最主要量级q( l )2 h
,和次要量级 q l h
, 在材力
中均已反映,且与弹力相同。
最小量级 ~ q, 在材力中没有:
当lh
时,
仅占主项
M I
y
的1/15
( 6 %) ,
当 l 时h , 量级q 的值很小,可以不计。
弹力与材力的解法比较:
应力比较
弹力严格考虑并满足了A内的平衡微分 方程 ,几何方程和微分方程,以及S上的所有 边界条件(在小边界上尽管应用了圣维南 原理,但只影响小边界附近的局部区域)。
4 楔形体受重力和液体压力 问题
设有楔形体, 左面垂直,顶角为α, 下端无限长,受重 力及齐顶液体压力,
fx 0, f y 1g.
o
α 2g
y
x
n
α
2
1g
用半逆解法求解。
(1)用量纲分析法假设应力: (2)由应力~Φ关系式,Φ应为x,y的三次式,
(3)Φ 满足相容方程 4Φ 0.
(4)由 Φ求应力, (5)考察边界条件——本题只有两个大边 界,均应严格满足应力边界条件:
o
M
y
h/2
h/2
x
M
l
( l >>h)
半逆解法
3.半逆解法 步骤:
⑴ 假设应力的函数形式 (根据受力情况, 边界条件等);
⑵ 由应力(d)式,推测 的Φ 函数形式;
⑶ 代入 4Φ,解0 出 ; Φ
半逆解法
⑷ 由式(d),求出应力;
⑸ 校核全部应力边界条件(对于多连体, 还须满足位移单值条件). 如能满足,则为正确解答;否则修改假 设,重新求解。
为b,如图,水的密
度为 2 ,试求