材料化学---第三章__材料电化学
- 格式:ppt
- 大小:307.00 KB
- 文档页数:43
材料电化学性能的表征与评价材料电化学性能是指材料在电化学反应中扮演的角色。
材料的电化学性能与其材料特性相关,如晶体结构、晶格常数、晶面能、载流子扩散系数、粒径、表面积、微孔结构等。
对材料的电化学性能进行表征和评价,对于材料科学研究、能源领域的材料应用等有着非常重要的意义。
1. 电化学方法及其应用电化学方法是指利用电化学原理和方法对材料的电性能进行测定和研究,其主要应用领域包括化学反应动力学、检测企业废水、分析及检测环境污染等。
电化学方法主要有:电位法、电流法和阻抗法。
电位法是指以电位为基础的电化学方法,通过在电极上施加一定的电压或电位,测定材料在电极上的氧化还原电势、电化学反应的活化能等。
电流法是指以电流为基础的电化学方法,通过测定材料在电流作用下的电化学反应速率、电化学反应的电荷传递过程等参数进行研究。
阻抗法是指通过测定材料在不同频率下的交流阻抗与复阻抗等参数,研究材料电化学反应动力学、电化学储能器件等性能。
2. 材料电化学性能的表征材料的电化学性能可通过多种方法进行表征和评价,主要包括电极电位、电流-电位曲线、循环伏安曲线、恒电位电导谱等。
(1) 电极电位电极电位是指在特定条件下,电极与电解质溶液中的标准电极电位之差。
通常作为评价材料电化学反应中参与反应的化学物质的可逆性和难还原性的指标。
(2) 电流-电位曲线电流-电位曲线是指在恒定电压或电流条件下,记录反应体系中电极电位与电流强度与时间的关系曲线。
电流电位曲线可以表征材料在电化学反应中的活性和稳定性。
(3) 循环伏安曲线循环伏安曲线是指在设定温度和扫描速率下,记录电位和电流变化的曲线。
循环伏安曲线通过测定材料的氧化还原行为、电化学反应动力学和储能特性等方面的参数,评价材料的电化学性能。
(4) 恒电位电导谱恒电位电导谱是利用恒定电位法在不同频率下测量交流阻抗,分析材料的电导率、电负性、电化学反应动力学等方面的特性。
3. 材料电化学性能的评价材料电化学性能的评价通常包括:化学反应动力学,电化学活性、电催化活性、电抗-电容等。
《材料化学》课程教学大纲一、课程的基本信息适应对象:本科层次,应用化学、化学课程代码:18E00615学时分配:36赋予学分:2先修课程:无机化学、有机化学、分析化学、物理化学后续课程:二、课程性质与任务《材料化学》是应用化学的专业选修课程。
应用化学是一门以化学为基础的专门学科,因此对于该学科的本科学生来讲开设化学基础课尤显重要。
本课程的作用和任务在于指导学生切实地了解和掌握材料(主要是无机材料)化学所涉及的基本原理和一些基本概念,初步了解材料化学基本概念和原理,有利于学生今后从事相关工作。
三、教学目的与要求通过材料化学课程的学习,使学生了解当代材料科学的新概念、新理论、新技术、新工艺,掌握金属材料、无机非金属材料、高分子材料的基本知识,以及物理化学、电化学、光化学等化学基础知识在材料科学研究中的应用。
注重培养学生综合运用化学知识解决问题的能力;树立“多学科知识交叉与渗透”的观念。
四、教学内容与安排第一章晶体学基础1.1 晶体结构的周期性1.1.1 晶体结构的周期性与点阵1.1.2 晶体结构参数1.1.3 晶体缺陷1.2 晶体结构的对称性1.2.1 对称性基本概念1.2.2 晶体的宏观对称性1.2.3 晶体的微观对称性1.3 晶体的X射线衍射1.3.1 晶体X射线衍射基本原理1.3.2 衍射方向1.3.3 衍射强度1.3.4 常用晶体X射线衍射实验方法1.4 晶体结构的描述第二章晶态和非晶态材料的特性2.1 晶体特征的结构基础2.2晶体学点群和晶体的性质2.2.1 晶体学点群的分类2.2.2 晶体的点群和晶体的物理性质2.3 非正比化合物材料2.4液晶材料2.4.1 液晶和塑晶2.4.2 液晶的特性2.4.3 液晶材料2.4.4 液晶显示技术2.5 玻璃和陶瓷2.5.1 晶态材料与非晶态材料的异同2.5.2 玻璃2.5.3 陶瓷第三章金属材料3.1 金属特性与金属键3.1.1 自由电子理论3.1.2 能带理论3.2 金属单质结构3.2.1 金属单质结构的近似模型——等径圆球密堆积3.2.2 三维密堆积的三种典型型式3.2.3 金属单质结构概况3.2.4 金属原子半径3.3 合金结构3.3.1 金属固溶体3.3.2 金属化合物3.3.3 合金结构与性能3.4 金属材料3.4.1 轻质金属材料3.4.2 钢铁的结构与性能3.4.3 非晶态金属材料3.4.4 形状记忆合金第四章无机非金属材料4.1 离子晶体4.1.1 几种二元离子晶体的典型结构形式4.1.2 离子键与晶格能4.1.3 离子半径4.1.4 Goldschmidt结晶化学定律4.1.5 关于多元复杂离子晶体结构的规则——Pauling规则4.2 分子间做用力与超分子化学4.2.1 分子间作用力4.2.2 超分子化学4.2.3 晶体工程4.3 无机非金属材料4.3.1 无机非金属材料分类4.3.2 碳素材料4.3.3 单质硅4.3.4 无机化合物材料4.3.5 硅酸盐材料第五章高分子材料5.1 高分子材料的发展5.2 高分子材料的结构特点和性能5.2.1 高分子链的结构5.2.2 高聚物分子间的作用力5.2.3 晶态高分子的结构特点5.2.4 高聚物的物理状态转变5.2.5 高分子材料的性能5.3 高分子的聚合方法5.3.1 聚合机理5.3.2 加聚5.3.3 缩聚5.4 塑料5.4.1 塑料的分类5.4.2 塑料的应用5.4.3 塑料的加工5.5 橡胶5.5.1 天然橡胶5.5.2 合成橡胶5.5.3 橡胶的加工5.6 纤维5.6.1 纤维的分类5.6.2 合成纤维5.6.3 纤维加工成型5.7 复合材料5.7.1 复合材料的特性5.7.2 木质材料5.8 医用高分子材料5.8.1 概况5.8.2 生物医用高分子材料5.8.3 人造硬组织材料5.8.4 人工器官及其关键材料5.8.5 高分子药物5.9 导电高分子材料5.9.1 导电高分子材料的分类5.9.2 高分子导电机理5.9.3 共轭导电高分子材料5.9.4 新型导电聚合物体系5.9.5 导电高分子材料的应用5.10 高吸水性高分子材料5.10.1 发展概况5.10.2 超强吸水高分子材料的种类和特征5.10.3 超强吸水高分子材料的制备方法5.10.4 吸水高分子材料的应用第六章纳米材料6.1 纳米技术及纳米材料应用进展6.1.1 纳米科技进展6.1.2 纳米材料的种类6.1.3 纳米材料的特异性能6.2 纳米材料的制备6.2.1 纳米粉体的合成6.2.2 纳米复合材料的制备6.2.3 碳纳米管的制备6.3 纳米结构测试技术6.3.1 基本原理6.3.2 常用仪器6.3.3 检测技术的应用研究6.4 纳米材料的应用6.4.1 纳米材料在高科技中的地位6.4.2 磁学应用6.4.3 纳米催化6.4.4 陶瓷增韧6.4.5 光学应用6.4.6 医学应用6.4.7 环保应用第七章新型功能材料7.1 光学功能材料7.1.1 激光材料7.1.2 红外材料7.1.3 发光材料7.2 半导体材料7.2.1 半导体的导电机理7.2.2 半导体的分类7.2.3 半导体材料7.3 超导材料7.3.1 超导体的基本物理性质7.3.2 超导体的临界参数7.3.3 超导机理7.3.4 超导材料的种类7.3.5 超导材料的性能7.3.6 超导材料的应用7.4 热电压电和铁电材料7.4.1 热电材料7.4.2 压电材料7.4.3 铁电材料7.5 功能转换材料7.5.1 光电转化材料7.5.2 磁光材料7.5.3 声光材料教学安排及方式材料化学是一门理论性较强的基础理论课,其教学主要为课内讲授。