数字图像处理
- 格式:docx
- 大小:17.93 KB
- 文档页数:9
数字图像处理的主要内容
数字图像处理是将原始数字图像经过一系列特定步骤处理达到所需要的修改或
者提取图像相关信息的一种技术。
它包括图像采样、数字图像处理技术、图像参数维度,以及图像状态分析与特征抽取的等多种技术,是计算机视觉技术的一个重要组成部分。
数字图像采样,是将复杂的现实世界的信息片段,利用计算机进行图像编码处理,编码后进行数据采样,将采样结果以图像数据形式表示或显示出来,它通常将摄取到的图像数据编排成一系列矩阵,空间分辨率越高,代表的信息量越大,所采样出的图像就越清晰,通常采用RGB三原色或者灰度级,将原始图像进行信息处理,使图像变换成采样图形序列。
数字图像处理技术,是指对已经采样的图像进行编码与处理,将所采样的图像
数据变换成另一种形式,进行增强、转换、滤波、压缩、边缘检测、分割、提取特征等等,在不同参数精度上都得到所期望的结果。
比如,在处理图像边缘时,利用Robert、Prewitt等运算来实现图像边缘的提取,将图像中非边缘部分消除,是广
泛应用的数字图像处理技术。
图像参数的维度是指它所收集的图像参数的测量方法,其中包括图像尺寸、像
素数、色彩模式、分辨率等。
它可以影响到图像的色彩细节和色调等的变化,也可以用来改变图像的视觉效果,因此,有必要根据图像的数字图像处理要求,首先了解图像参数的维度,以决定有效操作方法。
最后,图像状态分析和特征抽取,即分析图像特征,提取好特征和信息,以用
于一些应用场景或参考,常见的技术有空间和时间域的处理方法,将图像变换成一系列特征向量,以用于特征相似度的评估,以及图像的聚类和分类等,可以用于分析图像的状态和特征,以支撑和管理图像应用中的信息抽取。
二、数字图像处理的概念 1. 什么是图像“图”是物体投射或反射光的分布,“像” 是人的视觉系统对图的接受在大脑中形成的印象或反映。
是客观和主观的结合。
2数字图像是指由被称作象素的小块区域组成的二维矩阵。
将 物理图象行列划分后,每个小块区域称为像素(pixel )。
–每个像素包括两个属性:位置和灰度。
对于单色即灰度图像而言,每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示,0表示黑、255表示白,而其它表示灰度级别。
物理图象及对应 的数字图象3彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。
–通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。
4什么是数字图像处理数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 5对连续图像f (x ,y )进行数字化:空间上,图像抽样;幅度上,灰度级量化 x 方向,抽样M 行 y 方向,每行抽样N 点整个图像共抽样M ×N 个像素点一般取M=N=2n=64,128,256,512,1024,2048 6数字图像常用矩阵来表示:f(i,j)=0~255,灰度级为256,设灰度量化为8bitNN N N f N f N f N f f f N f f f y x f ⨯⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------=)1,1( )1,1( )0,1( )1,1( )1,1( )0,1( )1,0( )1,0( )0,0( ),(7 数字图像处理的三个层次8 图像处理:9建立对图像的描述;以观察者为中心研究客观世界;图像分析是一个从图像到数据的过程。
10图像理解:研究图像中各目标的性质和它们之间的相互联系;得出对图像内容含义的理解及原来客观场景的解释;以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作(符号运算)11图像处理是比较低层的操作,处理的数据量非常大。
数字图像处理技术数字图像处理技术是一种针对数字图像进行处理和分析的技术。
随着计算机技术的不断发展和普及,数字图像处理技术在图像处理领域中扮演着越来越重要的角色。
本文将详细介绍数字图像处理技术的概念、原理、应用及未来发展方向。
概念数字图像处理技术是指利用计算机对数字图像进行处理和分析的技术。
数字图像是通过像素表示的图像,而像素是图像最小的单元,每个像素都有其特定的数值表示颜色和亮度。
数字图像处理技术可以对图像进行各种操作,如增强图像的质量、提取图像特征、恢复图像信息等。
原理数字图像处理技术的原理主要包括图像获取、图像预处理、图像增强、图像分割、特征提取和图像识别等基本步骤。
1.图像获取:通过相机或扫描仪等设备获取数字图像,将图像转换为数字信号。
2.图像预处理:对原始图像进行去噪、几何校正、尺度变换等预处理操作,以提高后续处理的效果。
3.图像增强:通过直方图均衡化、滤波等方法增强图像的对比度、亮度等特征。
4.图像分割:将图像分割成若干个区域或对象,以便更好地分析和处理图像。
5.特征提取:提取图像中的特征信息,如颜色、纹理、形状等,为图像识别和分类提供依据。
6.图像识别:利用机器学习、深度学习等算法对图像进行分类、识别和分析。
应用数字图像处理技术在各个领域都有广泛的应用,如医疗影像分析、无人驾驶、安防监控、智能交通等。
以下列举一些典型的应用场景:•医疗影像分析:利用数字图像处理技术分析医学影像,辅助医生进行疾病诊断和治疗。
•安防监控:通过视频监控系统、人脸识别技术等实现对安全领域的监控和警报。
•智能交通:通过交通监控系统、车辆识别技术等提高交通管理效率和道路安全。
未来发展数字图像处理技术在人工智能、物联网等新兴技术的推动下不断发展和创新,未来的发展方向主要包括以下几个方面:1.深度学习在图像处理中的应用:深度学习技术在图像分类、目标检测等方面取得重大突破,将在数字图像处理领域得到更广泛的应用。
2.虚拟现实与增强现实:数字图像处理技术将与虚拟现实、增强现实技术结合,实现更加沉浸式的用户体验。
数字图像处理技术数字图像处理技术是一种利用计算机对图像进行处理和分析的技术。
随着计算机技术和图像采集设备的不断发展,数字图像处理技术已经广泛应用于影像处理、医学图像分析、机器视觉、模式识别等领域。
本文将重点介绍数字图像处理技术的基本原理、常见的图像处理方法和应用领域。
一、数字图像处理技术的基本原理数字图像处理是在计算机中对图像进行数值计算和变换的过程。
图像是由像素组成的二维数组,每个像素包含了图像中某一点的亮度或颜色信息。
数字图像处理技术主要包括如下几个基本步骤:1. 图像采集:利用摄像机、扫描仪等设备将实际场景或纸质图像转换成数字图像。
2. 图像预处理:对采集到的图像进行预处理,包括图像增强、去噪、几何校正等操作,以提高图像质量。
3. 图像变换:通过一系列的数值计算和变换,改变图像的亮度、对比度、颜色等特征,以满足特定的需求。
4. 图像分析:对图像进行特征提取、目标检测、模式识别等操作,以获取图像中的各种信息。
5. 图像展示:将处理后的图像显示在计算机屏幕上或输出到打印机、投影仪等设备上,以便人们观看和分析。
二、常见的图像处理方法1. 图像增强:通过调整图像的亮度、对比度、颜色等参数,使图像更清晰、更鲜艳。
2. 图像滤波:利用滤波器对图像进行低通滤波、高通滤波、中值滤波等操作,以去除噪声、平滑图像或增强边缘。
3. 图像分割:将图像分成若干个区域,以便更好地分析和识别图像中的目标。
4. 特征提取:从图像中提取出与目标相关的特征,如纹理特征、形状特征、颜色特征等。
5. 目标检测:利用机器学习、模式识别等方法,从图像中检测和识别出目标,如人脸、车辆等。
三、数字图像处理技术的应用领域数字图像处理技术在很多领域都有广泛的应用,以下列举几个主要的应用领域:1. 影像处理:数字图像处理技术可以应用于电影特效、动画制作、数字摄影等领域,提高影像的质量和逼真度。
2. 医学图像分析:数字图像处理技术可以应用于医学影像的分析、诊断和治疗,如CT扫描、核磁共振等。
第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。
二、数字图像处理的目的1、提高图像的视觉质量。
2、提取图像中的特征信息。
3、对图像数据进行变换、编码和压缩。
三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。
细节越多,采样间隔应越小。
把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。
一般,灰度图像的像素值量化后用一个字节(8bit)来表示。
二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。
为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。
对细节化图像,细采样,粗量化,以避免模糊。
三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。
彩色图像的像素值量化后用三个字节(24bit)来表示。
一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。
五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。
六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。
数字图像解决技术一. 数字图像解决概述数字图像解决是指人们为了获得一定的预期结果和相关数据运用计算机解决系统对获得的数字图像进行一系列有目的性的技术操作。
数字图像解决技术最早出现在上个世纪中期, 随着着计算机的发展, 数字图像解决技术也慢慢地发展起来。
数字图像解决初次获得成功的应用是在航空航天领域, 即1964年使用计算机对几千张月球照片使用了图像解决技术, 并成功的绘制了月球表面地图, 取得了数字图像解决应用中里程碑式的成功。
最近几十年来, 科学技术的不断发展使数字图像解决在各领域都得到了更加广泛的应用和关注。
许多学者在图像解决的技术中投入了大量的研究并且取得了丰硕的成果, 使数字图像解决技术达成了新的高度, 并且发展迅猛。
二. 数字图象解决研究的内容一般的数字图像解决的重要目的集中在图像的存储和传输, 提高图像的质量, 改善图像的视觉效果, 图像理解以及模式辨认等方面。
新世纪以来, 信息技术取得了长足的发展和进步, 小波理论、神经元理论、数字形态学以及模糊理论都与数字解决技术相结合, 产生了新的图像解决方法和理论。
比如, 数学形态学与神经网络相结合用于图像去噪。
这些新的方法和理论都以传统的数字图像解决技术为依托, 在其理论基础上发展而来的。
数字图像解决技术重要涉及:⑴图像增强图像增强是数字图像解决过程中经常采用的一种方法。
其目的是改善视觉效果或者便于人和机器对图像的理解和分析, 根据图像的特点或存在的问题采用的简朴改善方法或加强特性的措施就称为图像增强。
⑵图像恢复图像恢复也称为图像还原, 其目的是尽也许的减少或者去除数字图像在获取过程中的降质, 恢复被退化图像的本来面貌, 从而改善图像质量, 以提高视觉观测效果。
从这个意义上看, 图像恢复和图像增强的目的是相同的, 不同的是图像恢复后的图像可当作时图像逆退化过程的结果, 而图像增强不用考虑解决后的图像是否失真, 适应人眼视觉和心理即可。
⑶图像变换图像变换就是把图像从空域转换到频域, 就是对原图像函数寻找一个合适变换的数学问题, 每个图像变换方法都存在自己的正交变换集, 正是由于各种正互换集的不同而形成不同的变换。
数字图像处理技术数字图像处理技术是一门探讨如何利用计算机对数字图像进行处理、分析、存储、传输和显示等的学科。
由于其在各个领域中的广泛应用,数字图像处理技术已经成为一个独立的学科。
本文将从数字图像处理技术的基础知识、常见应用以及未来趋势三个方面来探讨这门技术的深度和广度。
一、基础知识数字图像的基本概念图像是人类感知现实的一种方式,而数字图像是指通过数字化技术将图像转换成数字表示形式的图像。
数字图像的特点是可以被存储、传输、处理和复制等,因此具有很高的应用价值。
数字图像由像素组成,每个像素包括亮度和颜色信息。
数字图像的获取与处理数字图像的获取是通过数字相机、扫描仪等设备实现的,并通过数字化技术将图像转换成数字信号。
数字图像的处理可以通过计算机进行,处理过程包括图像增强、滤波、分割、特征提取、识别等。
其应用领域包括影像处理、医学影像、遥感图像、安防监控等。
二、常见应用数字图像处理技术的应用范围非常广泛,下面将介绍一些常见的应用领域。
医学影像数字图像处理技术在医学影像领域起着重要作用。
医学影像的处理包括去噪、增强、分割、配准等,这些处理方法可以提高医生对病情的诊断。
数字图像处理技术广泛应用于X光透视、CT、MRI、PET等医学影像的处理。
遥感图像遥感图像处理是指利用计算机处理卫星、飞机或直升机等遥感平台获取的图像数据。
数字图像处理技术可以处理海量的遥感数据,包括遥感图像的增强、滤波、特征提取、分类等等。
其应用领域包括农业、林业、城市规划等。
安防监控数字图像处理技术在安防监控领域的应用越来越广泛。
数字图像处理技术通过视频分析、图像匹配、车牌识别等手段,可以提高监控系统的检测准确率和处理能力,增强监控系统的实时性和可靠性。
三、未来趋势随着技术的不断发展,数字图像处理技术也面临着新的挑战和机遇。
人工智能数字图像处理技术与人工智能的结合将成为未来的发展趋势。
人工智能可以通过强大的计算能力和算法优势,提高数字图像处理技术的处理效率和准确性。
数字图像处理的理论基础及发展方向一、数字图像处理的起源及发展数字图像处理(Digital Image Processing) 将图像信号转换成数字信号并利用计算机对其进行处理,起源于20 世纪20年代,目前已广泛地应用于科学研究、工农业生产、生物医学工程、航空航天、军事、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,已成为一门引人注目、前景远大的新型学科,发挥着越来越大的作用。
数字图像处理作为一门学科形成于20 世纪60 年代初期,早期的图像处理的目的是改善图像的质量,以人为对象,以改善人的视觉效果为目的,首次获得实际成功应用的是美国喷气推进实验室(J PL)并对航天探测器徘徊者7 号在1964 年发回的几千张月球照片使用了图像处理技术,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,随后又对探测飞船发回的近十万张照片进行了更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
数字图像处理取得的另一个巨大成就是在医学上获得的成果,1972 年英国EMI 公司工程师Ho usfield 发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph) 。
1975 年EMI 公司又成功研制出全身用的CT 装置,获得了人体各个部位鲜明清晰的断层图像。
1979 年这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。
随着图像处理技术的深入发展,从70 年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。
人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界。
很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。
其中代表性的成果是70 年代末MIT 的Ma rr 提出的视觉计算理论,这个理论成为计算机视觉领域其后多年的主导思想。
图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。
正因为如此,图像处理理论和技术受到各界的广泛重视,当前图像处理面临的主要任务是研究新的处理方法,构造新的处理系统,开拓更广泛的应用领域。
二、数字图像处理的研究内容数字图象处理,就是采用计算机对图象进行信息加工。
图象处理的主要内容有:图像的采集、增强、复原、变换、编码、重建、分割、配准、嵌拼、融合、特征提取、模式识别和图象理解。
对图像进行处理(或加工、分析)的主要目的有三个方面:1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。
2)提取图像中所包含的某些特征或特殊信息,这些被提取的特征或信息往往为计算机分析图像提供便利。
提取特征或信息的过程是模式识别或计算机视觉的预处理。
提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。
3)图像数据的变换、编码和压缩,以便于图像的存储和传输。
不管是何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。
三、数字图像处理和分析模块的基本构成一个基本的图像可由五部分表示:这五部分分别是:采集、显示、存储、通信、处理和分析。
1)图像采集模块为采集数字图像,需要两种装置。
一种是对某个电磁能量谱段(如X射线、可见光、红外线等)敏感的物理器件,它能产生与所接受到的电磁能量成正比的(模拟)电信号。
另一种称为数字化器,他能将上述电信号转化为数字形式,所有采集数字图像的设备都需要这两种装置。
2)图像显示模块对于图像处理来说,最终的目的是要显示给人看的。
对于图像分析来说,分析的结果也可以借助计算机图形学技术转换为图像形式直观的显示。
所以图像的显示对其处理和分析系统是非常重要的。
常用的图像处理和分析系统主要显示设备是显示器,输入显示图像也可拷贝到照片或透明胶片上,除了显示器,还有投影仪和各种打印设备可以用于图像输出显示。
3)图像存储模块图像包含有大量的信息因而存储图像也需要大量空间。
用于数字处理和图像分析的数字存储器可分为三类:a,处理和分析过程中使用的快速存储器。
计算机内存就是一种提供快速存储功能的存储器,在图像处理中大量的运算所产生的缓存数据可以存储在里面,方便随时调用数据进行图像处理运算。
b,用于比较快速的重新调用的在线或联机存储器。
c,不经常使用的数据库存储器。
这种存储器的特点是要求非常大的容量,但对数据读取不太频繁,常用于对数字图像的保存。
4)图像通信模块随着网络发展的进步,图像的通信传输也得到极大关注。
图像传输可使不同的系统共享图像数据资源,极大地推动了图像在各个领域的应用。
5)图像处理和分析模块对图像的处理和分析一般可用算法来描述,而大多数算法可通过软件来实现,在为了提高速度和克服通用计算机的缺陷时才应用专用的硬件实现。
90年代后,各种工业标准的订立也促进了图像处理分析软件的发展,使图像处理变得更加方便快捷。
四、图像处理的常用方法1)图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2)图像的增强图像的增强用于调整图像的对比度,突出图像中的重要细节,改善视觉质量。
通常采用灰度直方图修改技术进行图像增强。
图像的灰度直方图是表示一幅图像灰度分布情况的统计特性图表,与对比度紧密相连。
如果获得一幅图像的直方图效果不理想,可以通过直方图均衡化处理技术作适当修改,即把一幅已知灰度概率分布图像中的像素灰度作某种映射变换,使它变成具有均匀灰度概率分布的新图像,使图像清晰。
3)图像的平滑图像的平滑处理即图像的去噪声处理,主要是为了去除实际成像过程中,因成像设备和环境所造成的图像失真,提取有用信息。
实际获得的图像在形成、传输、接收和处理过程中,不可避免地存在外部干扰和内部干扰,如光电转换过程中敏感元件灵敏度的不均匀性、数字化过程的量化噪声、传输过程中的误差以及人为因素等,均会使图像变质。
因此,去除噪声恢复原始图像是图像处理中的一个重要内容。
4)边缘锐化图像边缘锐化处理主要是加强图像中的轮廓边缘和细节,形成完整的物体边界,达到将物体从图像中分离出来或将表示同一物体表面的区域检测出来的目的。
锐化的作用是要使灰度反差增强,因为边缘和轮廓都位于灰度突变的地方。
所以锐化算法的实现是基于微分作用。
它是早期视觉理论和算法中的基本问题。
5)图像的分割图像分割是将图像分成若干部分,每一部分对应于某一物体表面,在进行分割时,每一部分的灰度或纹理符合某一种均匀测度度量。
其本质是将像素进行分类。
分类依据是像素的灰度值、颜色、频谱特性、空间特性或纹理特性等。
图像分割是图像处理技术的基本方法之一,应用于诸如染色体分类、景物理解系统、机器视觉等方面。
五、数字图像处理现今存在的问题和未来的方向图像提取技术得到了越来越多学者的关注,产生了很多的研究成果,但是仍存在以下点不足和有待解决的问题:(1)缺乏统一的评价标准;(2)缺乏先验知识来支持系统;(3)最终提取边界很大程度上依赖于T;(4)图像提取系统的计算量都比较大。
图像提取技术研究作为图像处理中一个重要研究分支,引人大量概率统计理论,目前图像提取技术领域的研究依然非常活跃。
如华盛顿大学专门成立了图形图像实验室( GRAIL),由SONY等企业联合一些大学也进行了相关的研究,Microsoft 在其亚洲微软研究院(MRA)专门设有图形图像处理技术研究所和交互可视媒体研究组,北京大学、浙江大学等都相继成立了从事数字图像处理技术研究的国家重点实验室。
天津大学从研制数字电视及电影制作设备(如切换台等)的角度,也对图像提取技术进行了较深人的研究。
笔者认为:前景与背景间交界区域估计模型仍是该领域研究的一个重点。
小波变换图像压缩编码有待解决的主要问题:尽管小波变换图像压缩编码算法具有结构简单、无需任何训练、支持多码率、压缩比较大、图象复原质量较理想等特点,但在不同程度上存在压缩/ 解压缩速度慢、图像复原质量不理想等问题,为了进一步改善此算法的工作效率,需要解决以下2 个主要问题:正交小波基的选择问题;数据向量量化编码算法的选择问题。
纹理的理论和应用研究取得了丰富的成果,但也有一些与之相关的概念和理论尚未取得一致的看法,纹理研究方法多从信号处理、模式识别理论发展而来,并且处在不断的发展之中。
经过近90 年的发展,特别是第3 代数字计算机问世后,数字图像处理技术出现了空前的发展,但存在一定的问题,具体体现在以下5 个方面:(1)在提高精度的同时着重解决处理速度的问题,巨大的信息量和数据量和处理速度仍然是一对主要矛盾;(2)加强软件的研究和开发新的处理方法,重点是移植其他学科的技术和研究成果;(3)边缘学科的研究( 如人的视觉特性、心理学特性的研究的突破) 促进图像处理技术的发展;(4)理论研究已逐步形成图像处理科学自身的理论体系;(5)建立图像信息库和标准子程序,统一存放格式和检索。
图像信息量和数据量大,若没有图像处理领域的标准化,图像信息的建立、检索和交流将是一个极严重的问题,交流和使用极不便,造成资源共享的严重障碍。
图像处理技术未来发展大致体现在在以下4个方面:1)朝高速、高分辨率、立体化、多媒体、智能化和标准化方向发展。
具体表现:(1)提高硬件速度。
这不仅仅要提高计算机的速度,而且A/ D 和D/ A 的速度要实时化;(2)提高分辨率。
主要是提高采集分辨率和显示分辨率,其主要困难是显像管的制造和图像图形刷新存取速度;(3)立体化。
图像是二维信息,信息量更大的三维图像将随意计算图形学及虚拟现实技术的发展将得到广泛应用。
(4)多媒体化。
20世纪90 年代出现的多媒体技术,其关键技术就是图像数据的压缩,目前数据压缩的国际标准有多个,而且还在发展,它将朝着人类接收和处理信息最自然的方式发展。
(5)智能化。
力争使计算机识别和理解能够按照人的认识和思维方式工作,能够考虑到主观概率和非逻辑思维。
(6)标准化。
从整体上看,图像处理技术目前还没有国际标准。
2)图像和图形相结合朝着三维成像或多维成像的方向发展。
3)硬件芯片的开发研究。
目前结合多媒体的研究,硬件芯片越来越多,如Thomson 公司ST13220 采用Systolic结构设计了运动预测器,把图像处理的众多功能固化在芯片上,为实践服务。