甲醇裂解制氢导热油工段
- 格式:ppt
- 大小:163.00 KB
- 文档页数:27
山东海科瑞林化工有限公司3000Nm3/h甲醇转化-PSA制氢装置操作规程山东海科瑞琳化工有限公司2010年12月甲醇裂解转化部分目录1.0前言-----------------------------------------------------22.0料及产品的性格和规格-------------------------------------33.0工艺过程说明---------------------------------------------53.1 工艺过程--------------------------------------------- 53.2 化学反应原理----------------------------------------- 54.0工艺流程叙述--------------------------------------------- 65.0工艺过程主要控制指标------------------------------------- 76.0开车前期工作--------------------------------------------- 97.0操作程序------------------------------------------------- 127.1开车前的准备工作-------------------------------------- 127.2开车操作程序------------------------------------------ 127.3正常操作---------------------------------------------- 147.4催化剂的使用和保护------------------------------------ 168.0环保和安全要点-------------------------------------------- 219.0分析规程-------------------------------------------------- 2210.0安全规程-------------------------------------------------- 301.0 前言氢气广泛用于国民经济各工业部门,特别是近几年来,氢气用户急速增多,传统制氢工艺已不能满足要求。
甲醇裂解制氢装置操作规程................................................................................................... ③甲醇裂解—变压吸附制氢培训教材 (22) (23)甲醇裂解制氢含甲醇蒸汽转化和变压吸附制氢两部分 (33)甲醇裂解装置操作规程 (39)甲醇裂解制取氢气 (56)甲醇裂解制氢装置操作规程目录2.3.原料及转化的规格................................................................................................................... - 3 -3. 工艺.................................................................................................................................................... - 3 -3.1.反应原理................................................................................................................................... - 3 -3.2.工艺过程及化学反应原理....................................................................................................... - 4 -3.3化学反应原理........................................................................................................................... - 5 -3.4.工艺流程叙述........................................................................................................................ - 5 - 4.主要控制指标...................................................................................................................................... - 6 -4.1.原料汽化过热........................................................................................................................... - 6 -4.2.转化反应................................................................................................................................... - 6 -4.3.转化气指标............................................................................................................................... - 7 - 6.操作程序........................................................................................................................................... - 7 -6.1 开车前的准备工作.................................................................................................................. - 7 -6.2 系统置换.................................................................................................................................. - 8 -6.3 汽化过热器开车...................................................................................................................... - 9 -6.4 .转化器开车的条件:.............................................................................................................. - 9 -6.5 正常操作................................................................................................................................ - 10 -6.6 紧急停车操作........................................................................................................................ - 11 -6.7 催化剂的使用和保护............................................................................................................ - 11 - 7.环保和安全要点............................................................................................................................. - 14 - 8.PSA工艺 ........................................................................................................................................ - 14 - 8.1 PSA工作原理和基本工作步骤..................................................................................... - 15 - 8.2.PSA工作过程 .................................................................................................................. - 16 - 9.自动调节系统及工艺过程参数检测.. (20)9.1程序控制自动切换系统(KC-201) (20)9.2.自动调节系统功能说明 (20)9.3 产品气流量计量(FQI-201) (21)9.4.流量控制功能说明 (21)9.5.PLC仪表 (22)9.6.现场工艺参数检测点 (22)10.开车 (23)10.1初次开车前的准备工作 (23)10.2.投料启动 (25)11.停车和停车后再启动 (28)11.1正常停车 (28)11.2紧急停车 (29)11.3临时停车 (29)11.4长期停车 (29)11.5停车后再启动 (30)12.故障与处理方法 (31)13.安全技术 (32)13.1.氢气的性质 (33)13.2.装置的安全设施 (33)13.3.氢气系统运行安全要点 (33)13.4.消防 (34)13.5生产基本注意事项 (35)正文2.3.原料及转化的规格2.3.1原料规格甲醇:符合GB338—2004标准一等品要求。
800Nm3/h甲醇裂解变压吸附制氢装置操作手册编制:审核:批准:xxxxxxxxxxxx有限公司xx年8 月目录第一章甲裂及PSA试车及生产操作基本情况第二章甲裂工段工艺过程及化学反应原理第三章 PSA工段工艺过程及工作原理第四章自控调节系统第五章开车准备第六章开停车操作第七章甲醇制氢系统故障原因及处理附1:甲醇裂解变压吸附制氢装置安全操作手册附2:甲醇制氢装置事故应急处理预案附3:计量泵使用说明书附4:甲醇裂解及变压吸附流程图第一章甲裂及PSA试车及生间操作基本情况一、试车及生产操作人员小组人员配置试车组长或生产主管:(业主配置)技术指导:(业主配置)工艺操作工:2人/班分析操作工:1人/班仪表值班:1人/班电气值班:1人/班机械值班:1人/班公用工程协调(调度):1人/班应急对外协作:1人/班安全员:1人/班二、试车时间及地点时间:2019年10月。
地点:甲醇裂解制氢生产区三、工艺指标1.甲醇:符合GB338—2004标准优等品要求。
2.脱盐水:Cl -≤ 1ppmSO42-≤ 1ppm90℃以下稳定,对碳钢、不锈钢无腐蚀电导率≤10μs/cm。
3.温度汽化塔进料温度 140~160℃汽化塔底部温度 160~180℃汽化塔顶部温度~180℃进转化器温度 220~250℃出转化器温度 230~250℃导热油温度 250~280℃出换热器转化气温度 120~140℃出冷凝器转化气温度≤40℃4.压力导热油进口压力0.4~0.6MPa进工段冷却水压力≥0.3 MPa进工段仪表空气压力≥0.4~0.6 MPa 5.浓度甲醇~50%(Wt)水~50%(Wt)转化气组成如下:H273~74.5%23~24.5%CO2CO 0~1%≤ 200ppmCH46.产品气H2≥99.99%(v/v)7.分析内容第二章甲裂工段工艺过程及化学反应原理第一节工艺过程甲醇催化裂解、转化工艺过程包括:原料汽化过程、催化裂解转化反应、转化气冷却冷凝、气液分离等。
制氢岗位工艺操作规程1目的:制定制氢岗位工艺操作规程;2范围:适应于甲醇裂解和PSA分离的操作要求;3责任:确保操作人员的安全操作和管理人员的责任落实;4内容:4.1任务:按照1:1比例配制的甲醇与纯化水混合加热气化,在一定温度、压力条件下通过催化剂发生催化裂解反应和一氧化碳变换反应后生成氢气和二氧化碳,再经过四塔二均PSA变压吸附分离提纯,制得含氢量99.9%的氢气供生产使用。
CH3OH CO + 2H2 - 90.7 KJ/molCO + H2O CO2 + H2 + 41.2 KJ/mol4.2工艺流程冷却水板式换热器冷凝器吸附塔ABCD氢气去中压储罐冷却水4.3主要工艺指标:醇水混合液比重920+10≤25%混合气H2≥75% CO2催化剂温度 250+5℃系统压力 0.8-1.0 Mpa氢气含量 99.99%吸附时间 420—480秒YL—1 球状480 Kg,YL—2条状960 Kg,YL—3 球状950 Kg) 4.5 制氢的操作要点:1)开车前必须清扫、试压、试漏、置换,电器、仪表必须齐全正常,然后进行催化剂还原升温,升温速率每小时15℃。
2)导热油升温必须缓慢,按照有体热油炉厂家的要求进行,温度不能猛升猛降,以保证制氢催化剂的还原需要。
3)计量泵开启后,流量的调节逐步增大,按照甲醇:纯化水 1:1的方式,先把水调大一些,逐步使混合液的比重符合生产要求。
4)催化剂还原结束后,温度达到反应要求时,按照催化剂的要求初期、中期、后期三个阶段的方式,控制好合适的温度指标,计量泵的流量逐步提高至最大设计值。
5)当分析原料气合格后,打开入提氢系统的进口阀,关闭放空阀,进行提氢系统的置换、冲洗、提压。
6)提氢系统开车可用手动操作,各塔输流置换、全部置换合格,分析含量>99.9% CO﹤100ppm时,即可关闭放空阀,向中压罐冲压。
H27)提氢系统投入四塔二均自动控制阶段后,注意各塔压力变化和各气动阀的运行状况。
编号:Linkye页码 :1/32 1500Nm3/h甲醇裂解制氢装置操作规程编号:Linkye页码 :2/32第一章工艺简介本装置以甲醇、脱盐水为原料,经预热、汽化、催化转化和冷冻干燥净化,所得转化气,再送入变压吸附装置精制,最后得到纯度≥99.999%的氢气送至用户。
系统操作压力为1.0~1.5MPa,属中低压操作装置,转化裂解反应温度在240~290℃范围,由导热油循环供热。
装置组成本装置包括甲醇罐区、脱盐水工段、导热油工段、甲醇转化工段、变压吸附工段五个主体及装置配电室、控制室、分析检测。
装置的工艺流程如下:编号:Linkye页码 :3/32由于本装置原料及产品均属易燃、易爆危险品,操作过程中必须予以高度重视。
同时本装置操作的稳定性、原料消耗指标、催化剂使用寿命、产品纯度的高低、设备、人员安全等在很大程度上取决于操作水平的高低,因此有关操作、管理和维修人员在装置启动运行之前,必须熟知本操作规程,并经考核合格后才能上岗。
在后面的章节,将分工段介绍。
编号:Linkye页码 :4/32第二章导热油炉房的操作规程一、该部份设备的操作需在物料、气源满足的前提下方可调节,因此该部份在燃烧系统作了联锁之后进行调节;自力式调节阀的调节参数如下:PV501 甲醇阀后压力: 0.4MPaPV502 天然气阀后压力: 0.12MPaPV503 液化气阀后压力: 0.05MPaV559 雾化空气阀后压力: 0.1MPa远传压力开关的调节参数如下:PLS501 新风空气压力低报设定值:3.0KPa,正常值6.0KPaPLS502 PSA解析气压力低报设定值:10.0KPa,正常值30.0KPaPHS502 PSA解析气压力高报设定值:40.0KPa,正常值40.0KPaPLS503 天然气压力低报设定值:50.0KPa,正常值100.0KPaPHS503 天然气压力低报设定值:150.0KPa,正常值100.0KPaPLS504 液化气压力低报设定值:5.0KPa,正常值20.0KPaPLS505 雾化空气压力低报设定值:70.0KPa,正常值370.0KPaPHS505 雾化空气压力高报设定值:520.0KPa,正常值370.0KPa二、操作前先熟悉上位机信号联锁在微机上进行系统内各单体设备的运行控制信号联锁;该燃烧系统共有三组运行控制信号联锁,联锁单体设备如下:压力信号联锁一:PIAS504新风空气压力正常值2~5 KPa,报警值L:2.0KPa、LL:1.5.0KPa,联锁关闭SNV501a/b、SNV502a/b、SNV503a/b。
甲醇裂解危险与可操作风险安全分析
1、甲醇制氢裂解装置
确定单元:
混合气
进导热出导热油
以甲醇制氢转化炉的进甲醇气管道为分析单元
综合性分析,在甲醇裂解制氢过程中,应采取以下措施进行防范:
1、定期对制氢装置进行检维修,彻查每一个关键点;
2、定期对原料甲醇的品质进行跟踪化验分析,保证原材料的质量;
3、精心操作,严格生产工艺的执行和检查;
4、增加甲醇、氢气职业危害告知牌;
5、在岗位增加紧急救护设施器材;
6、每天对岗位人员进行劳动防护用品佩戴检查记录;
7、每班人员至少2小时对甲醇、氢气设备周围气体浓度进行检测。
甲醇裂解制氢含甲醇蒸汽转化和变压吸附制氢两部分甲醇、脱盐水混合后经加热汽化、过热后进入转化炉,甲醇、水蒸气在催化剂的作用下,在转化炉中完成甲醇裂解、一氧化碳变换二氧化碳二步化学反应,反应产物经换热、冷却、冷凝和水洗分离,得到含氢73%、含二氧化碳25%的转化气,甲醇单程转化率90%以上,未反应部分循环使用,转化气进入变压吸附,过程为吸附、逐级降压解吸、逐级升压、吸附,循环进行。
吸附塔数越多,氢气回收率越高。
本系统还需要一个导热油加热系统,可根据厂家不同采用不同的加热办法。
本系统为自动控制系统,在操作室内就可操作。
系统所用原料、消耗及动力、消耗情况:(以1000立方米氢气计)甲醇(0.56t)、脱盐水(0.32t)、柴油(加热导热油)(0.125t)、循环水(40t)、仪表空气(100立方米)、电(90kwh)、蒸汽(0.02t)、专用催化剂(0.2kg)、开车用氮气、开车用氢气。
主要设备有:汽化塔、过热器、转化炉、换热器、冷却器、水洗塔、循环液贮罐、甲醇中间罐、脱盐水中间罐、转化气缓冲罐、过滤器、吸附器、氢气缓冲罐、鼓风机、真空泵、进料泵、缓冲气囊、导热油加热炉。
一、氢气的物化性质••1.氢的存在••••氢是自然界分布最广的一种元素。
它在地球上主要以化合态存在于化合物中,如:水、石油、煤、天然气以及各种生物的组成中。
自然界中,水含有11%重量的氢,泥土中约含1.5%,100公里高空主要成分也是氢。
在地球表面大气中很低,约1PPM。
••2.氢气的物化性质••••1)物理参数:••••分子量:2.02;密度:0.08988克/升(0℃,1大气压);熔点:-259.19℃;沸点:-252.71℃;比热容=14.30焦/度•克;溶解度(毫升/100毫升水)=2.15(0℃),1.95(10℃),1.85(20℃),1.75(25℃),1.70(30℃),1.64(40℃),1.61(50℃),1.60(60℃);溶于乙醇:6.925毫升/100毫升。
工艺流程简述一、总述本装置采用的是甲醇水蒸汽转化制氢技术,通过变压吸附分离(PSA )的工艺方法生产纯氢,产品氢气的含量可达到99.99%。
流程主要分为甲醇蒸汽裂解转化和变压吸附分离两部分。
二、甲醇水蒸汽转化甲醇水蒸气转化过程分为配料、汽化、反应、脱酸、水冷以及水洗等过程组成,分述如下:1.配料甲醇经流量计输送到配料罐(V01)中层容器中(配料罐由上,中,下层三个不同的容器组成),去离子水经流量计输送到去离子水罐(V02)中,配料由来自配料罐(V01)上层容器的洗涤液(来自水洗塔)和纯甲醇在配料罐(V01)的中层容器中进行,为保证反应的顺利进行,配料罐中层容器的甲醇质量浓度必须保持在50%左右。
配好的甲醇溶液由配料罐(V01)中层容器自流进入配料罐(V01)的下层容器中(使甲醇与去离子水能混合均匀)。
2.汽化原料液由配料罐(V01)下层容器经隔膜计量泵(P01)加压至约 1.1MPa(g)输送到螺旋板式换热器(E02)用脱酸反应器(R02)出口气体热量对其预热。
预热后的原料进入螺旋板式汽化器(E01)汽化成反应所需的原料气体(质量浓度为50%的甲醇-水蒸汽)。
汽化所需的热量由1.0MPa(g)的饱和蒸汽提供。
3.反应由汽化器(E01)汽化产生的原料气体进入反应器(R01),反应器中填装有双功能催化剂,甲醇-水蒸汽通过催化剂在约230℃-280℃下一次完成裂解和转化二个反应,生成氢气和二氧化碳。
反应方程式如下:()()2/5.431/8.90222223mol KJ H CO O H CO mol KJ H CO OH CH ++→+-+→ 总的反应式为:mol KJ H CO O H OH CH /3.4732223-+→+整个反应过程是吸热的。
反应器(R01)催化裂解所需的热量由导热油提供。
4.脱酸及水冷从反应器(R01)出来的反应产物进入脱酸罐(R02)。
脱酸罐中的填料可脱除裂解气中的腐蚀性物质(主要为甲酸)。
甲醇裂解制氢技术综述甲醇裂解制氢技术综述【关键词】甲醇裂解制氢【摘要】氢气在工业上有着广泛的用途。
近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。
甲醇蒸汽转化制氢和二氧化碳技术1前言氢气在工业上有着广泛的用途。
近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。
对没有方便氢源的地区,如果采用传统的以石油类、天然气或煤为原料造气来分离制氢需庞大投资,“相当于半个合成氨”,只适用于大规模用户。
对中小用户电解水可方便制得氢气,但能耗很大,每立方米氢气耗电达~6度,且氢纯度不理想,杂质多,同时规模也受到限制,因此近年来许多原用电解水制氢的厂家纷纷进行技术改造,改用甲醇蒸汽转化制氢新的工艺路线。
西南化工研究设计院研究开发的甲醇蒸汽转化配变压吸附分离制氢技术为中小用户提供了一条经济实用的新工艺路线。
第一套600Nm3/h制氢装置于1993年7月在广州金珠江化学有限公司首先投产开车,在得到纯度99.99%氢气同时还得到食品级二氧化碳,该技术属国内首创,取得良好的经济效益。
此项目于93年获得化工部优秀设计二等奖、94年获广东省科技进步二等奖。
2工艺原理及其特点本工艺以来源方便的甲醇和脱盐水为原料,在220~280℃下,专用催化剂上催化转化为组成为主要含氢和二氧化碳转化气,其原理如下:主反应: CH3OH=CO+2H2 +90.7 KJ/molCO+H2O=CO2+H2 -41.2 KJ/mol总反应: CH3OH+H2O=CO2+3H2 +49.5 KJ/mol副反应: 2CH3OH=CH3OCH3+H2O -24.9 KJ/molCO+3H2=CH4+H2O -+206.3KJ/mol上述反应生成的转化气经冷却、冷凝后其组成为H2 73~74%CO2 23~24.5%CO ~1.0%CH3OH 300ppmH2O 饱和该转化气很容易用变压吸附等技术分离提取纯氢。
甲醇裂解制氢气的相关技术摘要:在节能减排的大背景之下,氢能作为高效洁净的环保能源成为本世纪最理想的替代能源。
而液体燃料甲醇作为储氢载体,能量密度高、安全可靠、存储运输成本低、制氢转化条件相对温和、不含硫、低毒、制氢过程相对容易实现等特点成为这些富氢燃料中的首选。
关键词:甲醇;裂解制氢;技术前言在节能减排的背景下,新能源汽车发展速度加快,而氢燃料电池车由于其节能环保高效成为最近研究的热点,并且国家出台各项法规和政策支持其发展。
目前车载氢燃料电池中的氢气以高压气态形式储存,能量密度低,成本高,且存在一定的安全隐患。
而甲醇作为储氢载体,能量密度高、安全可靠、存储运输成本低、制氢转化条件相对温和、反应温度一般在250~300℃、不含硫、低毒、制氢工艺相对容易实现等特点成为这些富氢燃料的首选。
甲醇可以从化石能源制取,也可从新能源中制取,如生物质能,目前我国主要以煤为主要原料。
随着CO2合成甲醇技术的突破,甲醇制氢可进一步发展为甲醇储氢,实现二氧化碳零排放,具有广阔的应用前景。
甲醇燃料电池车是以甲醇为原料,甲醇水溶液经过重整器后产生氢气,氢气和氧气经过电化学反应产生电能的一种发电设备,产生的电力除了应用于交通领域外,还可以作为移动电源、备用电源、分布式发电、便携式电源、军民融合发电等。
1甲醇裂解制氢甲醇裂解制氢工艺简单,是甲醇和水在催化剂的催化下裂解转化成氢气和二氧化碳,同时会产生少量一氧化碳和甲烷气体,经变压吸附提纯可以制得不同纯度的氢气。
甲醇裂解制氢相较于煤制氢和天然气制氢技术具有技术投资成本低,耗能少。
但是,甲醇原料的成本较高,造成制氢单位成本较高。
因此解决甲醇的来源问题,降低原料成本,提高甲醇的催化裂解效率是甲醇制氢取得长足发展的关键。
1.1工艺原理甲醇和水受热气化之后会进入到甲醇裂解反应器中,在铜系催化剂的作用下发生反应,制得氢气,具体的反应如下:CH3OH=CO+2H2CO+H2O=CO2+H21.2制氢工艺甲醇裂解制氢工艺路线是加压汽化后的甲醇气与水蒸气混合后,在铜系催化剂的作用下,于250~300℃发生甲醇裂解转化反应,生成转化气,重整气经多级热回收冷却后送入变压吸附,以提高氢气纯度。
甲醇裂解装置操作规程目录1.原料及转化的规格 (1)2. 工艺 (1)2.1.反应原理 (1)2.2.工艺过程及化学反应原理 (1)2.3化学反应原理 (2)2.4.工艺流程叙述 (2)3.主要控制指标 (2)3.1.原料汽化过热 (2)3.2.转化反应 (2)3.3.转化气指标 (3)4.操作程序 (3)4.1 开车前的准备工作 (3)4.2 汽化过热器开车 (3)4.3 .转化器开车的条件: (3)5.开车 (4)5.1初次开车前的准备工作 (4)6.停车和停车后再启动 (5)6.1正常停车 (5)6.2紧急停车 (5)6.3临时停车 (5)6.4长期停车 (5)6.5停车后再启动 (6)7.安全技术 (6)7.1.氢气的性质 (6)7.2.装置的安全设施 (6)7.3.氢气系统运行安全要点 (7)7.4.消防 (7)7.5生产基本注意事项 (7)正文1.原料及转化的规格1.1原料规格甲醇:符合GB338—2004标准一等品要求。
严禁含乙醇、氯离子、硫离子、烃类。
脱盐水:C1﹣≤3ppm,电导率≤20u s/cm,90℃以下稳定,对碳钢、不锈钢无腐蚀。
1.2转化气规格组成:H2 73~74.5%CO2 23~24.5%CO ≤1.0%CH3OH ≤200ppmH2O 饱和压力: 1.4~1.6Mpa-G温度:≤40℃2. 工艺2.1.反应原理甲醇和水按一定配比经加压、汽化过热,其混合蒸汽在催化剂作用下发生催化裂解和转化反应。
CH3OH -----------CO+2H2-90.7 kJ/mo1 CO+H2O----------CO2+H2+41.2 KJ/molCH3OH+H2O=CO2+3H2-49.5KJ/mol2.2.工艺过程及化学反应原理2.2.1工艺过程甲醇催化转化制气工艺过程包括:原料汽化、催化转化反应、转化气冷却冷凝以及洗涤净化等。
2.2.2原料汽化原料汽化是指,将甲醇和脱盐水按规定比例混合,用泵加送入系统进行预热、汽化过热至转化温度的过程。
甲醇裂解—变压吸附制氢培训教材............................................................................................. ①第一章概论............................................................................................................................... ②甲醇裂解法制氢气. (12)甲醇裂解制氢含甲醇蒸汽转化和变压吸附制氢两部分 (13)甲醇裂解—变压吸附制氢培训教材目录:第一章概论第二章化石燃料制氢第一节天然气或裂解石油气制氢第三章甲醇制氢第四章变压吸附法提纯氢气第五章甲醇制氢装置介绍第一章概论氢是自然界里最轻的元素,其分子量为2.016。
在一个大气压和20℃下的密度为83.764g/m3,其液化温度大约为-253℃。
由于这种特性,如按它的能量密度算,氢是难于以适当的形式来贮存的,而且有时还要消耗很多的能量。
自然界中的氢决大多数是不以游离状态存在的,而是以化合物的形态存在,其中最为常见的是水和化石类化合物。
在工业中利用水制取氢气需要消耗大量的电能,而利用化石燃料制取氢气又会加剧自然环境的恶化。
能源与环境是人类社会可持续发展涉及的最主要问题。
地球上的化石燃料储量有限,并且其使用会造成自然环境急剧恶化,从化石燃料逐步转而利用可持续发展、无污染的非化石能源是关键所在。
氢能是理想的清洁能源之一,已引起极大重视并广泛使用。
如将氢气直接用于内燃机的燃料,可获得比一般碳氢化合物燃料更高的效率,而且还具有零污染排放的优异性能;将氢气用于氢氧燃料电池则可得到高达45%~60%的化学能-电能转化效率,而一般的内燃机的热机效率仅为15%。
由于质子交换膜燃料电池技术的突破,高效燃料电池动力车样车已陆续出现。
PSA制氢技术及其在煤制甲醇中的应用摘要:PSA制氢技术采用了甲醇裂解制氢工艺装置设计。
该生产装置有导热油加热工段、甲醇裂解工段、变压吸附制氢(PSA)阶段组成。
变压吸附制氢技术采用了对混合气体分离再回收的技术。
整个变压吸附装置采用了两段法变压吸附工艺。
先介绍了PSA制氢技术方案,再分析了PSA制氢工艺技术的应用现状,然后从技术指标、产地面积、工程消耗、经济效益四个方面探讨了PSA制氢技术在煤制甲醇中的应用价值。
关键词:PSA制氢技术;煤制甲醇;两段变压吸附工艺;技术指标;经济效益引言近些年,国家发改委提出持续完善“碳中和”、“碳达峰”政策体系。
在“碳中和”、“碳达峰”大背景下,为低碳、脱碳等绿色生产工艺技术的发展及应用打开了新思路。
氢气是一种高效、低碳的清洁能源,当下全球市场需求量较大。
传统的以煤、石油、天然气等为原料分离制氢的方式投资成本较高,只适合与大型企业生产。
小型企业则多采用电解水制氢的方式,制氢纯度相对较低,且企业规模化技术改造所受限制较多。
现阶段,随着国际甲醇新建装置大量出现,且产能增长较快,国内甲醇企业面临的竞争力变大。
国内中小规模的甲醇生产企业竞争优势变小,发展空间受到限制,只有少数的大型甲醇企业才具备加强的竞争优势和较大的发展空间。
我国甲醇厂大部分为中小型企业,他们面临着严峻的市场竞争压力。
在这种背景下,中小甲醇厂对制氢技术工艺方案的改进对提升其市场竞争优势有着重要的意义。
一、PSA制氢技术方案我国的大部分煤制甲醇厂采用煤直接液化、煤间接液化两种工艺技术路线生产煤制油,而煤制油尾气中PSA制氢技术是最为常用的气体分离回收技术之一。
PSA制技术利用溶剂提取及高温高压催化的环境,使煤浆中复杂的有机物分析结构转化为液体油品。
该技术是国内煤制氢中应用最广泛的技术之一。
PSA制氢装置由加氢稳定装置、加氢改质装置和制氢装置等组成。
其中煤直接液化工艺先将煤全部气化为气体,并以合成气为原料,在高温、高压及催化剂作用下合成为甲醇,最后将甲醇重整组合为燃料油。