复合函数的连续性和极限公式(老黄学高数第124讲)
- 格式:ppt
- 大小:498.50 KB
- 文档页数:9
高中数学复合函数求导公式及法则设函数y=fu的定义域为Du,值域为Mu,函数u=gx)的定义域为Dx,值域为Mx,如果Mx∩Du≠?,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
f[gx]中,设gx=u,则f[gx]=fu,从而(公式):f'[gx]=f'u*g'x呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!f[gx]=sin2x,则设gx=2x,令gx=2x=u,则fu=sinu所以f'[gx]=[sinu]'*2x'=2cosu,再用2x代替u,得f'[gx]=2cos2x.以此类推y'=[cos3x]'=-3sinxy'={sin3-x]'=-cosx一开始会做不好,老是要对照公式和例子,但只要多练练,并且熟记公式,最重要的是记住一两个例子,多练习就会了。
证法一:先证明个引理fx在点x0可导的充要条件是在x0的某邻域Ux0内,存在一个在点x0连续的函数Hx,使fx-fx0=Hxx-x0从而f'x0=Hx0证明:设fx在x0可导,令 Hx=[fx-fx0]/x-x0,x∈U'x0x0去心邻域;Hx=f'x0,x=x0因limx->x0Hx=limx->x0[fx-fx0]/x-x0=f'x0=Hx0所以Hx在点x0连续,且fx-fx0=Hxx-x0,x∈Ux0反之,设存在Hx,x∈Ux0,它在点x0连续,且fx-fx0=Hxx-x0,x∈Ux0因存在极限limx->x0Hx=limx->x0[fx-fx0]/x-x0=limx->x0f'x=Hx0所以fx在点x0可导,且f'x0=Hx0引理证毕。
设u=φx在点u0可导,y=fu在点u0=φx0可导,则复合函数Fx=fφx在x0可导,且F'x0=f'u0φ'x0=f'φx0φ'x0证明:由fu在u0可导,由引理必要性,存在一个在点u0连续的函数Hu,使f'u0=Hu0,且fu-fu0=Huu-u0又由u=φx在x0可导,同理存在一个在点x0连续函数Gx,使φ'x0=Gx0,且φx-φx0=Gxx-x0于是就有,fφx-fφx0=Hφxφx-φx0=HφxGxx-x0因为φ,G在x0连续,H在u0=φx0连续,因此HφxGx在x0连续,再由引理的充分性可知Fx在x0可导,且F'x0=f'u0φ'x0=f'φx0φ'x0证法二:y=fu在点u可导,u=gx在点x可导,则复合函数y=fgx在点x0可导,且dy/dx=dy/du*du/dx证明:因为y=fu在u可导,则limΔu->0Δy/Δu=f'u或Δy/Δu=f'u+αlimΔu->0α=0当Δu≠0,用Δu乘等式两边得,Δy=f'uΔu+αΔu但当Δu=0时,Δy=fu+Δu-fu=0,故上等式还是成立。
函数极限连续重要概念公式定理函数的极限、连续是微积分中非常重要的概念。
它们是帮助我们研究函数性质、计算导数和积分的基础。
下面我们将详细介绍函数极限和连续的概念、常用公式和定理。
一、函数极限函数的极限是指当自变量趋向一些特定值时,函数的取值是否趋于确定的结果。
极限表示函数在其中一点的趋势和变化情况。
函数极限的概念可以分为以下几个层次:1.无穷极限当自变量趋向无穷大或无穷小时,函数的极限称为无穷极限。
常见的无穷极限有以下几种形式:- 当$x\rightarrow+\infty$时,$\lim_{x\rightarrow+\infty}f(x)=L$,表示当$x$趋向正无穷时,函数$f(x)$的极限为$L$。
- 当$x\rightarrow-\infty$时,$\lim_{x\rightarrow-\infty}f(x)=L$,表示当$x$趋向负无穷时,函数$f(x)$的极限为$L$。
- 当$x\rightarrow+\infty$时,$\lim_{x\rightarrow+\infty}f(x)=+\infty$,表示当$x$趋向正无穷时,函数$f(x)$的极限为正无穷。
- 当$x\rightarrow-\infty$时,$\lim_{x\rightarrow-\infty}f(x)=-\infty$,表示当$x$趋向负无穷时,函数$f(x)$的极限为负无穷。
2.有限极限当自变量趋向一些有限值时,函数的极限称为有限极限。
常见的有限极限有以下形式:- 当$x\rightarrow a$时,$\lim_{x\rightarrow a}f(x)=L$,表示当$x$趋向$a$时,函数$f(x)$的极限为$L$。
3.间断点函数在一些点上不具有有限的极限时,称该点为函数的间断点。
常见的间断点有以下几种类型:- 第一类间断点:当$x\rightarrow a$时,函数极限不存在且左右极限存在,即$\lim_{x\rightarrow a^-}f(x)$和$\lim_{x\rightarrowa^+}f(x)$存在,但不相等。
《高等数学》函数考点精讲与例题解析 第一部分 函数 极限 连续函数是微积分的研究对象,极限是微积分的理论基础,而连续性是可导性与可积性的重要条件。
它们是每年必考的内容之一。
第一节 函 数内容考点一、函数的定义给定两个非空数集D 和M ,若有对应法则f ,使得对于D 内的每一个x ,都有唯一确定的M y ∈与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,D x ∈,数集D 成为函数的定义域,)(D)(M f ⊂称为值域。
【考点一】会求函数的定义域及其表达式,特别是复合函数的定义域。
二、函数的奇偶性(1)首先必须要求函数的定义域关于原点对称。
例如,)(x f y =的定义域为),(a a -)0(>a 关于原点对称。
(2)验证对于任),(a a x -∈,都有)()(x f x f =-,称)(x f 为偶函数;偶函数)(x f 的图形关于y 轴对称。
(3)验证若对于任),(a a x -∈都有)()(x f x f -=-,称)(x f 为奇函数;奇函数)(x f 的图形关于坐标原点对称。
【考点二】会判定函数)(x f 的奇偶性,不管)(x f 的具体形式是什么,都需要计算)(x f -的值。
如果)()(x f x f =-,则由定义知)(x f 为偶函数;如果)()(x f x f -=-,则由定义知)(x f 为奇函数。
三、函数的周期性对函数)(x f y =,若存在常数0>T ,使得对于定义域的每一个x ,T x +仍在定义域内,且有)()(x f T x f =+,则称函数)(x f y =为周期函数,T 称为)(x f 的周期。
【考点三】判断函数是否为周期函数,主要方法是根据周期函数的定义,要先找到一个非零常数T ,计算是否有等式)()(x f T x f =+成立。
特别要求掌握三角函数的周期性四、函数的有界性设函数)(x f y =在数集X 上有定义,若存在正数M ,使得对于每一个X x ∈,都有M x f ≤)( 成立,称)(x f 在X 上有界,否则,即这样的M 不存在,称)(x f 在X 上无界。
利用函数的连续性求极限
连续的定义:0()x f x 设函数在点的某邻域内有定义,
=极限值简单地说,就是函数值.
0()f x x ⑶如果函数是初等函数,且点为其定义区间内的一点,
00()(lim ,.)x x f x f x x →=如果就称函数在点处连续初等函数的连续性:
0(l )(im .)x x f x f x →=则有.
⑴基本初等函数在其定义域内都是连续的.
⑵一切初等函数在其定义区间内都是连续的
0l .
1im x x →例
求0x x =处连所以在点续,从而
解0lim x x →
x 由于
是初等函数,0x =是其定点
义域内的点,
0=.
4π=
02lim .x →例求
0lim x →解0lim .x →=1.2==0x =由于是初等函数,但点是其定义域内的点,所以0lim x →0lim x →=由连续性得
0lim ()()0(1,.0)3x f x f x x f x
→==设函处连续,数求且例在点0lim ()1,x f x x
→=由于解00lim lim 01)()0(.x x f x f x x x →→=⋅=⋅=所以0
li ()0()(m 0.)x f x x f x f →==处连续,所以由于在点(0).
0f =因此根据极限的唯一性,有
总结
本讲介绍如何利用函数的连续性求极限
.。
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数:⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim⑵当0x x →时,)(x f 的极限:A x f x x =→)(lim 0左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:Ax f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1. 无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。
极限与连续知识点总结一、关键信息1、极限的定义名称:极限定义:当自变量趋近于某个值时,函数值趋近于一个确定的常数。
2、极限的性质名称:极限的性质内容:唯一性、局部有界性、局部保号性等。
3、连续的定义名称:连续定义:函数在某点的极限值等于该点的函数值。
4、连续的条件名称:连续的条件内容:左右极限存在且相等,并等于该点的函数值。
5、间断点的分类名称:间断点的分类内容:可去间断点、跳跃间断点、无穷间断点、振荡间断点。
二、极限的定义11 数列的极限对于数列{an},如果存在常数 A,当 n 无限增大时,an 无限趋近于 A,则称 A 为数列{an} 的极限,记作lim(n→∞) an = A。
111 函数的极限设函数 f(x) 在点 x0 的某一去心邻域内有定义,如果当 x 无限趋近于 x0 时,函数 f(x) 的值无限趋近于一个确定的常数 A,则称 A 为函数f(x) 当 x 趋近于 x0 时的极限,记作lim(x→x0) f(x) = A。
112 单侧极限左极限:lim(x→x0-) f(x) = A,表示 x 从 x0 的左侧无限趋近于 x0 时,f(x) 趋近于 A。
右极限:lim(x→x0+) f(x) = A,表示 x 从 x0 的右侧无限趋近于x0 时,f(x) 趋近于 A。
三、极限的性质12 唯一性若极限lim(x→x0) f(x) 存在,则极限值唯一。
121 局部有界性如果lim(x→x0) f(x) 存在,则存在 x0 的某一去心邻域,使得 f(x) 在该邻域内有界。
122 局部保号性若lim(x→x0) f(x) = A > 0(或 A < 0),则存在 x0 的某一去心邻域,使得在该邻域内 f(x) > 0(或 f(x) < 0)。
四、极限的运算13 四则运算若lim(x→x0) f(x) 和lim(x→x0) g(x) 都存在,则:lim(x→x0) f(x) ± g(x) =lim(x→x0) f(x) ± lim(x→x0) g(x)lim(x→x0) f(x) · g(x) =lim(x→x0) f(x) · lim(x→x0) g(x)lim(x→x0) f(x) / g(x) =lim(x→x0) f(x) /lim(x→x0) g(x)(lim(x→x0) g(x) ≠ 0)131 复合函数的极限设函数 y = fg(x) 是由函数 u = g(x) 和 y = f(u) 复合而成,若lim(x→x0) g(x) = u0,lim(u→u0) f(u) = A,且当x ≠ x0 时,g(x) ≠ u0,则lim(x→x0) fg(x) = A。
第1章 函数,极限与连续第3讲极限地运算法则主讲教师 |引言根据极限地定义来求极限是非常烦琐也是非常困难地,本节将介绍求极限地各种常用方法。
为方便讨论,本节不指明自变量地具体变化趋势,只要是自变量地同一个变化过程,统一用 ""来表示。
01 极限地运算法则本节内容02 极限存在准则03 两个重要极限对于一些简单函数在某一变化过程下地极限,我们可以很容易地观察到。
因此一个很自然地想法就是:猜想:运算地极限等于极限地运算?四则运算复合运算初等函数(基本初等函数地运算)复杂函数地极限简单函数地极限Ὅ 定理1.12(极限地四则运算法则)如果则:(1)存在,且有(2)存在,且有(3)若则存在,且有Ἲ推论设则(1)若是常数,则存在,且有(2)若是正常数,则存在,且有完美!!注定理1.12 及其推论告诉我们:在极限存在地前提下,求极限与四则运算可以交换顺序。
并且这些结论都可推广至有限个函数地情形。
Ὅ 例1解求极限存在!Ὅ 例2求解Ὅ 例3解求思路当时,分子及分母地极限都是零,故不能直接应用四则运算。
但此时分子分母含有公因子且当时,特别地,若且均为正整数,则两个多项式函数商地极限为(复合函数地极限运算法则)Ὅ 定理1.13 注设,且在点地某去心邻域内有则由与复合而成地函数地极限存在,且将定理地 换成 时,结论仍成立。
根据定理地结论,在我们直接求复合型函数地极限 有难度时,可以考虑做代换 将其转化为容易计算地极限 来求解。
Ὅ 例4解求 注做代换 则当 时,,故前面推论地 可从复合函数地极限地角度看 。
需要提醒大家注意地是,在利用极限地运算性质求极限时,务必首先保证极限地存在性!必要时需要先做适当地恒等变形,再进行计算。
Ὅ 例5求解十分错误!Ὅ 例5解求原式分子有理化01 极限地运算法则本节内容02 极限存在准则03 两个重要极限首先介绍判定极限存在地一个重要方法--- 夹逼准则。
(数列极限地夹逼准则)如果数列满足条件(1)(2)则"夹" "逼"Ὅ 定理1.14(函数极限地夹逼准则)Ὅ 定理1.15设函数在地某去心邻域 Ů 内有定义,且该邻域内满足条件(1)(2)则"夹" "逼"注将去心邻域换成则立得地情形,结论仍成立。
常量与变量变量的定义我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
变量的表示如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
邻域设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
函数函数的定义如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y叫做因变量。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的.注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
函数的有界性如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注意:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数cosx在(-∞,+∞)内是有界的.函数的单调性如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。
(完整版)⼤⼀⾼数第⼀章函数、极限与连续第⼀章函数、极限与连续由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为⾃然科学的中⼼问题.与之相适应,数学在经历了两千多年的发展之后进⼊了⼀个被称为“⾼等数学时期”的新时代,这⼀时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究⽐“形”更重要,以积极的态度开展对“⽆限”的研究,由常量数学发展为变量数学,微积分的创⽴更是这⼀时期最突出的成就之⼀.微积分研究的基本对象是定义在实数集上的函数.极限是研究函数的⼀种基本⽅法,⽽连续性则是函数的⼀种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍⾼等数学的⼀些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作⽤的⽆穷⼩量的概念和性质.此外,还给出了两个极其重要的极限.随后,运⽤极限的概念引⼊函数的连续性概念,它是客观世界中⼴泛存在的连续变化这⼀现象的数学描述.第⼀节变量与函数⼀、变量及其变化范围的常⽤表⽰法在⾃然现象或⼯程技术中,常常会遇到各种各样的量.有⼀种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这⼀类量叫做变量;另⼀类量在考察过程中保持不变,它取同样的数值,我们把这⼀类量叫做常量.变量的变化有跳跃性的,如⾃然数由⼩到⼤变化、数列的变化等,⽽更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何⼀个数.变量取值范围常⽤区间来表⽰.满⾜不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ,即 ,{|}a b x a x b =≤≤;满⾜不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即(,){|}a b x a x b =<<;满⾜不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即(,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤左开右闭区间与右开左闭区间统称为半开半闭区间,实数a ,b 称为区间的端点.以上这些区间都称为有限区间.数b a -称为区间的长度.此外还有⽆限区间:(){|}x x -∞+∞=-∞<<+∞=R ,,(,{|}b x x b -∞=-∞<≤??,(,){|}b x x b -∞=-∞<<, ){|}a x a x +∞=≤<+∞??,, (){|}a x a x +∞=<<+∞,,等等. 这⾥记号“-∞”与“+∞”分别表⽰“负⽆穷⼤”与“正⽆穷⼤”.邻域也是常⽤的⼀类区间.设0x 是⼀个给定的实数,δ是某⼀正数,称数集:{}00|x x δxx δ-<<+为点0x 的δ邻域,记作0(,)U x δ.即(){}000,|U x δx x δx x δ=-<<+称点0x 为该邻域的中⼼,δ为该邻域的半径(见图1-1).称{}00(,)U x δx -为0x 的去⼼δ邻域,记作0(,)x δoU ,即{}00(,)|0U x δx x x δ?=<-<图1-1下⾯两个数集(){}000,|U x δx x δx x ?-=-<<,(){}000,|U x δx xx x δ?+=<<+,分别称为0x 的左δ邻域和右δ邻域.当不需要指出邻域的半径时,我们⽤0()U x ,0()x oU 分别表⽰0x 的某邻域和0x 的某去⼼邻域,(),x δ-oU ,(),U x δ?+分别表⽰0x 的某左邻域和0x 的某右邻域.⼆、函数的概念在⾼等数学中除了考察变量的取值范围之外,我们还要研究在同⼀个过程中出现的各种彼此相互依赖的变量,例如质点的移动距离与移动时间.曲线上点的纵坐标与该点的横坐标,弹簧的恢复⼒与它的形变,等等.我们关⼼的是变量与变量之间的相互依赖关系,最常见的⼀类依赖关系,称为函数关系.定义 1 设A ,B 是两个实数集,如果有某⼀法则f ,使得对于每个数x A ∈,均有⼀个确定的数y B ∈与之对应,则称f 是从A 到B 内的函数.习惯上,就说y 是x 的函数,记作()y f x = ()x A ∈其中,x 称为⾃变量,y 称为因变量,()f x 表⽰函数f 在x 处的函数值.数集A 称为函数f 的定义域,记为()D f ;数集{}()|(),f A y y f x x A B ==∈?称为函数f 的值域,记作()R f .从上述概念可知,通常函数是指对应法则f ,但习惯上⽤“() ,y f x x A =∈”表⽰函数,此时应理解为“由对应关系()y f x =所确定的函数f ”.确定⼀个函数有两个基本要素,即定义域和对应法则.如果没有特别规定,我们约定:定义域表⽰使函数有意义的范围,即⾃变量的取值范围.在实际问题中,定义域可根据函数的实际意义来确定.例如,在时间t 的函数()f t 中,t 通常取⾮负实数.在理论研究中,若函数关系由数学公式给出,函数的定义域就是使数学表达式有意义的⾃变量x 的所有可以取得的值构成的数集.对应法则是函数的具体表现,它表⽰两个变量之间的⼀种对应关系.例如,⽓温曲线给出了⽓温与时间的对应关系,三⾓函数表列出了⾓度与三⾓函数值的对应关系.因此,⽓温曲线和三⾓函数表表⽰的都是函数关系.这种⽤曲线和列表给出函数的⽅法,分别称为图⽰法和列表法.但在理论研究中,所遇到的函数多数由数学公式给出,称为公式法.例如,初等数学中所学过的幂函数、指数函数、对数函数、三⾓函数与反三⾓函数都是⽤公式法表⽰的函数.从⼏何上看,在平⾯直⾓坐标系中,点集()(){(,)|,}x y y f x x D f =∈称为函数()y f x =的图像(如图1-2所⽰).函数()y f x =的图像通常是⼀条曲线,()y f x =也称为这条曲线的⽅程.这样,函数的⼀些特性常常可借助于⼏何直观来发现;相反,⼀些⼏何问题,有时也可借助于函数来作理论探讨.现在我们举⼀个具体函数的例⼦.图1-2例1求函数y . 解要使数学式⼦有意义,x 必须满⾜> ,240,10x x ?-≥??-??即 >2,1.x x ?≤由此有 12x <≤,因此函数的定义域为(12??,.有时⼀个函数在其定义域的不同⼦集上要⽤不同的表达式来表⽰对应法则,称这种函数为分段函数.下⾯给出⼀些今后常⽤的分段函数.例2 绝对值函数<,0,,0.x x y x x x ≥?==?-? 的定义域()()D f =-∞+∞,,值域()[0,)R f =+∞,如图1-3所⽰. 例3 符号函数<>1,0,sgn 0,0,1,0x y x x x -??===的定义域()()D f =-∞+∞,,值域()11{0}R f =-,,,如图1-4所⽰.图1-3 图1-4例4 最⼤取整函数y x =,其中x 表⽰不超过x 的最⼤整数.例如,113??-=-,00=,12??=??,π3=等等.函数y x =的定义域()()D f =-∞+∞,,值域(){}R f =整数.⼀般地,y x n ==,1n x n ≤<+,120,,n =±±L ,,如图1-5所⽰.图1-5在函数的定义中,对每个()x D f ∈,对应的函数值y 总是唯⼀的,这样定义的函数称为单值函数.若给定⼀个对应法则g ,对每个()x D g ∈,总有确定的y 值与之对应,但这个y 不总是唯⼀的,我们称这种法则g 确定了⼀个多值函数.例如,设变量x 与y之间的对应法则由⽅程2225x y +=给出,显然,对每个55[,]x ∈-,由⽅程2225x y +=可确定出对应的y 值,当5x =或5-时,对应0y =⼀个值;当55(,)x ∈-时,对应的y 有两个值.所以这个⽅程确定了⼀个多值函数.对于多值函数,往往只要附加⼀些条件,就可以将它化为单值函数,这样得到的单值函数称为多值函数的单值分⽀.例如,由⽅程2225x y +=给出的对应法则中,附加“0y ≥”的条件,即以“2225x y +=且0y ≥”作为对应法则,就可以得到⼀个单值分⽀()2125y g x x ==-;附加“0y ≤”的条件,即以“2225x y +=且0y ≤” 作为对应法则,就可以得到⼀个单值分⽀22()25y g x x ==--.关系的,如⾼度为⼀定值的圆柱体的体积与其底⾯圆半径r 的关系,就是通过另外⼀个变量其底⾯圆⾯积S 建⽴起来的对应关系.这就得到复合函数的概念.定义2 设函数()y f u =的定义域为()D f ,函数()u g x =在D 上有定义,且()()g D D f ?.则由下式确定的函数()()y f g x =,x D ∈称为由函数()y f u =与函数()u g x =构成的复合函数,记作()()()()y f g x f g x =?=,x D ∈,它的定义域为D ,变量u 称为中间变量.这⾥值得注意的是,D 不⼀定是函数()u g x =的定义域()D g ,但()D D g ?.D 是()D g 中所有使得()()g x D f ∈的实数x 的全体的集合.例如,()y f u u ==, ()21u g x x ==-.显然,u 的定义域为(),-∞+∞,⽽()(0,)D f =+∞.因此,11,D -=,⽽此时1()0,R f g =.两个函数的复合也可推⼴到多个函数复合的情形.例如, log a µxu y x a ==()10a a >≠且可看成由指数函数u y a =与log a u µx =复合⽽成.⼜形如()log ()()()a v x u x v x y u x a ==()0u x >()10a a >≠且的函数称为幂指函数,它可看成由wy a =与()log ()a w v x u x =复合⽽成. ⽽y =可看成由y =sin u v =,2v x =复合⽽成.例5 设()1xf x x =+()1x ≠-,求()()()f f f x解令()y f w =,()w f u =,()u f x =,则()()()f f f x 是通过两个中间变量w 和u 复合⽽成的复合函数,因为()111121x x x x uxw f u u x ++====+++,12x ≠-;()2121,1131x x x x wxy f w w x ++====+++13x ≠-,所以 ()()()31x f f f x x =+,111,,23x ≠---.定义3 设给定函数()y f x =,其值域为()R f .如果对于()R f 中的每⼀个y 值,都有只从关系式()y f x =中唯⼀确定的x 值与之对应,则得到⼀个定义在()R f 上的以y 为⾃变量,x 为因变量的函数,称为函数()y f x =的反函数,记为()1x fy -=.从⼏何上看,函数()y f x =与其反函数()1x f y -=有同⼀图像.但⼈们习惯上⽤x 表⽰⾃变量,y 表⽰因变量,因此反函数()1xf y -=常改写成()1y f x -=.今后,我们称()1y f x -=为()y f x =的反函数. 此时,由于对应关系1f-未变,只是⾃变量与因变量交换了记号,因此反函数()1y fx -=与直接函数()y f x =的图像关于直线y x =对称,如图 1 - 6所⽰.图1-6值得注意的是,并不是所有函数都存在反函数,例如函数2y x =的定义域为()-∞+∞,,值域为,但)0+∞??,对每⼀个()0y ∈+∞,,有两个x 值即1x =和2x =因此x 不是y 的函数,从⽽2y x =不存在反函数.事实上,由逆映射存在定理知,若f 是从()D f 到()R f 的⼀⼀映射,则f 才存在反函数1f -.例6 设函数(1)1xf x x +=+ ()1x ≠-,求()11f x -+.解函数()1y f x =+可看成由()y f u =,1u x =+复合⽽成.所求的反函数()11y f x -=+可看成由()1y fu -=,1u x =+复合⽽成.因为()11x u f u x u-==+,0u ≠,即1u y u -=,从⽽,()11u y -=-, 11u y=-,所以 ()111y f u u-==-,因此 ()1111,01(1)f x x x x-+==-≠-+.三、函数的⼏种特性1. 函数的有界性设函数()f x 在数集D 上有定义,若存在某个常数L ,使得对任⼀x D ∈有()f x L ≤(或()f x L ≥),则称函数()f x 在D 上有上界(或有下界),常数L 称为()f x 在D 上的⼀个上界(或下界);否则,称()f x 在D 上⽆上界(或⽆下界).若函数()f x 在D 上既有上界⼜有下界,则称()f x 在D 上有界;否则,称()f x 在D 上⽆界.若()f x 在其定义域D f ()上有界,则称()f x 为有界函数.容易看出,函数()f x 在D 上有界的充要条件是:存在常数M>0,使得对任⼀x D ∈,都有()f x M ≤.例如,函数sin y x =在其定义域()-∞+∞,内是有界的,因为对任⼀()x ∈-∞+∞,都有sin 1x ≤,函数1y x=在()10,内⽆上界,但有下界. 从⼏何上看,有界函数的图像界于直线y M =±之间.2. 函数的单调性设函数()f x 在数集D 上有定义,若对D 中的任意两数12,x x 12()x x <,恒有()()12f x f x ≤ [或()()12f x f x ≥],则称函数()f x 在D 上是单调增加(或单调减少)的.若上述不等式中的不等号为严格不等号,则称为严格单调增加(或严格单调减少)的.在定义域上单调增加或单调减少的函数统称为单调函数;严格单调增加或严格单调减少的函数统称为严格单调函数.如图1-7所⽰.图1-7例如,函数()3f x x =在其定义域()-∞+∞,内是严格单调增加的;函数()cos f x x =在π0,()内是严格单调减少的.从⼏何上看,若()y f x =是严格单调函数,则任意⼀条平⾏于x 轴的直线与它的图像最多交于⼀点,因此()y f x =有反函数.3. 函数的奇偶性设函数()f x 的定义域()D f 关于原点对称(即若()x D f ∈,则必有()x D f -∈.若对任意的()x D f ∈,都有()()f x f x -=-[或()()f x f x -=],则称()f x 是()D f 上的奇函数(或偶函数).奇函数的图像对称于坐标原点,偶函数的图像对称于y 轴,如图1-11所⽰.图1-8例7 讨论函数()(ln f x x =的奇偶性. 解函数()f x 的定义域()-∞+∞,是对称区间,因为()(lnln f x x ??-=-= (()ln x f x =-+=-所以,()f x 是()-∞+∞,上的奇函数. 4. 函数的周期性设函数()f x 的定义域为()D f ,若存在⼀个不为零的常数T ,使得对任意()x D f ∈,有x T D f ±∈()(),且f x T f x +=()(),则称()f x 为周期函数,其中使上式成⽴的常数T 称为()f x 的周期,通常,函数的周期是指它的最⼩正周期,即:使上式成⽴的最⼩正数T T (如果存在的话).例如,函数sin f x x =()的周期为π2;()tan f x x =的周期是π. 并不是所有函数都有最⼩正周期,例如,狄利克雷(Dirichlet )函数为数为⽆数10 ,) (,x D x x ?=??有理,理.任意正有理数都是它的周期,但此函数没有最⼩正周期.四、函数应⽤举例下⾯通过⼏个具体的问题,说明如何建⽴函数关系式.例8 ⽕车站收取⾏李费的规定如下:当⾏李不超过50千克时,按基本运费计算.如从上海到某地每千克以0.15元计算基本运费,当超过50千克时,超重部分按每千克0.25元收费.试求上海到该地的⾏李费y (元)与重量x (千克)之间的函数关系式,并画出函数的图像.解当500x <≤时,150.y x =;当50x >时,1552550.00.(0)y x =?+-. 所以函数关系式为:0.15, 050;7.50.25(50),50.x x y x x <≤?=?+->?这是⼀个分段函数,其图像如图1-9所⽰.图1-9例9 某⼈每天上午到培训基地A 学习,下午到超市B ⼯作,晚饭后再到酒店C 服务,早、晚饭在宿舍吃,中午带饭在学习或⼯作的地⽅吃.A B C ,,位于⼀条平直的马路⼀侧,且酒店在基地与超市之间,基地与酒店相距3km ,酒店与超市相距5km ,问该打⼯者在这条马路的A 与B 之间何处找⼀宿舍(设随处可找到),才能使每天往返的路程最短. 解如图1-10所⽰,设所找宿舍D 距基地A 为x (km ),⽤f x ()表⽰每天往返的路程函数.图1-10当D 位于A 与C 之间,即30x ≤≤时,易知()()8823222f x x x x x =++-+-=-(),当D 位于C 与B 之间,即38x ≤≤时,则()882312()()0.f x x x x x =++-+-=+ 所以22,03;()102,38.x x f x x x -≤≤?=?+≤≤?这是⼀个分段函数,如图1-11所⽰,在30,上,()f x 是单调减少,在38,上,()f x 是单调增加.从图像可知,在3x =处,函数值最⼩.这说明,打⼯者在酒店C 处找宿舍,每天⾛的路程最短.图1-11五、基本初等函数初等数学⾥已详细介绍了幂函数、指数函数、对数函数、三⾓函数、反三⾓函数,以上我们统称为基本初等函数.它们是研究各种函数的基础.为了读者学习的⽅便,下⾯我们再对这⼏类函数作⼀简单介绍.1. 幂函数函数µy x = (µ是常数)称为幂函数.幂函数µy x =的定义域随µ的不同⽽异,但⽆论µ为何值,函数在()0+∞,内总是有定义的. 当0µ>时,µy x =在)0+∞??,上是单调增加的,其图像过点0,0()及点()1,1,图1-12列出了12µ=,1µ=,2µ=时幂函数在第⼀象限的图像. 当0µ<时,µy x =在()0+∞,上是单调减少的,其图像通过点()1,1,图1-13列出了12µ=-,1µ=-,2µ=-时幂函数在第⼀象限的图像.图1-12 图1-132. 指数函数函数x y a =(a 是常数且10a a >≠,)称为指数函数.指数函数x y a =的定义域是()-∞+∞,,图像通过点()10,,且总在x 轴上⽅. 当时1a >,x y a =是单调增加的;当10a <<时,x y a =是单调减少的,如图1-14所⽰.以常数e 271828182.=L 为底的指数函数e x y =是科技中常⽤的指数函数.图1-143. 对数函数指数函数x y a =的反函数,记作log a y x =(a 是常数且10,a a >≠),称为对数函数.对数函数log a y x =的定义域为()0+∞,,图像过点()1,0.当1a >时,log a y x =单调增加;当10a <<时,log a y x =单调减少,如图1-15所⽰.科学技术中常⽤以e 为底的对数函数e log y x =,图1-15它被称为⾃然对数函数,简记作ln y x =.另外以10为底的对数函数1log 0y x =,也是常⽤的对数函数,简记作g l y x =.4. 三⾓函数常⽤的三⾓函数有正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =,余切函数 cot y x =,其中⾃变量x 以弧度作单位来表⽰.它们的图形如图1-16,图1-17,图1-18和图1-19所⽰,分别称为正弦曲线,余弦曲线,正切曲线和余切曲线.图1-16图1-17正弦函数和余弦函数都是以π2为周期的周期函数,它们的定义域都为(),-∞+∞,值域都为1,1-.正弦函数是奇函数,余弦函数是偶函数.图1-18 图1-19由于πcos sin 2x x ??=+ ??,所以,把正弦曲线sin y x =沿x 轴向左移动π2个单位,就获得余弦曲线cos y x =.正切函数sin tan cos xy x x==的定义域为()21{|(),}D f x x x n n =∈≠+R ,整为数. 余切函数cos cot sin xy x x==的定义域为 ()π{,}D f x x x n n =∈≠R |,整为数.正切函数和余切函数的值域都是()-∞+∞,,且它们都是以π为周期的函数,且都是奇函数.另外,常⽤的三⾓函数还有正割函数sec y x =;余割函数cscy x =.它们都是以π2为周期的周期函数,且1sec cos x x=; 1csc sin x x =.5. 反三⾓函数常⽤的反三⾓函数有反正弦函数 arcsin y x = (如图1-20);反余弦函数 arccos y x = (如图1-21);反正切函数 arctan y x = (如图1-22);反余切函数arccot y x = (如图1-23).它们分别称为三⾓函数sin y x =,cos y x =,tan y x =和cot y x =的反函数.这四个函数都是多值函数.严格来说,根据反函数的概念,三⾓函数sin y x =,cos y x =,tan y x =和cot y x =在其定义域内不存在反函数,因为对每⼀个值域中的数y ,有多个x 与之对应.但这些函数在其定义域的每⼀个单调增加(或减少)的⼦区间上存在反函数.例如,sin y x=在闭区间,22ππ??-上单调增加,从⽽存在反函数,称此反函数为反正弦函数arcsin x 的主值,记作y =arcsin x .通常我们称arcsin y x =为反正弦函数.其定义域为11,-,值域为,22ππ??-.反正弦函数arcsin y x =在11,-上是单调增加的,它的图像如图1-20中实线部分所⽰. 类似地,可以定义其他三个反三⾓函数的主值arccos arctan ,y x y x ==和arccot y x =,它们分别简称为反余弦函数,反正切函数和反余切函数.反余弦函数arccos y x =的定义域为1,1-,值域为π0,,在1,1-上是单调减少的,其图像如图1-21中实线部分所⽰.反正切函数arctan y x =的定义域为(),-∞+∞,值域为ππ22??-,,在()-∞+∞,上是单调增加的,其图像如图1-22中实线部分所⽰.反余切函数arccot y x =的定义域为()-∞+∞,,值域为π0,(),在()-∞+∞,上是单调减少的,其图像如图1-23中实线部分所⽰.图1-20 图1-21图1-22 图1-23六、初等函数由常数和基本初等函数经有限次四则运算和复合运算得到并且能⽤⼀个式⼦表⽰的函数,称为初等函数.例如,23sin4y x x =+,(ln y x =+,3arctan22sin 1xy x x =+等等都是初等函数.分段函数是按照定义域的不同⼦集⽤不同表达式来表⽰对应关系的,有些分段函数也可以不分段⽽表⽰出来,分段只是为了更加明确函数关系⽽已.例如,绝对值函数也可以表⽰成y x =1,,()0,x a f x x a ? 也可表⽰成1()12f x ? = ??.这两个函数也是初等函数.七、双曲函数与反双曲函数1. 双曲函数双曲函数是⼯程和物理问题中很有⽤的⼀类初等函数.定义如下:双曲正弦 sh e e 2x xx --= ()x -∞<<+∞,双曲余弦 ch e e 2x xx -+= ()x -∞<<+∞,双曲正切 th e e e e sh ch x xx x+ ()x -∞<<+∞,其图像如图1-24和图1-25所⽰图1-24 图1-25.双曲正弦函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内单调增加.双曲余弦函数的定义域为()x -∞<<+∞,它是偶函数,其图像通过点()10,且关于y 轴对称,在(),0-∞内单调减少;在()0+∞,内单调增加. 双曲正切函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内是单调增加的.由双曲函数的定义,容易验证下列基本公式成⽴.()sh sh ch ch sh x y x y x y ±=±,()ch ch ch sh sh x y x y x y ±=±,sh22sh ch x x x =,2222ch2ch sh 12sh 2ch 1x x x x x =+=+=-,22ch sh 1x x -=.2. 反双曲函数双曲函数的反函数称为反双曲函数,sh y x =,ch y x =和th y x =的反函数,依次记为反双曲正弦函数 a rsh y x =,反双曲余弦函数 arch y x =,反双曲正切函数 a rth y x =.反双曲正弦函数a rsh y x =的定义域为()-∞+∞,,它是奇函数,在()-∞+∞,内单调增加,由sh y x =的图像,根据反函数作图法,可得a rsh y x =的图像,如图1-26所⽰.利⽤求反函数的⽅法,不难得到(a rsh ln y x x ==+.反双曲余弦函数arch y x =的定义域为)1+∞??,,在)1+∞??,上单调增加,如图1-27所⽰,利⽤求反函数的⽅法,不难得到(arch ln y x x ==.图1-26 图1-27反双曲正切函数a rtanh y x =的定义域为11()-,,它在11()-,内是单调增加的.它是奇函数,其图像关于原点(00),对称,如图1-28所⽰.容易求得a rth 1ln 1xy x x+==-.第⼆节数列的极限⼀、数列极限的定义定义1 如果函数f 的定义域()*{}D f N ==L ,,,123,则函数f 的值域()(){}**|f N f n n N =∈中的元素按⾃变量增⼤的次序依次排列出来,就称之为⼀个⽆穷数列,简称数列,即()()()12,,f f f n L L ,,.通常数列也写成12,n x x x L L ,,,,并简记为{}n x ,其中数列中的每个数称为⼀项,⽽()n x f n =称为⼀般项.对于⼀个数列,我们感兴趣的是当n ⽆限增⼤时,n x 的变化趋势.我们看下列例⼦:数列 12,,,,231nn +L L (1-2-1) 的项随n 增⼤时,其值越来越接近1;数列 2462 n L L ,,,,, (1-2-2)的项随n 增⼤时,其值越来越⼤,且⽆限增⼤;数列 1111(1)0,n n-+-L L ,,,, (1-2-3)的各项值交替地取1与0;数列 ()11111,,,,,23n n---LL (1-2-4) 的各项值在数0的两边跳动,且越来越接近0;数列 2222L L ,,,,, (1-2-5)各项的值均相同.在中学教材中,我们已知道极限的描述性定义,即“如果当项数n ⽆限增⼤时,⽆穷数列{}n x 的⼀般项n x ⽆限地趋近于某⼀个常数a (即n x a -⽆限地接近于0),那么就说a 是数列{}n x 的极限”.于是我们⽤观察法可以判断数列{}1n n -,1(1)n n -??-,{}2都有极限,其极限分别为1,20,.但什么叫做“n x ⽆限地接近a ”呢?在中学教材中没有进⾏理论上的说明.我们知道,两个数a 与b 之间的接近程度可以⽤这两个数之差的绝对值b a -来度量.在数轴上b a -表⽰点a 与点b 之间的距离,b a -越⼩,则a 与b 就越接近,就数列(1-2-1)来说,因为111n x n n-=-=,我们知道,当n 越来越⼤时,1n 越来越⼩,从⽽n x 越来越接近1.因为只要n ⾜够⼤, 11n x n-=就可以⼩于任意给定的正数,如现在给出⼀个很⼩的正数1100,只要n 100>即可得11100n x -<,11120,0,n =L如果给定110000,则从10001项起,都有下⾯不等式1110000n x -<成⽴.这就是数列1n n x n-=12 (,,)n =L ,当n →∞时⽆限接近于1的实质.⼀般地,对数列{}n x 有以下定义.定义2 设{}n x 为⼀数列,若存在常数a 对任意给定的正数ε(⽆论多么⼩),总存在正整数N ,当n N >时,有不等式n x a ε-<即(,)n x U a ε∈,则称数列{}n x 收敛,a 称为数列{}n x 当n →∞时的极限,记为lim n n x a →∞=或n x a →()n →+∞.若数列{}n x 不收敛,则称该数列发散.定义中的正整数N 与ε有关,⼀般说来,N 将随ε减⼩⽽增⼤,这样的N 也不是唯⼀的.显然,如果已经证明了符合要求的N 存在,则⽐这个N ⼤的任何正整数均符合要求,在以后有关数列极限的叙述中,如⽆特殊声明,N 均表⽰正整数.此外,由邻域的定义可知,()n x U a ε∈,等价于n x a ε-<.我们给“数列{}n x 的极限为a ”⼀个⼏何解释:将常数a 及数列123,,,,,n x x x x L L 在数轴上⽤它们的对应点表⽰出来,再在数轴上作点a 的ε邻域,即开区间(,)a εa ε-+,如图1-29所⽰图1-29因两个不等式 ||n x a ε-<, n a εx a ε-<<+等价,所以当n N >时,所有的点n x 都落在开区间(,)a εa ε-+内,⽽只有有限个点(⾄多只有N 个点)在这区间以外.为了以后叙述的⽅便,我们这⾥介绍⼏个符号,符号“?”表⽰“对于任意的”、“对于所有的”或“对于每⼀个”;符号“?”表⽰“存在”;符号“{}ax m X ”表⽰数集X 中的最⼤数;符号“{}min X ”表⽰数集X 中的最⼩数.数列极限lim n n x a →∞=的定义可表达为:lim n n x a →∞=0ε??>,?正整数N ,当n N >时,有n x a ε-<.例1 证明 1lim 02n n →∞=.证 0ε?>(不防设1ε<),要使11022nn ε-=<,只要21nε>,即ln ln21/n ε>(). 因此,0ε?>,取ln /ln21N ε= ???,则当n N >时,有102n ε-<.由极限定义可知1lim 02n n →∞=. 例2 证明π1lim cos04n n n →∞=. 证由于ππ111cos 0cos 44n n n n n -=≤,故0ε?>,要使π1cos 04n εn -<,只要1εn <,即1n ε>.因此,0ε?>,取1N ε??=,则当n N >时,有π1cos 04n εn -<.由极限定义可知π1lim cos 04n n n →∞=. ⽤极限的定义来求极限是不太⽅便的,在本章的以后篇幅中,将逐步介绍其他求极限的⽅法.⼆、数列极限的性质定理1(惟⼀性)若数列收敛,则其极限惟⼀. 证设数列{}n x 收敛,反设极限不惟⼀:即lim n n x a →∞=,lim n n x b →∞=,且a b ≠,不妨设a b <,由极限定义,取2b a ε-=,则10N ?>,当1n N >时,2n b ax a --<,即 322n a b a bx -+<<,(1-2-6) 20N ?>,当2n N >时,2n b ax b --<,即322n a b b ax +-<<, (1-2-7) 取{}12m ,N ax N N =,则当n N >时,(1-3-6),(1-3-7)两式应同时成⽴,显然⽭盾.该⽭盾证明了收敛数列{}n x 的极限必惟⼀.定义3 设有数列{}n x ,若存在正数M ,使对⼀切12,,n =L ,有n x M ≤,则称数列{}n x 是有界的,否则称它是⽆界的.对于数列{}n x ,若存在常数M ,使对12n =L ,,,有n x M ≤,则称数列{}n x 有上界;若存在常数M ,使对12,,n =L ,有n x M ≥,则称数列{}n x 有下界.显然,数列{}n x 有界的充要条件是{}n x 既有上界⼜有下界. 例3 数列{}211n +有界;数列{}2n 有下界⽽⽆上界;数列{}2n -有上界⽽⽆下界;数列{}11nn --()既⽆上界⼜⽆下界.定理2(有界性)若数列{}n x 收敛,则数列{}n x 有界.证设lim n n x a →∞=,由极限定义,0ε?>,且1ε<,0N ?>,当n N >时,1||n x a ε-<<,从⽽<1n x a +.取{}12m 1,,,,N M ax a x x x =+?,则有n x M ≤,对⼀切123,,,n =L ,成⽴,即{}n x 有界.定理2 的逆命题不成⽴,例如数列{}1()n -有界,但它不收敛.定理3(保号性)若lim n n x a →∞=,0a >(或0a <),则0N ?>,当n N >时,0n x >(或0n x <).证由极限定义,对02aε=>,0N ?>,当n N >时,2n a x a -<,即322n a x a <<,故当n N >时,02n ax >>.类似可证0a <的情形.推论设有数列{}n x ,0N ?> ,当n N >时,0n x > (或0n x <),若lim n n x a →∞=,则必有0a ≥ (或0a ≤).在推论中,我们只能推出0a ≥ (或0a ≤),⽽不能由0n x > (或0n x <)推出其极限(若存在)也⼤于0(或⼩于0).例如10n x n=>,但1lim lim 0n n n x n →∞→∞==.下⾯我们给出数列的⼦列的概念.定义4 在数列{}n x 中保持原有的次序⾃左向右任意选取⽆穷多个项构成⼀个新的数列,称它为{}n x 的⼀个⼦列.在选出的⼦列中,记第1项为1n x ,第2项为2n x ,…,第k 项为k n x ,…,则数列{}n x 的⼦列可记为{}k n x .k 表⽰k n x 在⼦列{}k n x 中是第k 项,k n 表⽰k n x 在原数列{}n x 中是第k n 项.显然,对每⼀个k ,有k n k ≥;对任意正整数h ,k ,如果h k ≥,则h k n n ≥;若h k n n ≥,则h k≥由于在⼦列{}k n x 中的下标是k ⽽不是k n ,因此{}k n x 收敛于a 的定义是:0ε?>,0K ?>,当k K >时,有k n x a ε-<.这时,记为lim k n k x a →+∞= .定理4 lim n k x a →∞=的充要条件是:{}n x 的任何⼦列{k n x }都收敛,且都以a 为极限. 证先证充分性.由于{}n x 本⾝也可看成是它的⼀个⼦列,故由条件得证. 下⾯证明必要性.由lim n k x a →∞=,0ε?>,0N ?>,当n N >时,有n x a ε-<.今取K N =,则当k K >时,有k K N n n n N >=≥,于是k n x a ε-<.故有lim k n k x a →∞=.定理4⽤来判别数列{}n x 发散有时是很⽅便的.如果在数列{}n x 中有⼀个⼦列发散,或者有两个⼦列不收敛于同⼀极限值,则可断⾔{}n x 是发散的.例4 判别数列{}*πsin ,8n n x n N =∈的收敛性.解在{}n x 中选取两个⼦列:{}*8πsin ,8k k N ∈,即{}πππ8168sin ,sin ,sin ,888k ; ()*164πsin ,8k k N +??∈,即()ππ16420sin ,sin ,88k ??+??. 显然,第⼀个⼦列收敛于0,⽽第⼆个⼦列收敛于1,因此原数列{}πsin 8n 发散.三、收敛准则定义5 数列{}n x 的项若满⾜121n n x x x x +≤≤≤≤≤L L ,则称数列{}n x 为单调增加数列;若满⾜121n n x x x x +≥≥≥≥≥L L ,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成⽴时,则分别称{}n x 是严格单调增加和严格单调减少数列.收敛准则单调增加有上界的数列必有极限;单调减少有下界的数列必有极限. 该准则的证明涉及较多的基础理论,在此略去证明.例5 证明数列11nn ??+?? ??收敛.证根据收敛准则,只需证明11nn ??+?? ??单调增加且有上界(或单调减少且有下界).由⼆项式定理,我们知道1221111(1)1n n n n n n nx C C C n n n n =+=++++L 11112112111(1)(1)(1)(1)(1)(1)2!3!!n n n n n n n n -=++-+--++---L L ,11211111211111(1)111(1)(1)n n n n n n n x C C C n n n n +++++++=+=++++++++L 1111211(1)(1)(1)2!13!11n n n =++-+--++++L1121(1)(1)(1)!111n n n n n -+--++-+++L 112(1)(1)(1)(1)!111n n n n n +--++-++++L ,逐项⽐较n x 与1n x +的每⼀项,有1n n x x +<,1,2,.n =L这说明数列{}n x 单调增加,⼜111112!3!!n x n <+++++L 211111222n <+++++L。
第1章 函数,极限与连续第5讲函数地连续性主讲教师 |引言为了自然界中有许多现象,如气温地变化,河水地流动,植物地生长等,都是连续变化地。
这类现象在函数关系上地反映,就是函数地连续性,它是微积分地又一重要概念.此外,还有很多实际问题中地函数关系不是连续地,我们称之为间断。
本节将研究函数地连续与间断。
01 函数连续地定义本节内容02 函数地间断点03 连续函数地性质04 闭区间上地连续函数 定义1.18. 注设变量 从它地一个初值 变到终值 ,终值与初值地差 称为变量 地增量,记为 ,即:增量 可以是正地,也可以是负地。
“终值 – 初值”当 为正时,变量 从 变到 是增大地;当 为负时,变量 是减小地。
Ὅ 定义1.19“连续变化”地概念反映在数学上,是当自变量地增量很微小时,函数地增量也很微小。
,设函数 在点 地某邻域内有定义,当自变量 有增量 时,函数有相应地增量 若则称 在点 处连续, 为 地连续点。
于是定义中地表达式变为此即函数连续地等价定义。
事实上, 若令则当 时,相应地有 进而,Ὅ 定义1.20(1)设函数在点地某邻域内有定义,若,则称函数在点处连续。
(2)设函数在点地某邻域内有定义,如果当时,恒有则称函数在点处连续。
从定义可以看出,函数在点处连续必须同时满足:(1)在点处有定义;(2)在点处极限存在,即 ;(3)在点处地极限值等于函数值,即当这三条都满足时,就称函数在点处连续。
Ὅ 例1证明证明:函数 在任意点 处都连续。
设自变量在 处地增量为则函数地相应增量为由于 所以于是,当时,有从而由此可证:函数在任意点处都连续。
Ὅ 例2证明证明:函数根据有界变量与无穷小量地乘积仍为无穷小量,得在处连续.所以函数在处连续.Ὅ 定义1.21如果函数在区间内地每一点都连续,则称在内连续;如果函数在内地每一点都连续,且在左端点处右连续,在右端点处左连续,则称在上连续。
Ὅ 定理1.21函数在点处连续地充分必要条件是函数在点处既是左连续地又是右连续地。