离心泵中的数值模拟
- 格式:ppt
- 大小:1.36 MB
- 文档页数:13
基于Fluent 14.5离心泵内部流场数值模拟教程内容摘要:一、描述随着科学技术的进步,许多领域对水泵要求越来越高。
传统的设计方法已无法满足快节奏、高要求的现代社会。
随着计算流体力学(CFD)技术的发展,为水泵设计也带来了更好的研究方法。
应用CFD技术,通过计算机对水泵内部流场进行虚拟试验,可以快速获得外特性曲线,...一、描述随着科学技术的进步,许多领域对水泵要求越来越高。
传统的设计方法已无法满足快节奏、高要求的现代社会。
随着计算流体力学(CFD)技术的发展,为水泵设计也带来了更好的研究方法。
应用CFD技术,通过计算机对水泵内部流场进行虚拟试验,可以快速获得外特性曲线,并且能够更好的在设计阶段预测泵内部流动所产生的漩涡、二次流、边界分离、喘振、汽蚀等不良现象,通过改进以提高产品可靠性。
本教程采用IS80-65-125型水泵的水力模型,通过具体步骤希望广大同行能快速掌握运用Fluent对水泵进行CFD模拟的步骤方法。
二、建模采用Creo 2.0 M020(Peo/Engineer)进行建模。
本次教程不考虑叶轮前后盖板与泵腔间的液体(事实证明对实际结果有一定影响,为了教程方便因此不予考虑,大家可以在实际工作中加入对前后腔体液体),建模只考虑进口管部分、叶轮旋转区域部分、蜗壳部分。
对于出口管,可以根据模型的特征进行判别,本次模拟是由于出口管路对实际模拟结果影响很小,不存在尺寸急变等特征,因此去掉了出口管段,以减少网格数量。
建模如图所示:图1 建立流道模型三、网格划分建模完成后,导出*.x_t(或其他格式)格式,导入网格划分软件中进行网格划分。
网格划分软件有很多,各有各的优势,主要采用自己熟练的一种即可。
本次教程采用ICEM进行网格划分。
进口段为直锥型结构,采用六面体网格。
叶轮和蜗壳部分采用四面体非结构网格(也可以采用六面体网格,划分起来比较麻烦)。
对于工程应用,可以采用不划分边界层网格,划分边界层网格比较费时间,生成的网格数量也很高,但是从模拟的外特性曲线来看,差别不是很大,但是对于研究边界层流动对性能的影响,就必须划分边界层,对于采用有些壁面条件,也必须划分边界层(该部分查看其它教程)。
基于CFX的离心泵内部流场数值模拟基于CFX的离心泵内部流场数值模拟随着计算流体力学和计算机技术的快速发展,泵内部的流动特征成为热点研究方向,目前应用CFX 软件的科研人员还较少,所以将CFX使用的基本过程加以整理供初学者参考。
如有不对之处敬请指教。
一、CFX数值计算的完整流程二、基于ICEM CFD的离心泵网格划分导入几何模型修整模型创建实体创建PRAT设置全局参数划分网格检查网格质量并光顺网格导出网格-选择求解器导出网格三、CFX-Pre 设置过程基本步骤新建文件导入网格定义模拟类型创建计算域指定边界条件建立交界面定义求解控制定义输出控制写求解器输入文件定义运行计算过程四、CFX-Post后处理计算泵的扬程和效率云图矢量图流线图导入几何模型在ICEM CFD软件界面内,单击File→Imort Geometry→STEP/IGES(一般将离心泵装配文件保存成STEP格式),将离心泵造型导入ICEM,如图3所示。
图3 导入几何模型界面修整模型单击Geometry→Repair Geometry→Build Topology,设置Tolerence,然后单击Apply,如图4所示。
拓扑分析后生成的曲线颜色指示邻近表面的关系:green = 自由边,yellow = 单边,red = 双边,blue =多边,线条颜色显示的开/关Model tree →Geometry → Curves → Color by count,Red curves 表示面之间的间隙在容差之内, 这是需要的物理模型,Yellow edges 通常是一些需要修补的几何。
图4 修整模型界面2-3 创建实体单击Geometry→Creade Body,详细过程如图5所示。
图5 创建实体界面创建PRAT创建PART,是为了设置边界时使用,在模型树中,右键点击Part,在出现菜单中选择Create Part。
以此创建各个部件的part,如图6所示。
离心泵的水力设计和数值模拟讲解离心泵是一种常见的水力机械设备,广泛应用于工业和民用领域。
它的水力设计和数值模拟是对离心泵性能进行优化和改进的重要手段。
下面将从离心泵的水力设计和数值模拟两个方面进行详细讲解。
一、离心泵的水力设计1.流量设计:离心泵的流量设计是以工程要求的流量为基础,通过水力模型试验或数值模拟等方法确定。
流量是衡量离心泵工作效果的重要指标,也是确定泵的尺寸和形式的基础。
2.扬程设计:扬程是指离心泵能够将液体抬升的高度。
在水力设计中,扬程是根据所需扬程和流量来确定的。
扬程的大小取决于泵的尺寸、转速、叶轮形状等因素。
3.效率设计:离心泵的效率是指泵所传递的水功率与泵所消耗的机械功率的比值。
效率的高低直接影响到泵的能耗和使用成本。
在水力设计中,需要根据工程要求和经济性考虑,确定合适的效率。
4.功率设计:离心泵的功率设计是指根据所需流量、扬程和效率来确定泵的功率。
功率是决定泵的动力系统和选型的重要参数,需要根据泵的工作条件和性能曲线来确定。
二、离心泵的数值模拟离心泵的数值模拟是利用计算机技术对泵的内部流动进行仿真模拟,以获得流场信息、压力分布和效率等参数。
数值模拟可以帮助优化和改善泵的性能、减少试验成本和时间。
1.建立几何模型:离心泵的数值模拟首先需要建立一个几何模型。
几何模型包括泵的内外部结构、叶轮的形状和尺寸等。
通过CAD软件等工具进行建模,得到几何模型的三维模型。
2.网格划分:在几何模型的基础上,需要对计算域进行网格划分。
网格划分是将计算域划分成小区域,以便对流动进行离散化计算。
合理的网格划分能够保证计算结果的准确性和稳定性。
3.数值计算:数值计算是指通过数值方法对流体的动力学方程进行求解,得到流场信息和参数分布。
常用的数值求解方法包括有限体积法、有限元法和离散元法等。
通过将流场方程离散化为代数方程组,使用求解器进行求解,得到结果。
4.结果分析与优化:得到数值模拟结果后,可以对流场、压力分布、速度分布等进行分析和评价。
离心泵数值模拟用ns 方程引言离心泵是一种被广泛应用于流体输送领域的设备,其工作原理是通过离心力将液体从低压区域抽离到高压区域。
为了更好地了解离心泵的性能以及优化设计,工程师们采用数值模拟方法来研究泵的内部流动。
其中,使用NS 方程模拟离心泵的内部流动是一种常用的方法。
本文将从理论公式的推导、数值模拟方法的介绍以及实例分析等方面全面、详细、完整地探讨离心泵数值模拟用NS 方程的相关内容。
NS 方程的推导运动量守恒方程运动量守恒方程是NS 方程的基础,用于描述流体的运动。
在液体流动中,运动量守恒方程可以写作:ρ(∂u ∂t+u ⋅∇u)=−∇p +μ∇2u +f 其中,u 表示流体的速度矢量,ρ表示流体的密度,p 表示流体的压力,μ表示液体的动力粘度,f 表示外力矢量。
质量守恒方程质量守恒方程用于描述流体的连续性。
对于不可压缩的流体,质量守恒方程可以写作:∇⋅u =0NS 方程的边界条件对于离心泵数值模拟来说,NS 方程的边界条件尤为重要。
常见的边界条件包括入口速度、出口压力以及壁面的无滑移等。
在数值模拟过程中,正确设置边界条件可以保证模拟结果的准确性和可靠性。
数值模拟方法介绍有限差分法(Finite Difference Method)有限差分法是数值模拟中常用的方法之一,其原理是将微分方程中的导数用有限差分近似替代,从而转化为代数方程组。
对于离心泵数值模拟来说,可以将NS方程离散化成差分方程,然后通过迭代求解得到流场的数值解。
有限体积法(Finite Volume Method)有限体积法是一种广泛应用于流体力学数值模拟的方法,其思想是将流体力学方程在空间上分割成一系列有限体积。
对于离心泵数值模拟来说,可以将泵内的流场划分为一系列控制体积,并在每个体积内求解平衡方程,最终得到数值解。
有限元法(Finite Element Method)有限元法是一种常用的数值模拟方法,在求解粘性流体问题时也得到了广泛的应用。
离心泵数值模拟基本方程和定解条件
离心泵的数值模拟基本方程包括连续性方程、动量方程和能量方程。
1. 连续性方程:
离心泵的连续性方程描述了流体在泵内的质量守恒关系。
它可以用以下公式表示:
(ρA)/t + div(ρAv) = 0
其中,ρ是流体的密度,A是流体的流通截面积,v是流体的流速。
2. 动量方程:
离心泵的动量方程描述了流体在泵内的动量守恒关系。
它可以用以下公式表示:
ρ(?v/?t + v·grad(v)) = -grad(p) + ρg + ∑Fi
其中,p是流体的压力,g是重力加速度,Fi是外力的合力。
3. 能量方程:
离心泵的能量方程描述了流体在泵内的能量守恒关系。
它可以用以下公式表示:
(ρE)/t + div(ρEv) = -div(q) + ∑(Fv)
其中,E是流体的总能量,q是流体的热流量,Fv是流体受到的体积力。
在数值模拟中,以上方程需要与一些边界条件和初始条件相结合以形成一个定解问题。
例如,可以设定进口和出口的流量、压力或速度,以及泵的初始状态等。
需要注意的是,由于离心泵是一种工程设备,其中涉及的设计参数和具体情况较为复杂,所以数值模拟时通常会根据具体情况和实际需求进行适当的简化假设和边界条件的设定。
如果有具体的工程问题,建议咨询专业领域的工程师或研究人员进行详细的讨论和分析。
离心泵内部流场三维数值模拟的开题报告一、选题背景离心泵是一种普遍应用于各种流体输送中的重要泵类。
为了更好地研究离心泵的流场特性及性能,提高离心泵的输送效率和运行稳定性,需要对离心泵内部流场进行三维数值模拟,以获得更全面和准确的流态信息和性能数据。
本文的选题意义在于探究离心泵内部流场的三维数值模拟,为离心泵的性能优化和设计改进提供重要参考和方向。
二、论文内容本文将通过建立离心泵的三维几何模型,采用计算流体力学(CFD)方法,对离心泵内部流场进行三维数值模拟,研究其流态特征和性能。
主要内容包括以下几个方面:1. 离心泵的几何模型建立:通过三维建模软件建立离心泵内部几何模型,并进行网格划分,以便进行后续的数值模拟分析。
2. 数值模型的建立:建立离心泵的数值模型,采用数值方法求解流场中的运动方程,以及速度、压力等关键参数。
主要采用流体动力学(CFD)方法进行求解,运用不同的求解方案、求解方法和求解器,对离心泵内部不同工况下的流场进行三维数值模拟分析。
3. 数值模拟分析:通过数值模拟软件对离心泵内部流场进行分析,主要关注离心泵内部流场的流态特征、速度分布、压力分布等参数,了解离心泵的运行状态,并深入探究不同工况下的流场特性及其影响因素。
4. 结果分析与讨论:通过对不同工况下的数值模拟结果进行比较分析,探究不同工况下流场的特性和性能数据变化规律。
同时,通过对比理论计算结果和实测数据,验证数值模拟结果的准确性和可靠性,为离心泵的设计优化和性能提高提供科学依据和参考数据。
三、研究意义离心泵是一种广泛应用于各种流体输送领域的重要设备,其性能及输送效率对应用过程的安全和稳定运行起着至关重要的作用。
通过对离心泵内部流场进行三维数值模拟,可以更全面、准确地了解其流态特性和性能数据,为离心泵的设计优化、性能提高和应用领域拓展提供科学依据和参考数据。
四、研究方法本文采用计算流体力学(CFD)方法,通过建立离心泵的三维几何模型,对其内部流场进行数值模拟分析。
1.离心泵数值仿真指导教程本章对离心泵数值仿流程和步骤进行详细说明。
PumpLinx算例文件目录下会生成几个重要文件,其中“.sgrd”文件为网格文件,记录网格信息;“.spro”文件为工程文件,记录模型及边界条件设置信息;如需打开一个完整的算例,工程文件和网格文件缺一不可。
“.stl”文件为PumpLinx支持的几何模型导入格式。
1.1离心泵几何模型导入►在CAD软件中将离心泵进口段、转子部分和蜗壳出口段分别以stl格式导出。
►注意:在导出几何模型之前,需要将进口段、转子部分和蜗壳出口段分成三个部分,以便在进行数值仿真时可以顺利生成动/静流体域之间的交互面。
如下图所示:►运行PumpLinx软件,新建一个工程文件,界面如下:►选择界面左边的Mesh窗口命令(一共4个窗口选项,分别是Mesh、Model、Simulation 和Result,分别代表各个步骤)。
►选择“Import/Export Geometry or Grid”命令,点击“Import Surface From STL Triangulation File”,选择事先从CAD文件中导出的stl文件,如图所示:此步骤也可直接打开PumpLinx标准算例文件“centrifugal_initial_stl_surface.spro”,其默认存储路径为:“C: /Program Files/Simerics/Tutorials/Centrifugal”。
1.2 切分离心泵边界面1.2.1对离心泵流体域进行分区►点击“Split/Combine Geometry or Grid”命令,选择“Split Disconnected”命令对分块的几何模型进行切分。
►几何体被分为pump_1,pump_2和pump_3三部分,分别将对应部分命名为Inlet,Rotor和Volute,即进口、转子和蜗壳三部分。
重命名pump_1为volute,即蜗壳出口部分;重命名pump_2为rotor,即转子部分;重命名pump_3为inlet,即进口部分。
离心泵叶轮流场数值模拟研究一、前言离心泵是一种常见的机械设备,广泛应用于水处理、石油化工、空调等领域。
其中,离心泵叶轮是其重要部件之一,其性能对整个离心泵的性能有着至关重要的影响。
因此,对离心泵叶轮进行流场数值模拟研究,进一步优化其设计是非常必要的。
二、离心泵叶轮的结构和工作原理离心泵叶轮是离心泵的核心部件之一,其结构通常由叶片、叶片轴等部分组成。
离心泵叶轮是通过电机的旋转带动液体呈离心运动,从而产生往前的推力,将液体输送至出口。
离心泵叶轮的运行状态对离心泵的性能有着至关重要的影响。
三、离心泵叶轮流场数值模拟研究离心泵叶轮的流场数值模拟研究可以帮助我们深入了解离心泵叶轮内部的流体运动规律,进而对离心泵叶轮的设计做进一步的优化。
1.数值模拟方法利用常见CFD(计算流体力学)软件,如ANSYS CFX、FLUENT等,可以对离心泵叶轮流场进行数值模拟。
数值模拟方法涉及到的关键参数包括离散格式、网格生成、边界条件等。
其中,网格生成对数值模拟结果影响较大,因此需要注意生成网格的密度、精确度等因素。
2.数值模拟结果离心泵叶轮的流场数值模拟结果通常涉及流速分布、压力分布、流动轨迹等参数。
通过这些参数,可以对离心泵叶轮的性能进行分析和评价。
另外,数值模拟结果还可以指导离心泵叶轮的改进设计。
四、离心泵叶轮流场数值模拟的应用离心泵叶轮流场数值模拟的应用范围广泛,主要涉及以下方面:1.离心泵叶轮的设计和优化流场数值模拟可以帮助我们深入了解离心泵叶轮内部的流体运动规律,即可对离心泵叶轮的设计和优化提供理论基础。
2.离心泵叶轮的性能评估根据数值模拟结果,可以对离心泵叶轮的性能进行评估分析,指导制定更为科学合理的使用方案。
3.离心泵的研究和开发离心泵是研究和开发的对象之一,通过离心泵叶轮流场数值模拟研究,可以为离心泵的研究和开发提供重要的参考依据。
五、结语离心泵叶轮的流场数值模拟研究可以为离心泵的设计和优化提供理论基础,加速离心泵产品的研发和应用。
山东大学ShanDong University离心泵水力模型的设计与数值模拟验证姓名:刘自亮学号:201300160104学院:机械工程学院专业:过程装备与控制工程日期:2016,5,15目录一、离心泵水力模型的设计 (3)1、泵的主要设计参数和结构方案的确定 (3)1-1设计参数和要求 (3)1-2确定泵的总体结构形式和泵的进出口直径 (3)1-3泵转速的确定 (3)1-4计算比转数ns,确定水力方案 (4)1-5估算泵的效率 (4)1-6轴功率和原动机功率 (4)1-7轴径和轮毂直径的确定 (5)2、相似设计法 (5)2-1相似设计法的导出 (5)2-2相似设计法的步骤 (6)2-3相似设计法应注意的问题 (6)3、速度系数设计法 (6)3-1叶轮进口直径D0的确定 (7)3-2叶轮出口直径D2的初步计算 (7)3-3叶轮出口宽度b2的计算和选择 (7)3-4叶片数的计算和选择 (8)3-5介绍确定叶轮尺寸的其它速度系数 (8)3-6叶轮外径D2或叶片出口角β2的精确计算 (9)3-7叶片进口安放角的确定 (10)二、离心泵的数值模拟验证 (11)1、CFD数值模拟的基本理论 (11)1-1计算流体力学简介 (12)1-2计算流体力学控制方程 (13)1-3湍流模型 (15)1-4控制方程的求解方法 (17)2、离心泵建模及数值模拟方案 (19)2-1离心泵模型参数 (19)2-2流道模型建模 (22)2-3网格划分 (24)2-4旋转叶轮和静止蜗壳的藕合 (26)2-5边界条件 (28)2-6数值模拟方案的确定 (29)3、离心泵内部流场计算结果分析 (31)3-1设计工况下离心泵整机流场分析 (32)3-2叶轮内部流动分析 (33)3-3蜗壳内部流动分析 (39)3-4不同叶片数下的离心泵整机流场分析 (42)三、结论 (47)参考文献 (48)一、离心泵水力模型的设计1、泵的主要设计参数和结构方案的确定1-1设计参数和要求流量; 扬程;转速(或由设计者确定);装置汽蚀余量(或给出装置的使用条件); 效率(要求保证的效率);介质的性质(温度、重度、含杂质情况、腐蚀性等); 对特性曲线的要求(平坦、陡降、是否允许有驼峰等)。
二维离心泵的数值模拟与性能预测一、实验目的熟悉和掌握CFD数值模拟的基本方法,能够独立进行简单二维水力模型的CFD数值模拟。
二、研究对象研究如图所示的二维离心泵,该泵由旋转的叶轮和静止的蜗壳两部分构成。
流体从叶轮中央的圆形进口沿径向均匀进入叶轮,经过旋转的叶片作用后,得到能量,从蜗壳出口排出。
已知叶轮的叶片数为6,叶轮进、出口直径分别为120mm和220mm,叶片进口安放角(叶片与圆周方向夹角)和出口安放角分别(叶轮中心至蜗壳螺旋线起点为20 和25 ,叶片厚度为3mm。
蜗壳隔舌角的连线与水平夹角)为35 ,出口段扩散角为8 。
图表1 二维离心泵示意图图表2 UG NX所绘二维离心泵三、计算步骤1、利用Gambit 对计算区域离散化和指定边界条件类型步骤1:导入几何模型生成几何模型的方式有许多种,如Autocad,Pro/E,UG NX等,Gambit也自带简单的绘图功能,在这里UG NX绘图。
如下图,我们将会给出绘图文件。
在UG NX绘完图后,需将结果导出以便Gambit使用,这里导出为Parasolid,生成后缀名为x_t的文件。
主要内容:在Gambit中选择File/Import/Parasolid命令,选取先前生成的文件11.x_t,则二维离心泵模型被装入到Gambit。
结果如图:图表 3 导入到Gambit的二维离心泵几何模型步骤2:网格划分为了对几何区域划分网格,单击Operation / Mesh / Face / Mesh Face按钮,弹出如图所示的Mesh Faces对话框。
在Faces列表框中选取蜗壳区域,在Elements 列表框中选择Tri(三角形单元),在Type列表框中选拌Pave(非结构网格),选中Scheme命令组中的Apply复选框,然后,从Spacing区域的列表框中选择Interval Size(指定网格间隔),在文本框中输入10,选中该区域中的Apply复选框,最后选中Options区域中的Mesh复选框,单击Apply按钮,则生成蜗壳内流体区域的网格。