导致车轮上下移动,这时弹簧就会被压缩或拉伸,从而能够吸收路面震动。
通过调节弹簧的硬度或预载量,可以适应不同的路面条件和骑行需求。
比如,螺旋弹簧的减震原理是利用弹簧的变形实现震动的缓冲和吸收。
螺旋弹簧通常位于车架前叉或后挡泥板上,当车轮经过颠簸的路面时,弹簧会被压缩。
弹簧的变形会产生储存的弹性能量,使得车轮上升时减缓车架的晃动,从而提供更为平稳的骑行感受。
气压弹簧是近年来发展起来的一种减震原理,通过高压气体的压缩来提供稳定的减震效果。
气压弹簧通常位于汽车后悬架系统或自行车前叉的气压减震系统中。
当车轮经过路面不平时,气压弹簧会由于气体的压缩而产生变形,从而吸收路面震动。
与螺旋弹簧相比,气压弹簧能够根据用户需求和路面条件进行调节,提供更灵活的减震效果。
液压减震是另一种常用的减震原理,其原理是通过液体的阻尼来吸收和缓解路面震动。
液压减震通常由阻尼器和液体组成,当车轮经过不平坦的路面时,液体会通过阻尼器的阻力来减缓车架的振动。
阻尼器通常包含有压缩阻尼和回弹阻尼两个阶段,通过调节阻尼系数和液压流量来实现不同的减震效果。
有些高端自行车减震系统还采用了复合减震原理,同时结合弹性减震和液压减震。
这样可以充分发挥两者的优势,提供更高效的减震效果。
总之,自行车的减震原理通过减震系统来吸收和缓解路面震动,提供更稳定和舒适的骑行体验。
弹性减震和液压减震是常见的减震方式,其原理是通过弹簧和液体的变形或阻尼来实现减震效果。
不同类型的减震系统可以根据用户需求和路面条件进行调节和选择,以提供最佳的减震效果。
螺旋弹簧与减振器螺旋弹簧与减振器在“汽车的悬架”一文,已经介绍了悬架上的螺旋弹簧和减振器,麦弗逊式及烛式悬架都将它们组合在一起。
为什么要把螺旋弹簧和减振器组合在一块呢?这是因为乘坐的舒适性有赖于对冲击的缓冲和对冲击产生的振动的消减两个方面,缺一不可。
只有缓冲没有消振只能暂时缓和冲击力的影响而不能最终使它消失;只有对振动的消减而没有缓冲则不能有效地避免冲击所造成的破坏。
螺旋弹簧是缓冲元件,形似螺旋线而得名,它具有不需润滑,不怕污垢,重量小且占空间位置少的优点。
当路面对轮子的冲击力传到螺旋弹簧时,螺旋弹簧产生变形,吸收轮子的动能,转换为螺旋弹簧的位能(势能),从而缓和了地面的冲击对车身的影响。
但是,螺旋弹簧本身不消耗能量,储存了位能的弹簧将恢复原来的形状,把位能重新变为动能。
如果单独使用弹簧而没有消振元件,一些轻型汽车就会像杂技演员跳“蹦蹦床”一样,受到一次冲击后连续不断地上下运动。
减振器形似筒状,是一种消振元件。
它的工作形式在“汽车的悬架”里已经有所介绍,就是利用本身的油液流动的阻力来消耗振动的能量。
当减振器内的油缸活塞受外力作用移动时,油液高速流经阻尼孔道,通过摩擦消耗动能,转换为热量,从而使地面对汽车的冲击作用减弱直至消失。
但是,能量的消耗是需要时间的,要产生有效的摩擦,孔道必须做得很小,由于单位时间流过的液体有限,产生的摩擦损耗也有限,减振器不能在短时间内消除振动。
如果单独使用减振器而没有缓冲元件,地面冲击的作用将直接加在车身上,使乘员不堪忍受。
因此,螺旋弹簧与减振器组合使用是一种力学上的巧妙组合,充分利用二者的特点,能够即时缓冲地面的冲击,并在螺旋弹簧几个来回过程中拖动减振器活塞,驱动油液把大部分振动能量吸收掉,使得汽车迅速平稳下来轿车的悬架舒适性是轿车最重要的使用性能之一。
舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。
所以,汽车悬架是保证乘坐舒适性的重要部件。
同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。
因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。
汽车悬架包括弹性元件,减振器和传力装置等三部分,这三部分分别起缓冲,减振和力的传递作用。
从轿车上来讲,弹性元件多指螺旋弹簧,它只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小,质量小,无需润滑的优点,但由于本身没有摩擦而没有减振作用。
减振器指液力减振器,是为了加速衰减车身的振动,它是悬架机构中最精密和复杂的机械件。
传力装置是指车架的上下摆臂等叉形刚架、转向节等元件,用来传递纵向力,侧向力及力矩,并保证车轮相对于车架(或车身)有确定的相对运动规律。
汽车悬架的形式分为非独立悬架和独立悬架两种:非独立悬架的车轮装在一根整体车轴的两端,当一边车轮跳动时,影响另一侧车轮也作相应的跳动,使整个车身振动或倾斜,汽车的平稳性和舒适性较差,但由于构造较简单,承载力大,目前仍有部分轿车的后悬架采用这种型式。
独立悬架的车轴分成两段,每只车轮用螺旋弹簧独立地安装在车架(或车身)下面,当一边车轮发生跳动时,另一边车轮不受波及,汽车的平稳性和舒适性好。
但这种悬架构造较复杂,承载力小。
现代轿车前后悬架大都采用了独立悬架,并已成为一种发展趋势。
独立悬架的结构分有烛式、麦弗逊式、连杆式等多种,其中烛式和麦克弗逊式形状相似,两者都是将螺旋弹簧与减振器组合在一起,但因结构不同又有重大区别。
烛式采用车轮沿主销轴方向移动的悬架形式,形状似烛形而得名。
特点是主销位置和前轮定位角不随车轮的上下跳动而变化,有利于汽车的操纵性和稳定性。
麦克弗逊式是绞结式滑柱与下横臂组成的悬架形式,减振器可兼做转向主销,转向节可以绕着它转动。
特点是主销位置和前轮定位角随车轮的上下跳动而变化,这点与烛式悬架正好相反。
这种悬架构造简单,布置紧凑,前轮定位变化小,具有良好的行驶稳定性。
所以,目前轿车使用最多的独立悬架是麦弗逊式悬架。
关于麦弗逊悬架,车坛历史上还有这么一段记载。
麦弗逊(Mcpherson)是美国伊利诺斯州人,1891年生。
大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924年加入了通用汽车公司的工程中心。
30年代,通用的雪佛兰分部想设计一种真正的小型汽车,总设计师就是麦弗逊。
他对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是悬架。
麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬架方式,创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。
实践证明这种悬架形式的构造简单,占用空间小,而且操纵性很好。
后来,麦弗逊跳槽到福特,1950年福特在英国的子公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。
麦弗逊悬架由于构造简单,性能优越的缘故,被行家誉为经典的设计。
现代轿车的悬架都有减振器。
当轿车在不平坦的道路上行驶,车身会发生振动,减振器能迅速衰减车身的振动,利用本身的油液流动的阻力来消耗振动的能量。
当车架与车轴相对运动时,减振器内的油液会通过一些窄小的孔、缝等通道反复地从一个腔室流向另一个腔室,这时孔壁与油液间的摩擦和油液内的分子间的摩擦形成了对车身振动的阻力,这种阻力工程上称为阻尼力。
阻尼力会将车身的振动能转化为热能,并被油液和壳体所吸收。
人们为了更好地实现轿车的行驶平稳性和安全性,将阻尼系数不固定在某一数值上,而是能随轿车运行的状态而变化,使悬架性能总是处在最优的状态附近。
因此,有些轿车的减振器是可调式的,将阻尼分成两级或三级,根据传感器信号自动选择所需要的阻尼级。
为了提高轿车的舒适性,现代轿车悬架的垂直刚度值设计得较低,用通俗话来讲就是很“软”,这样虽然乘坐舒适了,但轿车在转弯时,由于离心力的作用会产生较大的车身倾斜角,直接影响到操纵的稳定性。
为了改善这一状态,许多轿车的前后悬架增添横向稳定杆,当车身倾斜时,两侧悬架变形不等,横向稳定杆就会起到类似杠杆作用,使左右两边的弹簧变形接近一致,以减少车身的倾斜和振动,提高轿车行驶的稳定性。
从外表上看似简单的悬架,包含着多种力的合作,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一汽车主动悬架现代汽车中的悬架有两种,一种是从动悬架,另一种是主动悬架。
从动悬架即传统式的悬架,是由弹簧、减振器(减振筒)、导向机构等组成,它的功能是减弱路面传给车身的冲击力,衰减由冲击力而引起的承载系统的振动。
其中弹簧主要起减缓冲击力的作用,减振器的主要作用是衰减振动(参考本栏目<底盘>“螺旋弹簧与减振器”一文)。
由于这种悬架是由外力驱动而起作用的,所以称为从动悬架。
而主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。
由于这种悬架能够自行产生作用力,因此称为主动悬架。
主动悬架是近十几年发展起来的,由电脑控制的一种新型悬架,具备三个条件:(1)具有能够产生作用力的动力源;(2)执行元件能够传递这种作用力并能连续工作;(3)具有多种传感器并将有关数据集中到微电脑进行运算并决定控制方式。
因此,主动悬架汇集了力学和电子学的技术知识,是一种比较复杂的高技术装置。
例如装置了主动悬架的法国雪铁龙桑蒂雅,该车悬架系统的中枢是一个微电脑,悬架上有5种传感器,分别向微电脑传送车速、前轮制动压力、踏动油门踏板的速度、车身垂直方向的振幅及频率、转向盘角度及转向速度等数据。
电脑不断接收这些数据并与预先设定的临界值进行比较,选择相应的悬架状态。
同时,微电脑独立控制每一只车轮上的执行元件,通过控制减振器内油压的变化产生抽动,从而能在任何时候、任何车轮上产生符合要求的悬架运动。
因此,桑蒂雅桥车备有多种驾驶模式选择,驾车者只要扳动位于副仪表板上的“正常”或“运动”按钮,轿车就会自动设置在最佳的悬架状态,以求最好的舒适性能。
另外,主动悬架具有控制车身运动的功能。
当汽车制动或拐弯时的惯性引起弹簧变形时,主动悬架会产生一个与惯力相对抗的力,减少车身位置的变化。
例如德国奔驰2000款CL型跑车,当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多大的负载加到悬架上,使车身的倾斜减到最小抗侧翻、免点头、免抬头、增强美观的减振器有两项技术(自动平衡高度的减振器,申请号:200610051904·2和自动调控减振器,申请号:200610051905·7)做保障,具有电子主动悬挂的功效,又有电子主动悬挂无法比拟的价格优势,以后汽车弯道车身侧倾、制动点头、起动·加速抬头将成为历史;同时将彻底淘汰现有减振器。
首先申明两项技术的减振器都是结构相当简单的机械式,且无需另外增加动力驱动而自动控制。
两项技术结合使用最为完美(针对轻型车,特别是轿车),也可以单独使用(针对重型车)。
以上两款减振器价格便宜,普通型轿车在几乎不增加成本的情况下,就具有比赛车更加优越的操控性能,又能享受到高档车的舒适。
自动调控减振器本发明能及时、迅速、恰当地自动调节减振器的刚度和阻尼,确保运载工具行驶的平顺性和稳定性,即乘运的舒适性和平稳性、操纵的稳定性(特别是急转向时车身不侧倾、紧急制动时不点头表现得最为出色),有效地解决了运载工具在行驶中的平顺性和操纵稳定性的矛盾。
不仅具有结构简单、成本低廉、调控及时迅速、汽车加速更加强劲且不抬头,缩短提升速度的时间、而且使用范围广泛(火车、飞机等运载工具都能使用)等优点,还能减少交通事故、确保行驶安全,是一种经济实惠、性价比高、社会效益明显的减振器。
自动平衡高度的减振器能在留有足够的最小离地高度的同时降底机动运载工具最大的离地高度,降低机动运载工具重心,防止了车身侧翻的同时使车身更加紧凑美观;保证足够的舒适度的同时成倍地自动调节弹簧的刚度,有效地解决了车身重载时沉尾头翘的现状,增强了汽车美观。
因此,本发明的减振器不仅能提高机动运载工具的稳定性,还能提高机动运载工具平顺性、操纵的稳定性和抗侧翻性能,减少交通事故、确保行驶安全,而且使车身更加紧凑美观,是一种经济实惠、性价比高、社会效益明显的减振器。
谁眼光独到(老式减振器将彻底失去市场),谁就抢占了先机!谁的企业就立于不败之地!。