用初等变换求逆矩阵
- 格式:pptx
- 大小:340.50 KB
- 文档页数:11
初等行变换求逆矩阵的方法
初等行变换是用于求解逆矩阵的一种方法。
以下是具体步骤:
1. 将待求逆矩阵和单位矩阵按行组合,形成一个2n阶的矩阵[ A I ]。
2. 对矩阵[ A I ] 进行初等行变换,使其左半部分变为单位矩阵,这样右半部分就是所求的逆矩阵。
3. 变换矩阵法:将单位矩阵作为初状态,通过一系列的初等行变换,得到一个变换矩阵B,使得B与单位矩阵相乘得到A的逆矩阵。
这种方法可以避免中途的矩阵组合,从而更加简单明了。
对于初等行变换,有三种基本操作:交换两行、将某一行的所有元素乘以一个非零实数、将某一行加上某一行乘以一个非零实数。
这些操作可以等价于乘以某个矩阵,被称为初等矩阵。
通过上述步骤,可以得到逆矩阵。
希望以上信息对您有帮助。
矩阵求逆初等变换法矩阵求逆是在线性代数中一个非常重要的概念,它可以用于解决大量的问题。
在实际的应用中,我们通常采用初等变换法来求逆矩阵,这样可以极大地简化计算并且提高效率。
本文主要介绍矩阵求逆初等变换法的基本概念和具体实现方法。
一、矩阵求逆的定义和概念矩阵求逆的本质是寻找一个矩阵A的逆矩阵B,使得A 与B的乘积等于单位矩阵I,即AB=BA=I,其中I为n阶单位矩阵。
矩阵A的逆矩阵可以表示为A^-1。
对于方阵,如果其行列式不为0,则可以求出其逆矩阵。
而对于非方阵,则不能直接求逆矩阵,需要通过一些方法先将其转化为方阵,再进行求逆操作。
二、矩阵求逆初等变换法初等变换是线性代数中的一种操作,它可以用来变换矩阵的形式,进而使得矩阵的某些性质更加明显。
初等变换包括以下三种:(1)交换矩阵的两行或两列(2)将矩阵的一行或一列乘以非零常数(3)将矩阵的一行或一列乘以非零常数加到另一行或另一列上去根据初等变换的性质,我们可以使用一组初等变换将任何一个方阵化为一个单位矩阵,进而得到其逆矩阵。
具体实现方法如下:(1)首先,将矩阵A增广为一个n*2n的矩阵(即在A的右边增加一个n* n的单位矩阵I);(2)通过一系列初等变换将矩阵A化为一个上三角矩阵U;(3)继续通过一系列初等变换将U化为单位矩阵I;(4)此时矩阵A的右半部分就是其逆矩阵B。
下面,我们通过一个例子来具体说明这个过程:设矩阵为A=[1, 2, 3; 0, 1, 4; 5, 6, 0](1)将A增广为一个2n* n的矩阵[A,I]=[1, 2, 3, 1, 0, 0; 0, 1, 4, 0, 1, 0; 5, 6, 0, 0, 0, 1](2)通过一系列初等变换将矩阵A化为一个上三角矩阵U[1, 2, 3, 1, 0, 0; 0, 1, 4, 0, 1, 0; 5, 6, 0, 0, 0, 1]→R2-R1→[1, 2, 3, 1, 0, 0; 0, -1, 1, -1, 1, 0; 5, 6, 0, 0, 0, 1]→R3-5R1→[1, 2, 3, 1, 0, 0; 0, -1, 1, -1, 1, 0; 0, -4, -15, -5, 0, 1]→-R2→[1, 2, 3, 1, 0, 0; 0, 1, -1, 1, -1, 0; 0, -4, -15, -5, 0, 1]→R3+4R2→[1, 2, 3, 1, 0, 0; 0, 1, -1, 1, -1, 0; 0, 0, -11, 1, -4, 1]→-R3/11→[1, 2, 3, 1, 0, 0; 0, 1, -1, 1, -1, 0; 0, 0, 1, -1/11, 4/11, -1/11]→R2+R3→[1, 2, 3, 1, 0, 0; 0, 1, 0, 0, 3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11]→-R1-2R2+3R3→[1, 0, 0, 1/11, 2/11, -1/11; 0, 1, 0, 0, 3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11]得到上三角矩阵U为U=[1, 2, 3, 1/11, 2/11, -1/11; 0, 1, 0, 0,3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11](3)通过一系列初等变换将U化为单位矩阵I[1, 2, 3, 1/11, 2/11, -1/11; 0, 1, 0, 0, 3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11]→R2-3R3→[1, 2, 3, 1/11, 2/11, -1/11; 0, 1, 0, 3/11, -1/11, 2/11; 0, 0, 1, -1/11, 4/11, -1/11]→R1-2R2-3R3→[1, 0, 0, 7/11, -2/11, -1/11; 0, 1, 0, 3/11, -1/11, 2/11; 0, 0, 1, -1/11, 4/11, -1/11]此时得到的右半部分就是矩阵A的逆矩阵B,即B=[7/11, -2/11, -1/11; 3/11, -1/11, 2/11; -1/11, 4/11, -1/11]三、总结矩阵求逆是线性代数中一个基本的操作,而初等变换法则可以很有效地简化求解的过程。
求矩阵逆的方法
矩阵逆是矩阵理论中的一个重要概念,它可以帮助我们解决许多实际问题。
矩阵逆的求解方法有很多,这里简单介绍几种常用的方法: 1. 初等变换法:通过初等变换将原矩阵化为单位矩阵,然后将单位矩阵的变换过程反过来,即可得到矩阵的逆矩阵。
2. 行列式法:根据矩阵的行列式与伴随矩阵的关系,可以用伴随矩阵来求解矩阵的逆。
3. 克拉默法则:适用于$n$阶方阵,通过求解线性方程组的行列式来求解矩阵的逆。
以上是一些比较基础的求解矩阵逆的方法,实际运用中还有其他更加高效的方法。
在使用矩阵逆的过程中,需要注意的是,矩阵逆不是所有矩阵都有,只有非奇异矩阵(行列式不为0的矩阵)才有逆矩阵。
此外,求解矩阵逆的过程中需要注意精度问题。
- 1 -。
初等变换求逆矩阵提取某行公因式哎呀,今天我们来聊聊怎么用初等变换求逆矩阵,顺便提取某行的公因式。
你别看这名字有点复杂,其实也不是什么高深的数学,只要你用点心思,咱们把它拆开来一点点弄清楚,保证你能轻松搞定。
其实说白了,矩阵的逆矩阵就像是你生活中的“反向操作”,什么都能反过来做。
就像有时候你做饭忘了加盐,你不慌,盐是有补救的!矩阵也是,想把它反过来,也能通过一些操作搞定。
今天我们要做的就是通过初等变换让矩阵倒回去,然后提取某一行的公因式,这样就能让事情变得更加简洁明了。
首先啊,你得知道什么是初等变换。
其实这玩意儿就像是你搬家时拆家具:有时候得把沙发腿卸了,有时候得把电视搬走。
这些“拆卸”操作不会改变家具的本质,只是让它变得更易于搬运。
对于矩阵而言,初等变换就是对矩阵进行一些“拆解”操作,比如交换两行、给一行乘上一个数,或者用一行去减另一行的某些倍数。
你看,操作简单吧?但是这些看似不起眼的小动作,最后就能帮你把矩阵从“混乱的状态”恢复到清晰的“整齐”状态。
那么我们进入正题。
假设你有一个矩阵,要想通过初等变换求出它的逆矩阵。
你可以把这个矩阵和一个单位矩阵拼在一起(当然是横着拼,别弄错了),然后通过初等变换一步步把它化简,最后让它变成单位矩阵。
这样一来,另一部分就会变成你要找的逆矩阵。
听着是不是有点复杂?别急,咱们举个例子看看怎么做。
假设你有一个2x2的矩阵:A = begin{pmatrix a & b c & d end{pmatrix。
那么你就把它和单位矩阵拼在一起:begin{pmatrix a & b & 1 & 0 c & d & 0 & 1 end{pmatrix。
然后开始用初等变换来简化它。
比如,首先可以让第一行的第一个元素变成1(如果它本来不等于1),然后用第一行去减第二行的某些倍数。
渐渐地,你就能把矩阵的左半部分变成单位矩阵,右半部分就是它的逆矩阵啦!是不是很神奇?其实这就是数学的魅力,看似难的东西,经过一点点操作,你就能搞定它。
利用初等变换求逆矩阵
设要求出nn阶矩阵AA的逆矩阵BB。
对于一个矩阵的初等行变换,有三种:
1.交换两行。
2.将某一行的所有元素乘以一个非零实数kk。
3.将某一行jj,加上某一行i(i≠ji(i≠j)乘以一个非零实数kk,即Aj=Aj+Ai∗kAj=Aj+Ai∗k。
可以发现的是,每种变换其实都可以等价于乘以某个矩阵,事实上称其为初等矩阵。
那么,当我们不停地对AA进行初等变换,并且用另外一个矩阵CC不停地乘上这种变换对应的初等矩阵,那么当AA变为I(单位矩阵)I(单位矩阵)时,CC就是AA的逆矩阵了。
怎么样将AA变为II?我们类似于高斯消元一样,一行一行一列一列地扫过去。
由于最终要保证Ai,i=1Ai,i=1,其他为00。
设当前扫到第ii行,那么对于Ai,1∗i∗1=0Ai,1∗i∗1=0。
但是对于j<i,Aj,ij<i,Aj,i可能不等于0。
但我们初等变换中可以先对第ii行除以Ai,iAi,i,即保证Ai,i=1Ai,i=1,接着用ii整行去消j<ij<i。
那么Aj,iAj,i就等于0了。
那么我们这样一行一行地消下去即可。
我们对AA中做的所有操作,顺便对CC同时做就好了。
反正都是乘上同一个矩阵。
一开始没有操作时CC就是II。
最后我们用O(N3)O(N3)的复杂度求出了逆矩阵。