高大空间建筑不同送风形式气流组织研究
- 格式:pdf
- 大小:288.82 KB
- 文档页数:4
高大空间空调系统(气流组织)的技术经济分析目的:比较各种高大空间空调送风方式的技术特性,结合空间的使用功能和建筑形式等选择合适的送风方式。
综述:高大空间的气流组织形式应满足室内设计的温湿度要求、人员活动区的允许气流速度、室内噪声标准和室内空气质量等要求,并结合建筑形式与装修,气流分布均匀,避免产生短路和死角。
在不破坏气流组织效果的前提下,减少送风口数量,送风管道尽量简单,以降低空调系统造价。
送风方式:1.顶棚上送风下回风:经过处理的空气,由上部送风口送出,与室内空气混合后到达人员活动区域,空气从上部送达,无二次产尘隐患,卫生条件较好。
但空调负荷大,能耗较大,顶部风管布置较复杂,冷损失也较大,冬季送热风时,垂直梯度大,往往出现上热下冷的情况。
其常用的送风口有:散流器、喷口型送风口、孔板、格栅或百叶送风口、旋流送风口等;常用回风口有:格栅风口、百叶风口、网式风口等。
2.喷口送风下回风:高大空间通过喷口或旋流风口顶送或有一定的倾角,工作区处于回流区,回风口宜设置在下方同侧。
其送风射流射程远,气流混合过程长,可采用较大的风速和温差。
与一般上送风系统比较,可节省投资10~15%。
3.侧送风下回风:送风气流以百叶送风口、格栅送风口等从高大空间顶部侧墙沿水平或有一定倾角送出,再从同侧下部回风,工作区处于回流区内,气流分布均匀,布置简单。
4.分层空调送风:侧送方式往往将上部顶棚、侧墙、灯光等大量散热带入工作区,增大冷负荷,不利于节能。
分层空调送风是将高大空间分为空调区与非空调区,在空调区采用喷口、百叶风口等侧送,回风口宜设置在同侧下方;并在非空调区设置排风措施。
空调负荷仅为空调区负荷(包括非空调区向空调去转移形成的负荷),取得较好的节能效果。
5.下送风上回风:经处理空调送风直接由地板送入工作区,吸收室内热湿负荷后,由顶部排出室内。
屋顶、上部侧墙及部分照明发热均可由排风带走,具有良好的节能效果。
为简化送风管道和风量分配均匀,常在地面下设静压箱。
大空间分层空调气流组织数值模拟及热舒适性分析研究【摘要】本文结合工程实例介绍大空间空调系统的布置方案,利用star-ccm软件对典型大空间工程实例进行模拟分析,为大空间空调系统设计提供参考依据。
【关键词】气流组织;分层空调;star-ccm数值模拟引言近年来,随着我国经济的快速发展,高大空间建筑急剧增加(体育馆,展览馆大会堂音乐厅),大空间建筑中空调能耗占整个建筑能耗的37%[1],目前对于改进室内空气品质和降低空调能耗,成为人们关注的焦点。
针对大空间建筑高度较高,空调气流具有明显分层现象在垂直高度上梯度较大,同时还具有体积大、空调负荷大、能源消耗大等特点,使得节能问题相当突出[2]。
因此,应采用合理的气流组织,使大空间建筑室内具有良好的热环境以节约能源。
分层空调是大空间建筑典型的空调方式,利用合理的气流组织,仅对下部空间(空气调节区域)进行空气调节,而对上部较大非空调区域进行通风排热。
分层空调目前建筑工程领域中最为常见的一种技术手段[3]。
经过多年的研究总结得出,在一些大空间建筑结构中这一技术的采用有着传统空调技术无可比拟的节能优势,是一个节省初期投资、运行费用和节能性能好的空调体系。
故此这一技术在大型的公共空间采用极为常见,据有关研究显示,高大空间分层空调与全室空调相比,在夏季可实现节能30%[3]。
本文通过star-ccm软件对某市新建车站的大厅进行数值模拟并对热舒适性进行分析。
1 建筑实物与模型1.1 工程介绍某市新建车站是一两层的东西对称大空间建筑结构,其空间尺寸长约76m、宽为60m、高20m,其中包含了一、二层贯通的进展厅以及二层的候车室。
在空调系统中,采用了全空气低速送风方式来进行室内温度调节的,是由屋顶机房集中进行制冷,经过两条送风管将冷风分别输送到进站候车厅以及候车室,对于候车室内部的温度控制为26℃。
在温度调节上,按照夏季分层空调的调节方法来进行设计和布置,其中进展厅距离地面6m的高度处沿着墙壁均匀的布置了25个球形喷风口下侧送风,沿着东西两侧的墙壁上设置了6个球形的喷风口,其方向也是朝下。
高大空间气流组织的数值模拟与实验研究高大空间气流组织分布、预测不同设计方案的空调效果一直是工程设计人员的难题。
随着计算机的高速度化以及计算流体动力学(CFD, Computational Fluid Dynamics)的发展,应用CFD技术模拟预测高大空间气流组织、热舒适以及优化设计方案成为可能。
本文通过采用CFD数值模拟与现场测试相结合的方法对高大空间空调系统的热舒适性与气流组织分布特性进行研究,以期研究结果能对实际空调工程设计具有指导价值。
本研究以北京市某大型公共建筑的高大中庭分层空调为研究对象,根据建筑的实际尺寸及空调设计参数,建立分层空调设计方案下的计算模型,采用PHOENICS软件对分层空调设计方案下的热舒适性和气流组织进行了三维数值模拟研究,并将研究成果应用到实际工程中。
模拟计算运用k -ε两方程紊流模型与SIMPLE算法,近壁区采用壁面函数法考虑墙壁边界条件。
其次,对高大中庭的气流组织评价展开研究,在前人工作的基础上发展和丰富了高大中庭类建筑气流组织的评价方法。
本文针对夏季分层空调设计方案,详细分析了气流组织分布特性,并对不同工况下温度场、速度场的不同影响因素进行了分析。
针对冬季工况探讨了送风角度、送风速度、送风温差、送风间距对室内热环境的影响。
为了进一步验证CFD方法模拟研究的可靠性,对于所研究的高大中庭进行了现场实验测试,并在测试气候条件下进行了数值模拟,以模拟所得结果与实验测试结果作对比,以期能够表明CFD研究方法的正确性和切实可行性。
研究结果表明:1.送风速度的大小对形成稳定的气流隔断面有重要影响,当送风速度在4~4.5m/s时才能够形成稳定的气流隔断面,有效防止非空调区向空调区的热对流。
2.顶部排风对于降低非空调区的温度效果明显,有利于减小非空调区向空调区的传热量,节能效果显著;可是排风量太大会加强空调区与非空调区的热对流,反而会造成能量浪费,对于此类高大中庭,排风比宜控制在30%左右。
高大空间建筑暖通空调设计研究建筑行业近年来发展迅猛,高大空间建筑数量越来越多,暖通空调设计作为建筑设计的重要组成部分,高大空间建筑暖通空调设计一直是设计的重点和难点,对设计人员的专业技能有较高的要求。
设计人员要结合建筑特点,在保证暖通空调功能性的同时,还要注重节能和环保。
本文将重点对暖通空调设计的相关理念展开进一步研究,以便提高暖通空调的设计水平。
高大空间建筑具有多元化的特点,可以满足不同人群的使用需求,同时也更加符合现代人的理念。
针对高大空间建筑的设计,暖通空调设计一直是其中最主要的内容之一,应受到高度关注。
通过空调设计可以有效调节建筑内部温度和湿度,改善空气质量,提升空间的舒适度。
因此,相关部门要加大研究的力度,不断提高暖通空调的设计质量。
1、高大空间建筑特点高大空间(高度大于10m且体积大于10000m3)建筑与普通建筑相比,具有层高更高,跨度更大,功能繁多,样式复杂等特点[1]。
投入使用后人员短期聚集,使用时间相对集中,对室内环境要求较高。
高大空间建筑的空调设计难度较大,在空调设计过程中易受多种因素的影响。
主要表现在随着经济水平的提高,人们对使用空间的舒适度要求越来越高。
暖通空调在建筑中发挥至关重要的作用,必须要满足多元化的用户需求,但同时又受到建筑空间布局的制约。
暖通空调的设计要结合各种因素综合考虑,在实际项目设计中,暖通空调设计方案一般要经过多次的修改和完善,从而保障暖通空调效果,减少成本投入。
因此,加大暖通空调设计的研究力度,对提高空调系统能效起到至关重要的作用。
2、暖通空调设计难点2.1供暖方式的选择高大空间建筑的冬季供暖方式有多种,例如:散热器供暖、辐射供暖、热风供暖等。
其中散热器供暖是比较传统的一种方式,高大空间建筑若采用散热器供暖的方式可以有效降低供暖成本,造价相对低廉。
但是在冬季,由于热空气的比重较轻,会大量聚集并且漂浮在空间上部,造成热量浪费[2];同时在跨度较大的空间布置散热器存在一定的困难,尤其是当建筑外墙设有幕墙时,散热器供暖的难度会显著提升。
高大空间建筑室内气流组织分析高大空间建筑有其各自的特点,对于体育馆、音乐厅等建筑,其室内气流组织是空调系统设计的重点。
本文结合工程实例,介绍了工程的计算区域及设计参数,围绕垂直温度分布、垂直速度分布、气流分布特点及送风能耗比较这几方面对计算结果进行分析,为高大空间建筑室内环境的改善提供依据。
标签高大空间;建筑室内;设计参数;气流组织;分析随着我国社会经济建设步伐的不断加快,体育馆、音乐厅等高大空间建筑数量日益增加,逐渐成为城市建设的时代标志。
这些建筑具有体积大、围护结构传热量大、人员灯光密集,空调负荷较大等特点,其室内热环境状态参数随时可能发生变化,选取合理的气流组织方式对空调系统的设计有着重要的影响。
大空间气流组织指的是对气流流向和均匀度按一定要求进行组织,主要采用的方式有分层空调、置换通风、地板送风以及碰撞射流,如图1所示。
目前我国建筑室内空调系统的气流组织设计仍处于发展的阶段,并没有完善的理论体系和试验结论。
因此,通过对高大空间建筑室内气流组织的分析,确定合理的气流组织设计,对改善建筑室内的环境具有重要意义。
图1 大空间四种空调方式示意图1 计算区域及设计参数某公共建筑,结构南北对称,计算区域选取北边一半,计算区域层高约12m,占地面积约7450m2,属高大空间建筑。
计算区域按非结构网格划分。
人员工作区(高度0~2m)气流扰动较大,网格较密,非人员工作区网格相对稀疏。
根据FLUENT软件选取RNGk-ε两方程紊流模型,近壁面区域则选用标准壁面函数法,速度-压力耦合采用SIMPLE算法。
边界条件见表1,照明、设备及外墙负荷指标均参照原设计计算书选取,其中人员散热量均布在地面上。
为达到夏季室内人员工作区的要求设计温度25±0.5℃,参考相关文献资料,计算得到四种空调方式各自的设计参数,汇总于表2。
2 结果分析2.1 垂直温度分布不同高度上的平均温度值汇总于图2。
可以看出,四种空调方式都满足人员工作区的设计温度25±0.5℃,且分层效果明显。
火车站高大空间气流组织模拟设计方案随着城市化进程的不断推进,人们出行需求不断增加,高铁、城际铁路等快速交通方式逐渐流行。
火车站作为重要的交通枢纽和城市门户之一,也越来越受到人们的关注。
其中,火车站高大空间的气流组织是一个重要的设计要素,它关乎着站内空气流动的舒适性、安全性和环境影响等方面。
因此,本文将探讨火车站高大空间气流组织模拟设计方案,以期提高站内环境质量和旅客满意度。
一、火车站高大空间气流组织的设计在火车站的建设中,气流组织的设计应该充分考虑通风、循环、冷却和加湿等方面,以提高站内空气质量和热舒适度。
具体来说,需要考虑以下几点:1. 通风路径的设计通风路径是指在火车站内部形成的气流路径,通过合理的通风路径设计,可以达到空气流动的均匀性、稳定性和通畅性。
通风路径的设计需要考虑站厅、候车大厅、月台等不同功能区域之间的空气流动关系,建立空气流动的正向通风路径和负向排风路径。
同时,还需要对气流运动过程进行动态监测和反馈调节,以保证空气流动方向的准确性和稳定性。
2. 空气质量的控制在火车站内部,人员密集,环境空气质量容易受到污染和异味干扰。
因此,在气流组织的设计中,需要考虑如何控制空气质量,并保持空气清新。
具体措施包括空气过滤、沉积污染物治理、加湿控制等方面,以保证站内空气质量的良好。
3. 温度和湿度的控制在气流组织的设计中,还需要考虑温度和湿度的控制,以改善站内热舒适度。
具体措施包括加装空调设备、喷淋系统、加湿系统等技术手段,通过适当的调节,实现站内室温、湿度和热舒适度的控制。
二、气流组织模拟设计的应用为了更好的设计和优化火车站内部的气流组织,需要进行模拟设计和优化分析,以掌握站内气流分布的特点。
现代化的计算机仿真技术可以将建筑物内部的气流结构模拟出来,反复优化和验证,从而提高气流结构的优化和稳定性。
1. 模拟软件的选择在进行气流组织模拟设计时,需要先选择适合的气流模拟软件。
常用的气流模拟软件包括FLUENT、ANSYS、PHOENICS 等。
不同送风方式下室内气流组织及颗粒物分布的模拟实验研究随着经济发展和科技技术的不断提高,人类的生活水平也随之上升,人们对生活物质方面的消费更加注重品质。
空调系统给人们带来室内舒适的环境,也起到通风除污的效果,为人们工作和居住带来一个健康舒适的空间。
在节能与健康的基础上,我们通过实验和模拟等方式来对空调系统进行研究,以提出新的观点和方法,为人们的健康发展做出努力。
本文首先介绍不同气流组织形式及气流组织形式的评价指标,详细介绍本文研究中所使用的实验系统及测量系统,并介绍了仿真软件Fluent及模拟所应用的物理模型,本文采用RNG k-ε模型与壁面函数法作为室内空气流动的湍流模型。
本文分别进行了双侧送上回和双顶送上回的实验,通过改变回风口位置和不同风机频率,研究室内气流组织变化情况。
分别测得各实验工况下的室内速度场和温度场,并对数据进行整理分析,研究表明,对于改变风口位置实验,除送风口射流对面墙附近位置以及风口位置的速度场和温度场有所变化,其他位置并无影响。
而改变风机频率之后,室内的速度场和温度场有明显变化,但是气流组织形式基本不变。
通过建模、划分网格,计算采用的边界条件假设尽量符合实验要求,利用Fluent模拟软件进行计算,将实验和模拟结果进行分析和对比,找出实验中存在的误差,同时也验证了模型的可靠性。
应用该模型研究了室内存在挡板时不同送风方式下,室内颗粒物的扩散情况。
通过改变颗粒物粒径大小以及颗粒物产生源的不同位置来进行对比和分析,计算了不同工况下室内的通风效率以及能量利用系数。
以此来综合评价不同的气流组织形式在改善室内空气品质方面的差异。
研究表明:挡板的存在影响侧送风气流流动,使得室内颗粒物不容易排出,由于顶送风位置与挡板在同一截面,所以顶送风受影响较小。
增大颗粒物直径,由于重力影响,大颗粒物有明显“惰性”,并不容易排出室内。
降低颗粒物释放源位置后,侧送风变化效果并不明显,而顶送风则变化较大。