用矩阵初等变换逆矩阵
- 格式:doc
- 大小:380.50 KB
- 文档页数:5
逆矩阵求解方法及matlab应用矩阵是数学中一个重要的概念,其在各个领域中都有着广泛的应用。
其中,逆矩阵是一个非常重要的概念,其在矩阵的求解和运算中扮演着重要的角色。
本文将介绍逆矩阵的求解方法及其在matlab中的应用。
一、逆矩阵的定义在矩阵运算中,如果一个矩阵A与另一个矩阵B相乘,得到的结果是一个单位矩阵I,那么我们称矩阵B是矩阵A的逆矩阵,记作A^-1。
也就是说,逆矩阵是一个矩阵,与原矩阵相乘得到单位矩阵。
二、逆矩阵的求解方法1. 初等行变换法初等行变换法是一种求解逆矩阵的常用方法。
其具体步骤如下:(1)将原矩阵A和单位矩阵I按列排成一个增广矩阵B=[A|I]。
(2)对矩阵B进行初等行变换,使其左半部分变为单位矩阵,此时右半部分的矩阵就是原矩阵A的逆矩阵。
2. 行列式法行列式法是一种求解逆矩阵的另一种常用方法。
其具体步骤如下:(1)计算原矩阵A的行列式det(A)。
(2)如果det(A)=0,则原矩阵A不存在逆矩阵。
(3)如果det(A)≠0,则可以通过伴随矩阵求解原矩阵的逆矩阵,具体方法为:设伴随矩阵为A*,则原矩阵A的逆矩阵为A^-1=(1/det(A))A*。
三、matlab中逆矩阵的应用matlab是一款常用的数学软件,其在矩阵求解中有着广泛的应用。
下面介绍在matlab中如何求解逆矩阵。
1. 使用inv函数在matlab中,可以使用inv函数来求解逆矩阵。
其使用方法为:inv(A),其中A为原矩阵。
例如:A=[1 2 3;4 5 6;7 8 9];B=inv(A);disp(B);运行结果为:-1.2333e+16 2.4667e+16 -1.2333e+162.4667e+16 -4.9333e+16 2.4667e+16-1.2333e+16 2.4667e+16 -1.2333e+162. 使用pinv函数在matlab中,还可以使用pinv函数来求解逆矩阵。
其使用方法为:pinv(A),其中A为原矩阵。
用矩阵的初等变换求逆矩阵一、问题提出在前面我们以学习了用公式求逆矩阵,但当矩阵A的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢?(饿了再吃)二、求逆矩阵方法的推导(“润物细无声”“化抽象为自然”)我们已学习了矩阵初等变换的性质,如1.定理2.4 对mxn矩阵A,施行一次初等行变换,相当于在A的左边乘以相应m 阶初等矩阵;对A施行一次初等列变换,相当于在A的右边乘以相应的n阶初等矩阵。
2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。
3.定理2.5的推论A可逆的充要条件为A可表为若干初等矩阵之积。
即4.推论 A可逆,则A 可由初等行变换化为单位矩阵。
(1)由矩阵初等变换的这些性质可知,若A可逆,构造分块矩阵(A︱E,其中E为与A 同阶的单位矩阵,那么(2)由(1)式代入(2)式左边,上式说明分块矩阵(A︱E经过初等行变换,原来A的位置变换为单位阵E,原来E 的位置变换为我们所要求的,即三,讲解例题1. 求逆矩阵方法的应用之一例解:四,知识拓展2.求逆矩阵方法的应用之二利用矩阵的初等行变换也可以判断一个矩阵是否可逆,即分块矩阵(A︱E经过初等行变换,原来A的位置不能变换为单位阵E,那么A不可逆。
例解:而上面分块矩阵的第一块第二行全为零,它不可能变换为单位矩阵,所以A不可逆。
3.求逆矩阵方法的应用之三利用矩阵初等行变换解矩阵方程(“润物细无声”)对一般的矩阵方程求解,我们可以先求,然后求X=B。
现在我们介绍另外一种方法求矩阵方程。
其实在推导求逆矩阵方法的过程就是求解矩阵方程的过程,因为求就是求解矩阵方程的解,而对一般的矩阵方程只要将中的E换成B,然后利用初等行变换,即其中的B即为所求矩阵方程的X。
例解:。
求矩阵逆的方法
方法一,伴随矩阵法。
对于一个n阶矩阵A,如果其行列式不为0,那么A就是可逆的。
我们可以通过求解伴随矩阵来得到A的逆矩阵。
首先,我们计算A的伴随矩阵Adj(A),然后用行列式的倒数乘以伴随矩阵即可得到A的逆矩阵。
方法二,初等变换法。
初等变换法是通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为A的逆矩阵。
这种方法在计算机求解中比较常见,可以通过高斯消元法来实现。
方法三,分块矩阵法。
对于某些特殊的矩阵,我们可以通过将其分解成若干个子矩阵,从而简化逆矩阵的求解过程。
例如,对角矩阵、上三角矩阵、下三角矩阵等都有相对简单的逆矩阵求解方法。
方法四,特征值分解法。
对于对称正定矩阵,我们可以通过其特征值和特征向量来求解其逆矩阵。
通过特征值分解和特征向量矩阵的转置,我们可以得到原矩阵的逆矩阵。
方法五,数值逼近法。
对于大型矩阵或者特殊结构的矩阵,有时候我们无法通过解析的方法求解其逆矩阵,这时可以通过数值逼近的方法来计算其逆矩阵。
例如,利用迭代法或者矩阵分解等方法来近似求解逆矩阵。
总结:
以上是几种常见的求解矩阵逆的方法,不同的方法适用于不同类型的矩阵。
在实际问题中,我们需要根据具体情况选择合适的方法来求解矩阵的逆,以便更好地解决实际问题。
希望本文能够对您有所帮助,谢谢阅读!。
考研数学:用初等变换求逆矩阵及乘积的方法来源:文都教育在考研数学线性代数中,初等变换是一种非常重要的方法,被广泛地用于很多题型的求解之中,如行列式的计算、矩阵的求逆、线性方程组的求解、矩阵秩的计算、化二次型为标准型等。
初等变换包括初等行变换和初等列变换,具体说有三种:互换两行(列)、某行(列)乘以一个非零数、某行(列)乘以一个数加到另一行(列)。
下面我们对初等变换在矩阵求逆及乘积中的应用做些分析总结,供各位考研的学子参考。
一、用初等变换求逆矩阵及乘积的方法1、用初等行变换求逆矩阵1A -:对(,)A E 作初等行变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1A -,即1(,)(,)rA E E A -→,由此即求得1A -;2、用初等列变换求逆矩阵1A -:求1A -也可用初等列变换,对A E ⎛⎫⎪⎝⎭作初等列变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1A -,即1c A E E A -⎛⎫⎛⎫→ ⎪ ⎪⎝⎭⎝⎭,由此即求得1A -;3、用初等行变换求1A B -:对(,)A B 作初等行变换,将其中的A 变为单位矩阵E ,这时矩阵B 就变为1A B -,即1(,)(,)rA B E A B -→,由此即求得1A B -;4、用初等列变换求1BA -:对A B ⎛⎫⎪⎝⎭作初等列变换,将其中的A 变为单位矩阵E ,这时矩阵B 就变为1BA -,,即1c A E B BA -⎛⎫⎛⎫→ ⎪ ⎪⎝⎭⎝⎭,由此1BA -此即求得1BA -.上面的1)和2)实际上是3)和4)的特殊情况,只要取B E =即得1)和2)。
下面只要证明3)和4)即可。
证:3)由于作一次初等行变换相当于左乘一个初等矩阵,所以对A 作一系列的初等行变换得到单位矩阵E 相当于A 左乘一个可逆阵P ,使PA E =,这时1P A -=,1(,)(,)(,)(,B)P A B PA PB E PB E A -===,即1(,)(,)rA B E A B -→;4)同3)类似,由于作一次初等列变换相当于右乘一个初等矩阵,所以对A 作一系列的初等列变换得到单位矩阵E 相当于A 右乘一个可逆阵P ,使AP E =,这时1P A -=,1A AP E P B BP BA -⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即1c A E B BA -⎛⎫⎛⎫→ ⎪ ⎪⎝⎭⎝⎭.二、典型实例例1.设011111112A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,求1A -.解:作初等行变换:011100111010(,)111010011100112001021011r rA E --⎛⎫⎛⎫⎪ ⎪=-→-→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭1111010100312011100010111(,)001211001211rr E A -----⎛⎫⎛⎫ ⎪ ⎪→--→-= ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,故1312111211A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭.例2.解矩阵方程211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭.解:记上面的方程为XA B =,因为0A ≠,所以A 可逆,1X BA -=,对A B ⎛⎫⎪⎝⎭作初等列变换得:211121100210120101111111130113113132432342325c cc A B --⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=→→→--- ⎪⎪ ⎪⎪⎝⎭--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭100100100110010110101001103121221123282352355333c c c ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪- ⎪→→→- ⎪ ⎪ ⎪--⎪ ⎪- ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪⎝⎭⎝⎭⎝⎭,故122182533X BA --⎛⎫⎪== ⎪-- ⎪⎝⎭. 矩阵的逆运算是一种最基本最重要的运算,而初等变换是求逆矩阵的一种最常用的方法,大家一定要熟练掌握。
初等行列变换求逆矩阵-回复初等行列变换是矩阵运算中的一种基本操作,其主要目的是通过一系列的行列变换操作将矩阵转化为某个特定的形式,以便于进行进一步的计算。
在求解逆矩阵的过程中,初等行列变换是一种非常有效且常用的方法。
一、初等行列变换的定义和操作初等行列变换是指通过对矩阵的行列进行一系列的操作,从而改变矩阵的形式,但不改变矩阵的秩。
在初等行列变换中,可以进行三种操作:对调两行(列),将某一行(列)乘以非零常数,将某一行(列)的倍数加到另一行(列)上。
二、初等行列变换的求逆矩阵应用在矩阵运算中,我们经常需要对矩阵进行求逆运算。
求逆矩阵指的是找到一个与原始矩阵相乘等于单位矩阵的矩阵,即逆矩阵。
通过初等行列变换可以简化计算逆矩阵的过程。
三、求逆矩阵的初等行列变换步骤1. 将原矩阵和单位矩阵合并为增广矩阵[A I]。
2. 对增广矩阵进行初等行列变换,将[A I]变为[I B],其中B为逆矩阵。
1) 交换两行:如果需要将第i行与第j行进行交换,则通过交换增广矩阵中的第i行与第j行来实现。
2) 将某一行乘以非零常数:如果需要将第i行乘以非零常数k,则通过将增广矩阵中的第i行的每个元素都乘以k来实现。
3) 将某一行的倍数加到另一行上:如果需要将第i行的r倍加到第j行上,则通过将增广矩阵中的第i行的每个元素分别乘以r,并与第j行对应位置的元素相加来实现。
3. 假设经过初等行列变换后的增广矩阵为[I B],则B即为原矩阵的逆矩阵。
四、求逆矩阵的数学证明求逆矩阵的过程可以理解为对增广矩阵进行一系列的初等行列变换,从而将增广矩阵转化为单位矩阵。
通过数学证明可以证明初等行列变换的有效性。
引理1:如果矩阵A 能经过一系列初等行列变换变为I,则恒有A^-1 与I 相等。
证明:设A 的增广矩阵为[A I],经过初等行列变换可以得到增广矩阵[I B],则有A·B=I。
因此,B 就是A 的逆矩阵。
引理2:一个非奇异矩阵A 能通过初等行列变换变为I,则A 的行向量组是线性无关的,也就是说,矩阵A 是满秩的。
初等变换在矩阵计算中的运用2X3阶行列式的计算方法线性代数是高等数学的一个重要分支,而矩阵理论则是线性代数的主要内容和重要基础,在科学决策、工程技术等方面都有着广泛的应用。
其中,矩阵的初等变换则是贯穿矩阵理论的始终,在线性代数中起着重要的作用。
因此本文主要介绍矩阵初等变换的几种应用。
一、矩阵初等变换的概念1.交换矩阵的两行(列);2.以一个非零的数乘矩阵的某行(列),即用一个非零的数乘矩阵某一行(列)中的每一个数;3.用一个非零的数乘矩阵的某行(列)加到另一行(列),即用某一个非零的数乘矩阵的某一行(列)的每一个元素加到另一行(列)的对应元素上。
二、矩阵初等变换的应用(一)用初等变换求逆矩阵在矩阵理论中,逆矩阵占了一个很重要的地位,因此如何求逆矩阵就变得十分重要。
通常,我们可以用矩阵的初等变换或者利用伴随矩阵来求逆矩阵,但是如果利用伴随矩阵来计算n阶矩阵的逆矩阵,就必须计算n2+1个行列式,过程相当复杂,因此常用的方法就是矩阵的初等变换。
对于任意矩阵A,求逆矩阵A-1的过程如下:1.用一个与矩阵A同阶的单位矩阵E与A组成一个n×2n矩阵(A:E)2.利用矩阵初等变换法则,将矩阵(A:E)的左半部分化为单位矩阵,此时其右半部分即为A-1,即例1.求矩阵A=的逆矩阵。
(二)用初等变换求解矩阵方程常见的矩阵方程形如XA=B,AX=B与A×B=C,若A,B均可逆,则矩阵方程可解,其解分别为X=BA-1,X=A-1B与X=A-1BC-1。
例如XA=B,在计算过程中,可把An×n与Bm×n上下放一起构造出(m×n)×n矩阵,即,即可求得X=BA-1。
同理,若对于AX=B,可把An×n与Bm×n并排放一起,即,即可求出X=A-1B。
对于一般的矩阵方程,此方法简单易行,如下例:例2.设矩阵与矩阵X满足关系式X+A=XA,求矩阵X。
解:由已知X+A=XA,有X(A-E)=A,而,构造3×6矩阵(三)用初等变换求矩阵的秩对于矩阵A,若矩阵A存在一个非零的k阶子式B,而所有k+1阶子式都为0,则B即为矩阵A的最高阶非零子式,且子式B的阶数k即为矩阵A的秩,即秩A=k。
用矩阵初等变换逆矩阵
————————————————————————————————作者:————————————————————————————————日期:
2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。
李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。
作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。
下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。
用矩阵的初等变换求逆矩阵
一、问题提出
在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃)
二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”)
我们已学习了矩阵初等变换的性质,如
1.定理
2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。
2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。
3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。
即
4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。
(1)
由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么
(2)
由(1)式 代入(2)式左边,
上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置
变换为我们所要求的1
A -,即
21121111111112112112s t s s t t m P P P AQ Q Q E A P
P P P EQ Q Q Q R R R ----------=⇒=∆L L L L L 111
21m R R R A E
---=L 111121m R R R A ----=L ()
()
1
22n n
n n
A E E A -⨯⨯−−−−−→ 1*
1A A A -=(
)()()
1111A A E A A A E E A ----==1111
21m A R R R ----=L (
)()
1
111
21m R R R A E E A ----=L
三,讲解例题
1. 求逆矩阵方法的应用之一 例
解:
四,知识拓展
2.求逆矩阵方法的应用之二
利用矩阵的初等行变换也可以判断一个矩阵是否可逆,即分块矩阵(A ︱E )经过初等行变换,原来A 的位置不能变换为单位阵E ,那么A 不可逆。
例
解:
而上面分块矩阵的第一块第二行全为零,它不可能变换为单位矩阵,所以A 不可逆。
3.求逆矩阵方法的应用之三
利用矩阵初等行变换解矩阵方程 (“润物细无声”)
1
112120,113A A -⎛⎫
⎪=- ⎪ ⎪
⎝⎭
设求。
112100120010113001A E ⎛⎫ ⎪=- ⎪ ⎪⎝⎭
()2131r r r r +-1121
000321
10001101⎛⎫
⎪−−→ ⎪
⎪-⎝⎭
110302030312001101⎛-⎫ ⎪−−→- ⎪ ⎪-⎝⎭
132322r r r r --3021101201013
30011
1⎛⎫
- ⎪−−→- ⎪
⎪ ⎪-⎝⎭
31
3r 14233100
120101
33001101⎛⎫-- ⎪ ⎪→- ⎪
⎪- ⎪⎝
⎭
12
r r
-11423312133101A -⎛⎫--
⎪ ⎪⇒=- ⎪ ⎪- ⎪⎝⎭112122145,41211111A A ----⎛⎫
⎪
-
⎪= ⎪ ⎪-⎝⎭
设求。
12121000214501004121001011110001A E ⎛---⎫ ⎪- ⎪=
⎪ ⎪ ⎪-⎝⎭()12121000036921000969401001231001⎛---⎫
⎪- ⎪→ ⎪
- ⎪ ⎪-⎝⎭
12121000000011030969401001231001⎛---⎫
⎪
-
⎪→ ⎪- ⎪ ⎪-⎝⎭
对一般的矩阵方程 求解,我们可以先求1A - ,然后求X =1A -B 。
现在我们介绍另外一种方法求矩阵方程。
其实在推导求逆矩阵方法的过程就是求解矩阵方程的过程,因为求1A -就是求解矩
阵方程 的解,而对一般的矩阵方程 只要将 中的E 换成B ,然后利用初等行变换,即
其中的1A -B 即为所求矩阵方程 的X 。
例
解:
五、小结
1.矩阵初等行变换:求逆、判断矩阵是否可逆、 解矩阵方程
2.思考:若XA=B ,如何用初等变换法求X?
贺建辉 2007-11-21
AX E =
AX B =AX B =()
A E ()
()
1
22n n
n n
A B E A B
-⨯⨯−−−−−→ AX B =123252213134343A B AX B X ⎛⎫⎛⎫ ⎪ ⎪
=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
设,,若,求。
123252213134343A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭()1232502519026212⎛⎫ ⎪→---- ⎪ ⎪----⎝⎭102140251900113⎛--⎫
⎪
→---- ⎪
⎪---⎝⎭100320204600113⎛⎫ ⎪→- ⎪ ⎪---⎝⎭100320102300113⎛⎫ ⎪→-- ⎪ ⎪⎝⎭
1
32X 2313A B -⎛⎫ ⎪⇒==-- ⎪
⎪⎝⎭。