连续波雷达介绍
- 格式:pdf
- 大小:70.02 KB
- 文档页数:3
各种类型雷达描述讲解雷达是一种利用电磁波进行探测、测量和判断目标存在及其位置、运动状态等信息的仪器。
根据其工作原理、用途和性能等不同,雷达可以分为多种类型。
下面将对各种类型的雷达进行详细讲解。
1. 相控阵雷达(Phased Array Radar)相控阵雷达是一种通过控制大量天线单元的相位和振幅,从而改变发射和接收波束方向或形状的雷达系统。
相对于传统雷达,相控阵雷达具有较高的目标探测率、方位精度和抗干扰能力。
它广泛应用于天气雷达、航空管制雷达和军事雷达等领域。
2. 同步脉冲雷达(Synchronous Pulse Radar)同步脉冲雷达是一种雷达系统,它利用脉冲信号与回波信号的同步关系来测量目标的距离。
该雷达系统具有较好的测距精度,适用于测量目标与雷达的距离较远的应用场景,如航天、航空和海洋导航等。
3. 连续波雷达(Continuous Wave Radar)连续波雷达以连续的电磁波信号进行发射与接收,通过测量回波信号与发射信号的频率差异来计算目标的相对速度。
连续波雷达主要应用于测速雷达、防撞雷达以及距离测量等领域。
4. 天气雷达(Weather Radar)天气雷达是一种特殊类型的雷达系统,用于监测大气中的天气现象,如降雨、雷暴和风暴等。
它可以通过测量回波的强度和频率分析,得出天气的类型、强度和运动情况等。
天气雷达在天气预报、气象监测和空中交通控制等领域起到重要作用。
5. 合成孔径雷达(Synthetic Aperture Radar,SAR)合成孔径雷达是利用航天器或飞机在运动中合成一个长虚拟天线孔径,从而产生高分辨率的雷达图像。
它主要用于地面目标检测和监测,如地质勘探、地表变形监测和林业资源观测等。
合成孔径雷达能够克服大气、云层和深度研究等问题,以获取高精度的地表信息。
6. 目标识别雷达(Target Recognition Radar)目标识别雷达是一种能够识别雷达回波中的目标特征,并据此判断目标的类型、形状和材料等信息的雷达系统。
连续波调频雷达雷达主要分为脉冲雷达和连续波雷达两大类。
当前常用的雷达大多数是脉冲雷达,常规脉冲雷达是周期性地发射高频脉冲。
而连续波雷达即是发射连续波信号的雷达,它的信号可以是单频、多频或者调频(多种调制规律如三角形、锯齿波、正弦波、噪声和双重调频或者是编码调制)的。
单频连续波雷达可用于测速,多频(至少三个频点)和调频连续波雷达可用于测速和测距。
它的优点是不存在距离盲点、精度高、带宽大、功率低、简单小巧,缺点是测距量程受限、存在多普勒距离耦合和收发很难完全隔离。
f锯齿波调频 频率-时间特性曲线调频连续波雷达参数与性能分析:1、频率: 13.6GHz (±15MHz) (Ku 波段)2、扫频带宽F ∆: 30MHz距离分辨率:m F C R 510302103268=⨯⨯⨯==∆∆3、调制周期T : ms 06.1=T理论最大量程:Km C TR 1591031053.02max 83=⨯⨯⨯=⋅=- 4、实际回波最大迟延: s d m 16.0t max =实际最大量程: Km C R d 241031008.02t max 83max=⨯⨯⨯=⋅=-‘实际最大差拍频率: M TtF d b 53.4f max max =⋅=∆5、相干处理时间间隔:ms s d 9.0m 16.0m s 06.1t -T T max Coherent =-==调制周期T带宽 Ftf锯齿波调频 频率-时间特性曲线可采点数: 36000m 9.040T Fs N Coherent =⋅=⋅=s MHz实际频率分辨率: Hz MHzN Fs111136000400f === 对应的实际距离分辨率:m F C T R89.51030211111031006.120f 683=⨯⨯⋅⨯⨯⨯=⋅⋅=∆∆‘ (量程越小,差拍频率越小,可获得的越大的相干处理时间,能该晒距离分辨率)6、速度多普勒耦合: 速度较小不考虑,采用锯齿波调频信号时,一般直接将其影响加到系统误差中去。
调频连续波雷达(FMCW)测距测速原理FMCW雷达的工作原理基于多普勒效应和频率测量。
当发射机发送连续变化的频率调制信号时,信号的频率将会随时间线性变化。
这个频率变化的斜率称为调频斜率。
当发射信号经过天线发射出去,在遇到目标后,信号会被目标散射回来,然后被接收天线接收。
当接收天线接收到返回信号时,会将信号和发射信号进行混频处理,将其与发射信号相乘。
这样做的目的是为了提取目标的频率信息。
由于目标的速度不同,返回信号的频率也会有所不同。
根据多普勒效应的原理,当目标向雷达揭示而来时,频率会比发射信号的频率高;相反,当目标远离雷达时,频率会比发射信号的频率低。
接收到的混频信号将通过低通滤波器进行滤波,以去除不想要的频率成分。
然后,信号将被转换成数字信号,通过快速傅里叶变换(Fourier Transform)进行频谱分析。
频谱的峰值表示目标的频率,根据频率的变化可以计算出目标的速度。
根据多普勒频移的公式,测量得到的频移值与目标的速度成正比。
利用目标的速度与雷达到目标的距离之间的关系,可以通过简单的数学运算得到目标的距离。
由于信号频率的线性变化,可以通过测量信号的起始频率和终止频率,以及相应的时间间隔,计算得到距离。
在FMCW雷达系统中,还需要对信号的回波强度进行测量,以评估目标的反射特性。
这可以通过测量接收信号的功率来实现。
通过分析接收到的功率信号,可以确定目标的散射截面积(Cross Section),从而估计目标的大小。
总结起来,FMCW雷达的测距测速原理基于多普勒效应和频率测量。
通过发送频率变化的信号,接收并处理返回信号,测量目标的频率和功率,从而得到目标的距离、速度和反射特性。
这种雷达系统具有高精度、高分辨率和广泛测速范围的优势,广泛应用于交通监测、无人驾驶、气象观测等领域。
连续波雷达测速测距原理连续波雷达(Continuous Wave Radar,CWR)是一种常用的雷达测速测距技术,它利用连续发射和接收电磁波,通过测量波的往返时间和频率差,来精确测定目标物体的速度和距离。
本文将详细介绍连续波雷达的测速测距原理。
一、连续波雷达的原理当返回的波到达雷达时,雷达接收到波和发射的波之间存在一定的相位差。
而这个相位差可以用来计算出物体的距离。
具体的计算公式如下:距离=相位差×光速/(2×发射频率)在这个公式中,相位差是接收到的波和发射的波之间的相位差,光速为常数,发射频率为雷达发射的频率。
但是,单纯的通过距离无法获得目标物体的速度。
所以,连续波雷达需要通过测量频率差来计算目标物体的速度。
当目标物体以一定速度向雷达靠近或远离时,返回的波的频率会有一定的变化。
假设目标物体向雷达靠近,则返回的波的频率会增加。
频率的变化可以用来计算目标物体的速度。
具体的计算公式如下:速度=频率变化量×光速/(2×发射频率)在这个公式中,频率变化量为接收到的波的频率和发射的波的频率之差。
二、连续波雷达的应用在航空领域,连续波雷达常用于测量无人机的速度和距离,以及预警系统中。
通过测量无人机的速度,可以帮助准确控制无人机的行驶速度,并确保安全。
而通过测量无人机的距离,可以及时避免与其他航空器发生碰撞的危险。
在航海领域,连续波雷达常用于船舶的导航和控制系统中。
通过测量船舶与障碍物之间的距离,可以及时警示船舶避免碰撞。
同时,通过测量船舶的速度,可以帮助船舶准确抵达目的地,并且保持适当的速度,提高航行的效率。
在交通运输领域,连续波雷达常用于测速仪器和交通探测器中。
通过测量车辆的速度,可以帮助交通管理部门监测交通流量、控制交通信号,并保证车辆在道路上行驶的安全。
总结起来,连续波雷达利用波的往返时间和频率变化,实现对目标物体的精确测速测距。
在航空、航海、交通运输等领域发挥着重要作用,帮助我们提高交通的安全性和效率。
调频连续波雷达测距原理一、引言调频连续波雷达是一种常用的测距技术,它通过发射一段频率不断变化的信号,并接收回波信号进行处理,实现对目标物体的距离测量。
本文将详细介绍调频连续波雷达的原理及其实现过程。
二、调频连续波雷达原理1. 原理概述调频连续波雷达是利用高频电磁波与目标物体相互作用的原理进行测距。
它通过发射一段连续变化的高频信号,并接收回波信号,通过计算发射信号与回波信号之间的时间差和相位差,从而得到目标物体与雷达之间的距离信息。
2. 发射信号调频连续波雷达采用一段带宽较大、中心频率不断变化的信号作为发射信号。
这种信号被称为“调频连续波”(Frequency Modulated Continuous Wave,简称FMCW)。
3. 回波信号当FMCW信号遇到目标物体时,会被反射回来形成回波。
这个回波包含了目标物体与雷达之间的距离信息。
4. 时域处理接收到回波信号后,调频连续波雷达会对其进行时域处理。
具体来说,它会将发射信号与回波信号进行匹配,并计算它们之间的时间差和相位差。
5. 频域处理在进行时域处理之后,调频连续波雷达还需要进行频域处理。
具体来说,它会将时域信号转换成频域信号,并通过傅里叶变换等算法进行分析和处理。
6. 距离测量通过对发射信号与回波信号的时间差和相位差进行计算,调频连续波雷达可以得到目标物体与雷达之间的距离信息。
具体来说,距离可以通过以下公式计算得出:d = c * (Δt / 2)其中,d表示目标物体与雷达之间的距离;c表示光速;Δt表示发射信号与回波信号之间的时间差。
三、调频连续波雷达实现过程1. 发射器部分调频连续波雷达的发射器部分主要由一个带有可变中心频率的VCO (Voltage Controlled Oscillator)和一个功率放大器组成。
其中,VCO负责产生一段带宽较大、中心频率不断变化的信号,功率放大器则负责将这个信号放大到一定的功率水平。
2. 接收器部分调频连续波雷达的接收器部分主要由一个低噪声放大器、一个混频器、一个带通滤波器和一个ADC(Analog-to-Digital Converter)组成。
1 雷达原理笔记之LFMCW雷达测距测速
1 雷达原理笔记之LFMCW雷达测距测速
1.1 单边扫频锯齿波
1.1.1 静止目标回波分析
1.1.2 运动目标回波分析
1.1.3 优缺点分析
1.2 双边扫频三角波
1.2.1 运动目标回波分析
调频连续波雷达在当今的雷达行业仍占有较高的地位。
由于其无盲区测距的巨大优势,现在人们更多地将其应用在车载雷达行业。
调频连续波雷达现在主要有单边扫频(锯齿波)和双边扫频(三角波)两种调制形式。
1.1 单边扫频锯齿波
上图就是典型的单边扫频连续波雷达的图像,调频斜率。
1.1.1 静止目标回波分析
静止目标(或者径向速度为0)的目标没有多普勒频移,因此回波信号在频率轴没有频移而只是在时间上延后时间。
雷达接收机前端将发射信号和回波信号进行混频得到差拍频率。
有如下关系式:
由此可以解得:
由此便可求出距离目标的距离。
而静止目标(或者径向速度为0)。
与脉冲体制雷达一样,单边扫频锯齿波雷达同样存在蹴鞠模糊问题:
当回波信号的时间延迟大于单边扫频锯齿波雷达的周期时会出现距离测量的模糊现象。
真实目标距离与测量值相差整数个最大不模糊距离()。
1.1.2 运动目标回波分析
由上图可以清楚地看出,目标的多普勒频移、差拍频率以及回波延时,满足如下关系:
进一步整理,得到:
1.2 双边扫频三角波
上图就是典型的单边扫频连续波雷达的图像,调频斜率。
1.2.1 运动目标回波分析
根据上图可以清楚的看出、、、有如下关系:。
连续波雷达几大误区介绍!??注意几个要素连续波雷达通常是通过三个指标跟踪目标,一个是增益方向寻找目标位置,一个是反射信号频差来确定距离,再一个就是多普勒频移测定径向速度。
实际上频移已经反映到频差中了,通常是通过调频周期来测定频移。
其优点是低功率,容易伪装,再就是精度高,无近界死区,等等,缺点是测定的要素多,会比单脉冲复杂和延时长单脉冲其含义就是一个脉冲既能够确定目标运动要素。
通过一个脉冲,反射回来的信号,通过双T头形成和差信号测角,同时回波时间测定目标距离,频移测定径向速度,一个脉冲就全有了。
PD其实是一个滤波检测制式,不一定局限于单脉冲,主要指能够检测PD频移的雷达信号制式。
这些要素在一台雷达上组合起来应用,就很有意思了,可以形成以下几类:单脉冲与无PD检测组合,这是早期的雷达用的多单脉冲与带PD检测组合,这就是常说的PD雷达单脉冲+PD检测+抛物面天线,这就是早期60年代后期的机载PD雷达形态单脉冲+PD检测+卡塞格伦天线,这就是七十年代至八十年代的机载PD雷达形态单脉冲+PD 检测+平板缝隙天线,这就是七十至今的机载PD雷达形态单脉冲+PD检测+相控阵天线,这就是相控阵机载雷达,不过就不再称呼中提及PD,而是突出天线是相控阵,不然名称太长,太拗口注意,从有了机载雷达以来,除了60年代中期PD检测大量运用,此后的机载雷达最大的硬件变化就是围绕天线。
机载雷达诞生80年以来,有近50年是围绕天线革新打转,而PD制式也是近60来一直是最主要、甚至是唯一的机载雷达信号检测制式。
连续波雷达接收机的带宽窄于脉冲雷达接收机,因此它有利于抗杂波,在电磁干扰环境下有更好的下视和抗干扰能力,特别是只需测速时,连续波雷达更为优越,测距时也不存在脉冲雷达的距离遮挡现象。
在应用中有单载频连续被和调制连续波两大类。
单载频连续被雷达只能测速不能测距,广泛用于各种测速系统。
调制连续波有伪码连续波和调频连续被两种,可以测速也可以测距,由于收发隔离度的限制,常见于低功率的雷达应用。
fmcw雷达原理FMCW雷达是一种基于频率调制连续波(Frequency Modulated Continuous Wave)的雷达技术,它利用信号的频率差来测量距离的变化。
FMCW雷达原理如下:1.发射器:FMCW雷达通过发射器发射连续波信号。
这个信号的频率是从一个起始频率到一个终止频率中不断变化的。
通常情况下,起始频率和终止频率之间的差值称为调频带宽,它决定了FMCW雷达的测距分辨率。
2.目标回波:当发射的连续波信号遇到目标物体时,目标物体会将信号反射回来形成回波。
回波的频率会随着目标物体的距离而发生改变。
如果目标物体靠近雷达,回波的频率比发射信号的频率更高,反之亦然。
3.天线和混频器:回波信号通过接收天线接收后,与发射器发出的信号进行混频,形成中频信号。
混频器需要将发射信号和回波信号进行比较,以得到频率差异。
4.频率差计算:通过测量混频器产生的中频信号的频率差异,可以计算出目标物体与雷达之间的距离。
由于回波信号的频率与距离成正比,因此可以通过频率差值来估计出目标的距离。
5.频率转换:中频信号经过滤波器和放大器的处理后,可以得到一个稳定的频率信号。
这个频率信号常常需要转换成可视化的形式,以便人们能够对距离进行直观的理解。
FMCW雷达具有以下优点:1.测量精度高:FMCW雷达通过测量频率差值来计算距离,可以达到亚毫米级的高精度测量。
2.测距分辨率高:FMCW雷达的测距分辨率取决于调频带宽,通常可以达到10厘米量级,甚至更高。
3.不容易受干扰:FMCW雷达是一种调频连续波技术,相比于脉冲雷达,它的抗干扰性更强。
4.多目标分辨能力:由于FMCW雷达是连续波信号,它可以同时检测和跟踪多个目标。
5.对静止目标也有较好的检测能力:由于发射信号和回波信号频率的差值非常小,FMCW雷达对于静止目标也有较好的检测能力。
总结起来,FMCW雷达是一种基于频率调制连续波的雷达技术,利用信号的频率差来测量距离的变化。
连续波雷达介绍
连续波雷达是发射持续的等幅波信号,用以探测活动目标的雷达。
按信号形式,可分为非调制单频连续波雷达、调频连续波雷达、相位编码连续波雷达和多频连续波雷达等。
非调制单频连续波雷达它发射未经任何调制的载频为单一频率(f0)的纯连续波信号。
当电磁波遇到运动目标时,其回波信号的频率将产生多普勒频移,多普勒频移量与目标的径向速度成正比。
接收天线收到的回波信号与发射信号混频后,其差频信号即为目标的多普勒频率信号,以此即可计算出目标的速度,并显示在荧光屏上。
非调制单频连续波雷达能对具有任何速度的目标测速,并且不产生速度模糊,但不能测量目标的距离。
调频连续波雷达它的工作频率按一定规律作周期性变化。
常用的线性调频连续波雷达的工作频率随时间作周期性的线性变化。
目标回波信号与发射信号混频而产生频差信号,测量频率差值的大小确定目标的距离,并根据回波的多普勒频率测定其速度。
相位编码连续波雷达它的发射信号由周期性变化的编码子脉冲序列进行相位调制,根据目标回波信号与发射信号的相位变化的起始时间之差进行测。