复合函数的连续性和极限公式(老黄学高数第124讲)
- 格式:ppt
- 大小:498.50 KB
- 文档页数:9
高中数学复合函数求导公式及法则设函数y=fu的定义域为Du,值域为Mu,函数u=gx)的定义域为Dx,值域为Mx,如果Mx∩Du≠?,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
f[gx]中,设gx=u,则f[gx]=fu,从而(公式):f'[gx]=f'u*g'x呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!f[gx]=sin2x,则设gx=2x,令gx=2x=u,则fu=sinu所以f'[gx]=[sinu]'*2x'=2cosu,再用2x代替u,得f'[gx]=2cos2x.以此类推y'=[cos3x]'=-3sinxy'={sin3-x]'=-cosx一开始会做不好,老是要对照公式和例子,但只要多练练,并且熟记公式,最重要的是记住一两个例子,多练习就会了。
证法一:先证明个引理fx在点x0可导的充要条件是在x0的某邻域Ux0内,存在一个在点x0连续的函数Hx,使fx-fx0=Hxx-x0从而f'x0=Hx0证明:设fx在x0可导,令 Hx=[fx-fx0]/x-x0,x∈U'x0x0去心邻域;Hx=f'x0,x=x0因limx->x0Hx=limx->x0[fx-fx0]/x-x0=f'x0=Hx0所以Hx在点x0连续,且fx-fx0=Hxx-x0,x∈Ux0反之,设存在Hx,x∈Ux0,它在点x0连续,且fx-fx0=Hxx-x0,x∈Ux0因存在极限limx->x0Hx=limx->x0[fx-fx0]/x-x0=limx->x0f'x=Hx0所以fx在点x0可导,且f'x0=Hx0引理证毕。
设u=φx在点u0可导,y=fu在点u0=φx0可导,则复合函数Fx=fφx在x0可导,且F'x0=f'u0φ'x0=f'φx0φ'x0证明:由fu在u0可导,由引理必要性,存在一个在点u0连续的函数Hu,使f'u0=Hu0,且fu-fu0=Huu-u0又由u=φx在x0可导,同理存在一个在点x0连续函数Gx,使φ'x0=Gx0,且φx-φx0=Gxx-x0于是就有,fφx-fφx0=Hφxφx-φx0=HφxGxx-x0因为φ,G在x0连续,H在u0=φx0连续,因此HφxGx在x0连续,再由引理的充分性可知Fx在x0可导,且F'x0=f'u0φ'x0=f'φx0φ'x0证法二:y=fu在点u可导,u=gx在点x可导,则复合函数y=fgx在点x0可导,且dy/dx=dy/du*du/dx证明:因为y=fu在u可导,则limΔu->0Δy/Δu=f'u或Δy/Δu=f'u+αlimΔu->0α=0当Δu≠0,用Δu乘等式两边得,Δy=f'uΔu+αΔu但当Δu=0时,Δy=fu+Δu-fu=0,故上等式还是成立。
函数极限连续重要概念公式定理函数的极限、连续是微积分中非常重要的概念。
它们是帮助我们研究函数性质、计算导数和积分的基础。
下面我们将详细介绍函数极限和连续的概念、常用公式和定理。
一、函数极限函数的极限是指当自变量趋向一些特定值时,函数的取值是否趋于确定的结果。
极限表示函数在其中一点的趋势和变化情况。
函数极限的概念可以分为以下几个层次:1.无穷极限当自变量趋向无穷大或无穷小时,函数的极限称为无穷极限。
常见的无穷极限有以下几种形式:- 当$x\rightarrow+\infty$时,$\lim_{x\rightarrow+\infty}f(x)=L$,表示当$x$趋向正无穷时,函数$f(x)$的极限为$L$。
- 当$x\rightarrow-\infty$时,$\lim_{x\rightarrow-\infty}f(x)=L$,表示当$x$趋向负无穷时,函数$f(x)$的极限为$L$。
- 当$x\rightarrow+\infty$时,$\lim_{x\rightarrow+\infty}f(x)=+\infty$,表示当$x$趋向正无穷时,函数$f(x)$的极限为正无穷。
- 当$x\rightarrow-\infty$时,$\lim_{x\rightarrow-\infty}f(x)=-\infty$,表示当$x$趋向负无穷时,函数$f(x)$的极限为负无穷。
2.有限极限当自变量趋向一些有限值时,函数的极限称为有限极限。
常见的有限极限有以下形式:- 当$x\rightarrow a$时,$\lim_{x\rightarrow a}f(x)=L$,表示当$x$趋向$a$时,函数$f(x)$的极限为$L$。
3.间断点函数在一些点上不具有有限的极限时,称该点为函数的间断点。
常见的间断点有以下几种类型:- 第一类间断点:当$x\rightarrow a$时,函数极限不存在且左右极限存在,即$\lim_{x\rightarrow a^-}f(x)$和$\lim_{x\rightarrowa^+}f(x)$存在,但不相等。
《高等数学》函数考点精讲与例题解析 第一部分 函数 极限 连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。
它们是每年必考的内容之一。
第一节 函 数内容考点一、函数的定义给定两个非空数集D 和M ,若有对应法则f ,使得对于D 内的每一个x ,都有唯一确定的M y ∈与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,D x ∈,数集D 成为函数的定义域,)(D)(M f ⊂称为值域。
【考点一】会求函数的定义域及其表达式,特别是复合函数的定义域。
二、函数的奇偶性(1)首先必须要求函数的定义域关于原点对称。
例如,)(x f y =的定义域为),(a a -)0(>a 关于原点对称。
(2)验证对于任),(a a x -∈,都有)()(x f x f =-,称)(x f 为偶函数;偶函数)(x f 的图形关于y 轴对称。
(3)验证若对于任),(a a x -∈都有)()(x f x f -=-,称)(x f 为奇函数;奇函数)(x f 的图形关于坐标原点对称。
【考点二】会判定函数)(x f 的奇偶性,不管)(x f 的具体形式是什么,都需要计算)(x f -的值。
如果)()(x f x f =-,则由定义知)(x f 为偶函数;如果)()(x f x f -=-,则由定义知)(x f 为奇函数。
三、函数的周期性对函数)(x f y =,若存在常数0>T ,使得对于定义域的每一个x ,T x +仍在定义域内,且有)()(x f T x f =+,则称函数)(x f y =为周期函数,T 称为)(x f 的周期。
【考点三】判断函数是否为周期函数,主要方法是根据周期函数的定义,要先找到一个非零常数T ,计算是否有等式)()(x f T x f =+成立。
特别要求掌握三角函数的周期性四、函数的有界性设函数)(x f y =在数集X 上有定义,若存在正数M ,使得对于每一个X x ∈,都有M x f ≤)( 成立,称)(x f 在X 上有界,否则,即这样的M 不存在,称)(x f 在X 上无界。
利用函数的连续性求极限
连续的定义:0()x f x 设函数在点的某邻域内有定义,
=极限值简单地说,就是函数值.
0()f x x ⑶如果函数是初等函数,且点为其定义区间内的一点,
00()(lim ,.)x x f x f x x →=如果就称函数在点处连续初等函数的连续性:
0(l )(im .)x x f x f x →=则有.
⑴基本初等函数在其定义域内都是连续的.
⑵一切初等函数在其定义区间内都是连续的
0l .
1im x x →例
求0x x =处连所以在点续,从而
解0lim x x →
x 由于
是初等函数,0x =是其定点
义域内的点,
0=.
4π=
02lim .x →例求
0lim x →解0lim .x →=1.2==0x =由于是初等函数,但点是其定义域内的点,所以0lim x →0lim x →=由连续性得
0lim ()()0(1,.0)3x f x f x x f x
→==设函处连续,数求且例在点0lim ()1,x f x x
→=由于解00lim lim 01)()0(.x x f x f x x x →→=⋅=⋅=所以0
li ()0()(m 0.)x f x x f x f →==处连续,所以由于在点(0).
0f =因此根据极限的唯一性,有
总结
本讲介绍如何利用函数的连续性求极限
.。
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数:⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim⑵当0x x →时,)(x f 的极限:A x f x x =→)(lim 0左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:Ax f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1. 无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。