第3章连续波雷达
- 格式:ppt
- 大小:2.22 MB
- 文档页数:19
连续波雷达测速测距原理(最终版)第一篇:连续波雷达测速测距原理(最终版)连续波雷达测速测距原理一.设计要求1、当测速精度达到0.1m/s,根据芯片指标和设计要求请设计三角调频波的调制周期和信号采样率;2、若调频信号带宽为50MHz,载频24GHz,三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),请用matlab对算法进行仿真。
二.实验原理和内容 1.多普勒测速原理xa(t)A/Dx(n)FFT谱分析P(k)峰值搜索fd图2.1 频域测速原理f∆dmax=max|fm-fd|=fs/2N∆v=λ∆fdmax/2=λfs/4N=λ/4T rmax依据芯片参数,发射频率为24GHz,由上式可以得出,当测速精度达到0.1m/s时,三角调频波的调制周期可以计算得,T=0.0325s 信号的采样率,根据发射频率及采样定理可设fs=96GHz。
2.连续波雷达测距基本原理设天线发射的连续波信号为:① 则接收的信号为:②xTf0(t)=cos(2πf0t+ϕ0)R(t)=R0-vrtf0xR(t)=cos[2πf0(t-tr)+ϕ0]若目标距离与时间关系为:③ 则延迟时间应满足以下关系:④将④代入②中得到f0R2tr=(R0-vrt)c-vr2x(t)=cos{2πf0[t-(R0-vrt)]+ϕ0}c-vr2R0=c os[2π(f0+fd0)t-2πf0+ϕ0]cfd02vr=f0c 其中根据上图可以得到,当得到∆t,便可以实现测距,要想得到∆t,就必须测得fd。
已知三个目标距离分别为300,306,315(m),速度分别为20,40,-35(m/s),则可以通过:③分别计算出向三个目标发出去信号,由目标反射回来的信号相对发射信号的延迟时间。
R(t)=R0-vrt2④ tr=(R0-vrt)c-vr再根据调频信号带宽50MHz和载频24GHz,就可以得到信号。
代码:(还有问题,没有改好)functiony=tri_wave(starting_value,ending_value,sub_interval,num_of _cycles)temp1=starting_value:sub_interval:ending_value;temp2=en ding_value:-1*sub_interval:starting_value;temp3=zeros(1,length(temp1)*2-1);temp3(1,1:length(temp1))=temp1;temp3(1,length(temp1)+1:l ength(temp3))=temp2(1,2:length(temp2));temp4=temp3;fori=1:1:num_of_cycles-1 temp4=[temp4 temp3(1,2:length(temp3))];endy=repmat(temp3,1,num_of_cycles);y=tri_wave(0,50,2,4);figure;plot(y);50454035302520***0150200250第二篇:雷达测速测距原理分析雷达测速测距原理分析一、FMCW模式下测速测距1、FMCW模式下传输波特征调频连续波雷达系统通过天线向外发射一列线性调频连续波,并接收目标的反射信号。
连续波雷达测速测距原理一.设计要求1、当测速精度达到s,根据芯片指标和设计要求请设计三角调频波的调制周期和信号采样率;2、若调频信号带宽为50MHz,载频 24GHz,三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35(m/s),请用 matlab 对算法进行仿真。
二.实验原理和内容1.多普勒测速原理x a (t) x(n) FFT P(k ) 峰值f dA/D 谱分析搜索图频域测速原理f d max max | f m f d | f s / 2Nv r max f d max / 2 f s / 4N/ 4T依据芯片参数,发射频率为24GHz,由上式可以得出,当测速精度达到 s 时,三角调频波的调制周期可以计算得,T=信号的采样率,根据发射频率及采样定理可设fs=96GHz。
2.连续波雷达测距基本原理设天线发射的连续波信号为:①x T f0 (t ) cos(2 f0 t0 )]则接收的信号为:② x R f0 (t ) cos[2 f 0 (t t r ) 0若目标距离与时间关系为:③R ( t ) R 0 v r t则延迟时间应满足以下关系 :④ t2 v t)r( Rcrv r将④代入②中得到x R f 0(t ) cos{ 2 f 0 [ t2 (R 0 v r t )]0 } c v rcos[2 ( f 0 f d 0 )t 2 f 02R 0]cfd 02 vr f其中c根据上图可以得到,当得到 t,便可以实现测距,要想得到t ,就必须测得 fd 。
已知三个目标距离分别为300,306,315(m),速度分别为 20,40,-35( m/s),则可以通过 :③R ( t )R 0 v r t ④ t2v t )r( Rc 0rv r分别计算出向三个目标发出去信号,由目标反射回来的信号相对发射信号的延迟时间。
再根据调频信号带宽50MHz 和载频 24GHz,就可以得到信号。
雷达成像课程设计一、课程目标知识目标:1. 学生能理解雷达基本原理,掌握雷达成像的基础知识;2. 学生能掌握雷达成像中常用的信号处理技术,如脉冲压缩、多普勒效应等;3. 学生能了解不同类型雷达的成像特点及其在实际应用中的优缺点。
技能目标:1. 学生能够运用所学知识分析雷达图像,解读雷达图像中的目标信息;2. 学生能够操作雷达模拟软件,完成简单场景的雷达成像模拟;3. 学生能够通过小组合作,设计并实施一个简单的雷达成像实验。
情感态度价值观目标:1. 学生能够培养对雷达技术及其应用的兴趣,提高对科学研究的热情;2. 学生能够认识到雷达成像在国民经济发展和国家安全中的重要作用,增强国家意识和社会责任感;3. 学生能够通过课程学习,培养团队协作、严谨求实的科学态度。
课程性质分析:本课程为高年级专业课程,旨在帮助学生建立雷达及信号处理方面的基础知识体系,提高学生的实际操作能力和科学研究素养。
学生特点分析:高年级学生在知识储备、学习能力和逻辑思维方面具备一定的基础,对于专业知识具有较强的求知欲和自主学习能力。
教学要求:1. 结合实际案例,深入浅出地讲解雷达及信号处理基础知识;2. 强化实践操作环节,注重培养学生的动手能力和实际问题解决能力;3. 注重情感态度价值观的引导,激发学生的学习兴趣和国家意识。
二、教学内容1. 雷达基本原理- 雷达系统的组成与工作原理- 雷达信号特性及其传播- 雷达方程与雷达截面2. 雷达成像技术- 脉冲雷达与连续波雷达成像原理- 脉冲压缩技术及其在雷达成像中的应用- 多普勒效应及其在雷达成像中的应用3. 雷达成像系统- 雷达成像系统的分类与特点- 合成孔径雷达(SAR)成像原理- inverse SAR(ISAR)成像技术4. 雷达图像处理与分析- 雷达图像预处理方法- 雷达图像目标检测与识别技术- 雷达图像的参数估计与质量评价5. 实践教学- 雷达模拟软件操作与成像模拟- 小组合作完成雷达成像实验设计与实施- 实验数据分析与总结教学内容安排与进度:第1周:雷达基本原理及雷达方程第2周:雷达成像技术及其应用第3周:雷达成像系统及其分类第4周:雷达图像处理与分析技术第5-6周:实践教学与实验总结教材章节关联:教学内容与教材《雷达信号处理》第3章、第4章、第5章相关内容紧密关联,确保学生能够结合教材深入学习雷达成像相关知识。
自制连续波(CW)雷达测量小风扇的转速连续波雷达简介连续波雷达就是发射连续波信号的雷达。
信号是单一频率的或多频率的,或者频率是经过调制的(频率随时间按一定规律变化)。
非调制(单一频率)连续波雷达能对相当距离范围内的具有任何速度的目标进行测速,而脉冲雷达只有采用相当复杂的技术才能具备这一性能。
因此,连续波雷达容易区分活动目标,适合于检测单一活动目标。
连续波雷达的主要缺点是信号泄漏(发射信号及其噪声直接漏入接收机)和背景干扰(近距离背景的反射)。
连续波雷达工作原理•单频连续波雷达(即此处用的CW雷达)可以利用多普勒效应对目标测速,但不能测距。
•扫频连续波雷达既可以测量物体的运动速度又可以测量物体的距离,因为我们使用的CW雷达,扫频连续波雷达的原理此处不详细描述。
单频连续波雷达持续发出固定频率的电磁波,当电磁波遇到运动中的物体返回到雷达的接收天线,因为多普勒效应,雷达接收到的电磁波的频率发生改变,物体的运动速度信息包含在发射频率与接收频率的差频中,我们通过对多普勒频率的处理即可得到物体的运动速度信息。
处理方式是:对接收天线接收到的信号和发射信号进行混频后,可以得到两个频率的差和两个频率的和两个频率,我们只需要在混频器之后加一个低通滤波器即可滤掉高频信号,从而得到发射与接收信号的差频。
根据多普勒效应的公式即可得到运动物体的速度。
下图为连续波雷达的原理框图:器件清单•雷达传感器IPM-165 – 1个•易派EPI-m102型实验平台– 1套•运行windows系统的电脑– 1台•运算放大器op37gp – 1个•电容–若干•电阻–若干•导线杜邦线–若干搭建雷达平台雷达传感器IPM-165集成了CW雷达的信号发生器、发射天线、接收天线、混频器这些部分,但是若要使CW正常工作,还需要一个滤波放大电路:我们根据滤波放大电路的电路图在易派平台的面包板上面搭建好电路,然后把雷达的输出接在滤波放大电路之上,电路最终搭建好是下图这样:将易派平台连接到电脑的USB接口,然后用电脑上的易派软件打开电源,打开示波器。
连续波雷达及信号处理技术探讨摘要随着社会的进步和科学技术的发展,雷达的信号处理技术也在不断更新升级。
近年来连续波雷达的使用在不断增多,因其自身具有发射功率小、隐蔽性强以及抗反辐射导弹等特点,被广泛应用于各种军事以及民用雷达之中。
本文就针对连续波雷达进行概述,然后针对其信号处理方面的技术进行探讨,希望能给有关人士以借鉴。
关键词连续波;雷达信号;处理技术前言在我们现阶段所有雷达的使用中,主要以连续波和脉冲多普雷体制的雷达数量最多。
连续波雷达具有十分明显的特点,发射功率小,抗干扰能力强以及抗反辐射导弹能力强,有了这些特点,就会使得连续波雷达不仅具有很大的作用距离,而且信号不容易被截获和干扰。
不仅如此,连续波雷达还具有体积小、重量轻以及高机动性灯优势,明显的增强雷达的使用范围,也能够更好地适应各种不良环境。
就现阶段而言,连续波雷达一般是用于直升机载预警、地面战场侦察以及炮瞄装备上,当然,民用方面的应用也很广泛,这里就不一一赘述了。
1 连续波雷达的定义和特点所谓连续波雷达,顾名思义,就是可以对电磁波进行连续发射,然后根据信号发射形式的差异其分为两大类,分别是非调质单频与调频这两种。
连续波雷达出现的非常早,早在1924年,英国就可是对连续波调频测距等方面进行细致的分析,然后对相关的电离层进行观测。
但是在应用方面,连续波雷达最早被用于二战中,当时主要承担着飞机侦察以及对面观测这两方面的任务。
但是在当时大规模使用后,发现雷达经常会出现手法隔离的情况,导致工作效果很不理想,然后又通过大量的研究,最终通过收发开关的出现解决了这个问题。
随着科技不断发展,现在已经可以仅通过一天线就可以实现对信号的接收和发送,并且具有好的效果。
在连续波雷达的整个使用过程中,不需要高压的输入,也不需要点火,整个过程是通过多元化的方式进行信号的调制,大大增强了信号的稳定性以及雷达的信号处理能力。
因此,在相同条件下,连续波雷达无疑受到更多的青睐,在世界上都得到了广泛的应用。
第三章 方位高分辨和合成孔径要得到场景的二维平面图像,同时需要距离和方位二维高分辨,这一章主要讨论方位高分辨。
°〕为例,它在距离为50公里处的横向分辨约为500米,显然远远不能满足场景成像的要求。
需要大大提高方位分辨率,即将波束宽度作大的压缩。
天线波束宽度与其孔径长度成反比,如果要将上述横向分辨单元缩短到5米,则天线横向孔径应加长100倍,即几百米长。
这样长的天线,特别要装在运动载体〔如飞机〕上是不现实的,实际上对固定的场景可以用合成孔径来实现。
3.1 合成阵列的概念3.1.1 合成阵列与实际阵列的异同现代天线阵列常用许多阵元排列组成,图3.1示用许多阵元构成的线性阵列,阵列的孔径L 可以比阵元孔径D长得多。
图3.1的阵列可以是实际的,也可以是“合成”的。
所谓合成是指不是同时具有所有的阵元,而一般只有一个阵元,先在第一个阵元位置发射和接收,然后移到第二个阵元位置同样工作,如此逐步右移,直到最后一个阵元位置,如果原阵列发射天线的方向图与单个阵元相同,则用一个阵元逐步移动得到的一系列远场固定目标〔场景〕信号与原阵列各个阵元的在形式上基本相同〔其不同点将在下面讨论〕,条件是发射载波频率必须十分稳定。
下面通过分析证实上述结论。
设发射载波信号为02()c j f t e πϕ+〔0ϕ是起始相位,是我们故意加上去,说明初相的影响〕,利用2.2节中三种时间〔即全时间t ,慢时间m t 和快时间t 〕的概念,设在m t 时刻在第m 个阵元发射包络为()p t 的信号,则发射信号为 02()(,)()c j f t t m s t t p t e πϕ+=〔3.1〕 ......D L 图3.1线性阵列式中快时间m t t t =-。
假设在场景中有众多的散射点,设它们到第m 个阵元相位中心的距离分别为mi R ,子回波幅度为i A 〔1,2,i =〕,则第m 个阵元的接收信号为022[()]2(,)()mi c Rf t mi c r m i iR s t t A p t e c πϕ-+=-∑ 〔3.2〕 假设用发射的载波02()0()c j f t s t e πϕ+=与接收信号作相干检波,得基频信号为*022()(,)(,)()2 ()mi c b m r m Rj f mi c i is t t s t t s t R A p t e c π-==-∑〔3.3〕上式中没有全时间t ,又由于目标是固定的,不随慢时间m t 变化,所以只要阵元位置准确,什么时间测量都是一样的。