最优化问题数学模型
- 格式:ppt
- 大小:2.19 MB
- 文档页数:111
第六章 最优化数学模型§1 最优化问题1.1 最优化问题概念 1.2 最优化问题分类1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划§4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法§5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题第六章 最优化问题数学模型 §1 最优化问题1.1 最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。
而求解最优化问题的数学方法被称为最优化方法。
它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。
最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。
最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。
(2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。
一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。
设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。
(3)约束条件在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。
例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。
在研究问题时,这些限制我们必须用数学表达式准确地描述它们。
最优化问题的建模与解法最优化问题(optimization problem)是指在一组可能的解中寻找最优解的问题。
最优化问题在实际生活中有广泛的应用,例如在工程、经济学、物流等领域中,我们经常需要通过数学模型来描述问题,并利用优化算法来求解最优解。
本文将介绍最优化问题的建模和解法,并通过几个实例来说明具体的应用。
一、最优化问题的数学建模最优化问题的数学建模包括目标函数的定义、约束条件的确定以及变量范围的设定。
1. 目标函数的定义目标函数是一个表达式,用来衡量问题的解的优劣。
例如,对于一个最大化问题,我们可以定义目标函数为:max f(x)其中,f(x)是一个关于变量x的函数,表示问题的解与x的关系。
类似地,对于最小化问题,我们可以定义目标函数为:min f(x)2. 约束条件的确定约束条件是对变量x的一组限制条件,用来定义问题的可行解集合。
约束条件可以是等式或不等式,通常表示为:g(x) ≤ 0h(x) = 0其中,g(x)和h(x)分别表示不等式约束和等式约束。
最优化问题的解必须满足所有的约束条件,即:g(x) ≤ 0, h(x) = 03. 变量范围的设定对于某些变量,可能需要限定其取值的范围。
例如,对于一个实数变量x,可能需要设定其上下界限。
变量范围的设定可以通过添加额外的不等式约束来实现。
二、最优化问题的解法最优化问题的解法包括数学方法和计算方法两种,常见的数学方法有最优性条件、拉格朗日乘子法等,而计算方法主要是通过计算机来求解。
1. 数学方法数学方法是通过数学分析来求解最优化问题。
其中,常见的数学方法包括:(1)最优性条件:例如,对于一些特殊的最优化问题,可以通过最优性条件来判断最优解的存在性和性质。
最优性条件包括可导条件、凸性条件等。
(2)拉格朗日乘子法:对于带有约束条件的最优化问题,可以通过拉格朗日乘子法将原问题转化为无约束最优化问题,从而求解最优解。
2. 计算方法计算方法是通过计算机来求解最优化问题。
1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
数学知识总结解决实际问题的常用数学模型数学作为一门科学,不仅仅是学科的基础,还是解决实际问题的重要工具。
在工程、物理、经济、生物等领域中,数学模型被广泛运用于解决各种实际问题。
本文将总结一些常用的数学模型,并说明它们在应用中的具体作用。
1. 线性回归模型线性回归模型是一种常见的统计学模型,它用于描述两个变量之间的线性关系。
在实际问题中,我们常常需要通过已知的数据来预测或估计未知的变量。
线性回归模型通过建立一个线性方程,根据已知的数据点进行拟合,并用于预测未知数据点的取值。
这种模型广泛应用于经济预测、市场分析等领域。
2. 概率统计模型概率统计模型是研究随机现象规律性的数学工具。
在实际问题中,我们常常需要确定某个事件发生的可能性。
概率统计模型通过统计分析已有的数据,从而得到事件发生的概率。
根据已有的统计数据,我们可以计算出事件发生的可能性,并做出相应的决策。
例如,在风险评估中,我们可以通过概率统计模型来评估某个投资产品的风险。
3. 最优化模型最优化模型是研究如何找到使某个目标函数取得最优值的数学模型。
在实际问题中,我们常常需要在一定的约束条件下,找到一组满足特定条件的最优解。
最优化模型可以通过建立数学模型,并应用最优化算法来求解。
在工程设计、物流规划等领域中,最优化模型被广泛应用。
4. 图论模型图论模型是研究图的性质和关系的数学工具。
在实际问题中,我们常常需要分析和描述事物之间的关系。
图论模型可以通过构建图来描述和分析事物之间的关系,并帮助我们解决实际问题。
在社交网络分析、交通规划等领域中,图论模型发挥着重要的作用。
5. 随机过程模型随机过程模型是研究随机现象随时间变化规律的数学工具。
在实际问题中,我们常常需要研究某个随机变量随时间的变化趋势,或者某个随机事件在一段时间内的累积概率。
随机过程模型可以通过建立数学模型,对随机现象进行建模和分析。
在金融风险管理、天气预测等领域中,随机过程模型被广泛应用。
最优化问题数学模型在我们的日常生活和各种实际应用中,最优化问题无处不在。
从生产线上的资源分配,到物流运输中的路径规划,从金融投资中的资产配置,到工程设计中的参数选择,都需要找到最优的解决方案,以实现效率最高、成本最低、效益最大等目标。
而数学模型就是帮助我们解决这些最优化问题的有力工具。
那么,什么是最优化问题数学模型呢?简单来说,它是将实际问题转化为数学语言和表达式的一种方式,通过建立数学关系式,来描述问题中的各种约束条件和目标函数,然后运用数学方法和算法求解,找到最优的决策变量取值。
举个简单的例子,假设一家工厂要生产两种产品 A 和 B,生产 A 产品每件需要消耗 2 个单位的原材料和 3 个小时的工时,生产 B 产品每件需要消耗 3 个单位的原材料和 2 个小时的工时。
工厂共有 100 个单位的原材料和 80 个小时的工时可用,每件 A 产品的利润是 5 元,每件 B 产品的利润是 4 元。
那么,如何安排生产才能使工厂的总利润最大呢?为了建立这个问题的数学模型,我们首先定义决策变量:设生产 A 产品的数量为 x 件,生产 B 产品的数量为 y 件。
然后,我们确定目标函数,即要最大化的总利润:Z = 5x + 4y 。
接下来,考虑约束条件。
原材料的限制可以表示为:2x +3y ≤ 100 ;工时的限制可以表示为:3x +2y ≤ 80 ;还有非负约束:x ≥ 0 ,y ≥ 0 。
这样,我们就建立了一个简单的最优化问题数学模型。
通过求解这个模型,就可以得到最优的生产方案,即 x 和 y 的取值,使得总利润Z 最大。
最优化问题数学模型的类型多种多样,常见的有线性规划、非线性规划、整数规划、动态规划等。
线性规划是最简单也是应用最广泛的一种模型。
它的目标函数和约束条件都是线性的,就像我们上面的例子。
线性规划问题可以通过单纯形法等有效的算法在较短的时间内求解。
非线性规划则是目标函数或约束条件中至少有一个是非线性的。
优化问题的数学模型在现代社会中,优化问题是数学领域中非常重要的一个研究方向。
优化问题的数学模型可以帮助我们更好地理解和解决现实中的各种问题,例如最小化成本、最大化利润、最优化生产、最优化调度、最优化投资等。
本文将从优化问题的定义、数学模型及其应用等方面进行阐述和探讨。
一、优化问题的定义优化问题是指在给定的限制条件下,寻找能使某一目标函数取得最优值的决策变量的问题。
这个目标函数可以是最大化、最小化或其他形式的函数。
优化问题的求解过程可以通过数学方法来实现,例如线性规划、非线性规划、整数规划、动态规划等。
二、优化问题的数学模型优化问题的数学模型通常由目标函数、约束条件和决策变量三个部分组成。
1. 目标函数目标函数是优化问题中的一个重要概念,它描述了我们想要优化的目标,可以是最大化、最小化或其他形式的函数。
在数学模型中,目标函数通常表示为:$$max f(x)$$或$$min f(x)$$其中,$x$ 是决策变量,$f(x)$ 是关于 $x$ 的目标函数。
2. 约束条件约束条件是指限制决策变量的取值范围,使其满足一定的条件。
在数学模型中,约束条件通常表示为:$$g_i(x) leq b_i$$或$$g_i(x) geq b_i$$其中,$g_i(x)$ 是关于 $x$ 的约束条件,$b_i$ 是约束条件的上限或下限。
3. 决策变量决策变量是指我们需要优化的变量,其取值范围受到约束条件的限制。
在数学模型中,决策变量通常表示为:$$x = (x_1, x_2, ..., x_n)$$其中,$x_i$ 表示第 $i$ 个决策变量的取值。
三、优化问题的应用优化问题的应用非常广泛,包括工业、经济、管理、军事等领域。
下面我们将以几个具体的例子来说明优化问题的应用。
1. 最小化成本在生产过程中,我们希望以最小的成本来生产产品。
这时,我们可以将生产成本作为目标函数,约束条件可以是生产量的限制、材料的限制等。
通过数学模型,我们可以求出最小化成本的生产方案,从而实现成本控制的目的。