统计学贾俊平第四版第七章课后答案目前最全
- 格式:doc
- 大小:3.56 MB
- 文档页数:16
《统计学》第四版 第四章练习题答案众数:M o =1O;中位数:中位数位置=n+1/2=5.5 , M e =10 ;平均数:(2) Q L 位置=n/4=2.5, Q L =4+7/2=5.5 ; Q u 位置=3n/4=7.5 , Q u =12(4) 4.2 和 M O =23。
将原始数据排序后,计算中位数的位置为:中位数位置=n+1/2=13,第13个位置上的数值为23,所以中位数为 M e =23(2)Q L 位置=n/4=6.25, Q L ==19 ; Q u 位置=3n/4=18.75,Q u =26.5茎 叶 频数 5 5 1 6 6 7 8 3 71 3 4 8 85(3)第一种排队方式: 离散程度大于第二种排队方式。
(4 )选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方 式。
_ Z X i4.4 ( 1)X8223/30=274.14.1 ( 1 ) 二X i X =n96.9,6 102' (X i-X ) _156.4 42n -1, 9由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
(1)从表中数据可以看出,年龄出现频数最多的是 19和23,故有个众数,即 M O =19(3)⑶平均数-A =600/25=24,标准差—(XLX)\ n —1210626.6525-1n(4) 偏态系数SK=1.08,峰态系数K=0.77(5) 分析:从众数、中位数和平均数来看,网民年龄在 23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数 1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
(1)茎叶图如下: 大于 4.3 —2'(X 一 X ) 4.080.714nn -1■ 8由于两种排队方式的平均数不同,所以用离散系数进行比较。
(2) X 二一^ =63/9=7, S = ■■n中位数位置=n+1/2=15.5 , M e=272+273/2=272.5(2) Q L位置=n/4=7.5, Q L==(258+261)/2=259.5 ; Q u 位置=3n/4=22.5 , Q u=(284+291)/2=287.5' (^-X ^ /3002-7 = 21.17 I n —1 \ 30—12100 +3000 +15004.5 (1)甲企业的平均成本=总成本/总产量=-2100 3000---- + ----- 15 20乙企业的平均成本=总成本/总产量=3255150015006255=18.293255 1500 1500 342____ + _____ + _____152030原因:尽管两个企业的单位成本相同, 但单位成本较低的产品在乙企业的产量中所占比重较 大,因此拉低了总平均成本。
应用统计学(第四版)第7章案例题目及答案案例分析题一个纺织品制造商收到一个很大的用于制作制服的衣料订单,这些衣料由4条不同的染色流水线进行染色,每条流水线每天生产的衣料数量大致相同。
通常,如果订单数量不是很大,只会用到一条流水线来完成订单,因为这样衣料的图案亮度会控制得较好,而不同流水线染色的图案亮度总会有些差异。
但是这个订单很大,要同时用到4条流水线,这时候需要通过使所有生产的衣料的图案亮度的方差最小化来尽可能使图案保持一致。
最近,顾客抱怨图案亮度的差异太大了。
因此决定对4条流水线生产的衣料图案亮度进行方差分析检验。
从每条流水线随机抽取样本并测量亮度,测量值在0~100之间,数据如下表所示。
要求:(1) 在 =0.05的显著性水平下进行检验并给出你的结论。
(2) 哪两条流水线染色的衣料的平均亮度有明显的不同?(3) 在生产过程中停止某一流水线进行亮度调整的成本很高,如果只能将一条流水线停下来调整,应该调整哪一条呢?应该将其调整到多少亮度值才能使所染色的衣料的图案尽可能保持一致?答案P207四、案例分析因F=10.590967> F crit=2.7826004或P-value=1.526E-05<α=0.05,拒绝原假设H0,即不同流水线对衣料图案的亮度有显著影响。
(2)利用Fisher最小显著差异(LSD)方法进行多重比较,可判断哪些均值间有显著差异。
t分布的自由度为n-k=56-4=52,所以/20.025(52)t tα==2.0066,MSE=6.2109,有关样本均值差的绝对值及相应的LSD计算结果如下表所示:判断:若均值差绝对值大于相应的LSD就拒绝H0,表明它们之间衣料平均亮度有显著差异;否则不拒绝H0,不能认为它们之间有显著差异。
因此,根据上表计算结果判断如下:流水线1和2,流水线1和3,流水线2和4,流水线3和4它们之间衣料的图案的平均亮度有明显的不同。
(3)我们把各样本均值与样本总均值进行比较,从中找出偏离样本总均值最大者,则停止该流水线并将其图案亮度调整到样本总均值,能够使所染色衣料的图案亮度尽可能保持一致。
附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下服务质量等级评价的频数分布(3)条形图(略)(4)帕累托图(略)。
2.2(1)频数分布表如下40个企业按产品销售收入分组表(2)某管理局下属40个企分组表2.3频数分布表如下某百货公司日商品销售额分组表直方图(略)。
2.4茎叶图如下箱线图(略)。
2.5(1)排序略。
(2)频数分布表如下100只灯泡使用寿命非频数分布(3)直方图(略)。
(4)茎叶图如下2.6(1)频数分布表如下(2)直方图(略)。
(3)食品重量的分布基本上是对称的。
2.7(1)频数分布表如下(2)直方图(略)。
2.8(1)属于数值型数据。
(2)分组结果如下(3)直方图(略)。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10(1)茎叶图如下(2)A班考试成绩的分布比较集中,且平均分数较高;B班考试成绩的分布比A班分散,且平均成绩较A班低。
2.11(略)。
2.12(略)。
2.13(略)。
2.14(略)。
2.15箱线图如下:(特征请读者自己分析)第3章 数据的概括性度量 3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42363737493942323635要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
1、确定组数: ()l g 40l g () 1.60206111 6.32l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取5(1) 对这个年龄分布作直方图;(2) 从直方图分析成人自学考试人员年龄分布的特点。
解:(1)制作直方图:将上表复制到Excel 表中,点击:图表向导→柱形图→选择子图表类型→完成。
即得到如下的直方图:(见Excel 练习题2.6)(2)年龄分布的特点:自学考试人员年龄的分布为右偏。
解:(1)根据上面的数据,画出两个班考试成绩的对比条形图和环形图。
3.14 已知1995—2004年我国的国内生产总值数据如下(按当年价格计算):要求:(2)绘制第一、二、三产业国内生产总值的线图。
4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics汽车销售数量N Valid 10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075 12.50种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
7.11 (1) 解:已知n=50,1a -=0.9522,ss x z xz nn a aæö-×+×ç÷èø=81.822981.8229101.491.966,101.491.9665050æö-´+´ç÷èø= (100.89,101.91)(2)解:已知n=50,1a -=0.95,2z a =00.0225z =1.96,样本比率p=(50-5)/50=0.9 则食品合格率的95%的置信区间:()()2211,p p p p p zp z nna aæö--ç÷-×+×ç÷èø=()()0.910.90.910.90.9 1.91.966,0.9 1.91.9665050æö---´+´ç÷èø=(0.8168,0.9832)7.22 (1)由题知,该题为大样本,方差已知,则有21m m -的95%的置信区间为:176.12100201001696.1)2325()(2221212/21±=+´±-=+±-n s n s z x x a即(0.824,3.176)(2m m -的95%的置信区间为:()()64.42112212212/21±=÷÷øöççèæ+-+±-n n s n ntxxpa 即(—2.64,6.64) (3)由题知,该题为小样本,方差不同, 则有21m m -的95%的置信区间为:()()64.42112212212/21±=÷÷øöççèæ+-+±-n n s n n tx x p a 即(—2.64,6.64) (4)由题知,该题为小样本,样本量不等,方差相等,则合并估计量为()()713128524211212222112==-+-+-=n n s n s n s p 则有21m m -的95%的置信区间为:()()02.42112212212/21±=÷÷øöççèæ+-+±-n n s n n tx x p a 即(—2.02,6.02) ,2z a =00.0225z =1.96。
7.1从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σ=n σ=405=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =nα/2σZ =1.96×0.7906=1.5496。
7.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x nσ=49==2.143 (2)在95%的置信水平下,求边际误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115.8,124.2) 7.37.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:2x z x z n n αα⎛-+ ⎝n 100=1.2 (1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。
8.2 一种元件,要求其使用寿命不得低于700小时。
现从一批这种元件中随机抽取36件,测得其平均寿命为680小时。
已知该元件寿命服从正态分布,σ=60小时,试在显著性水平0.05下确定这批元件是否合格。
解:H 0:μ≥700;H 1:μ<700 已知:x =680 σ=60由于n=36>30,大样本,因此检验统计量:x z ==-2 当α=0.05,查表得z α=1.645。
因为z <-z α,故拒绝原假设,接受备择假设,说明这批产品不合格。
8.38.4 糖厂用自动打包机打包,每包标准重量是100千克。
每天开工后需要检验一次打包机工作是否正常。
某日开工后测得9包重量(单位:千克)如下:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5已知包重服从正态分布,试检验该日打包机工作是否正常(a =0.05)?解:H 0:μ=100;H 1:μ≠100 经计算得:x =99.9778 S =1.21221检验统计量:x t =-0.055 当α=0.05,自由度n -1=9时,查表得()29t α=2.262。
因为t <t α,样本统计量落在接受区域,故接受原假设,拒绝备择假设,说明打包机工作正常。
8.5 某种大量生产的袋装食品,按规定不得少于250克。
今从一批该食品中任意抽取50袋,发现有6袋低于250克。
若规定不符合标准的比例超过5%就不得出厂,问该批食品能否出厂(a =0.05)?解:解:H 0:π≤0.05;H 1:π>0.05已知: p =6/50=0.12检验统计量:Z ==2.271当α=0.05,查表得z α=1.645。
因为z >z α,样本统计量落在拒绝区域,故拒绝原假设,接受备择假设,说明该批食品不能出厂。
8.68.7 某种电子元件的寿命x(单位:小时)服从正态分布。
现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264222 362 168 250 149 260 485 170问是否有理由认为元件的平均寿命显著地大于225小时(a =0.05)?解:H 0:μ≤225;H 1:μ>225 经计算知:x =241.5 s =98.726检验统计量:x t =0.669 当α=0.05,自由度n -1=15时,查表得()15t α=1.753。
统计学贾俊平课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下(4)帕累托图(略)。
2.2(1)频数分布表如下2.3频数分布表如下2.5(1)排序略。
(2)频数分布表如下2.6(3)食品重量的分布基本上是对称的。
2.72.8(1)属于数值型数据。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10A 班分散,且平均成绩较A 班低。
2.11 (略)。
2.12 (略)。
2.13 (略)。
2.14 (略)。
2.15 箱线图如下:(特征请读者自己分析) 第3章 数据的概括性度量3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
(2)5.5=L Q ;12=U Q 。
(3)24=x ;65.6=s 。
(4)08.1=SK ;77.0=K 。
(5)略。
3.3 (1)略。
(2)7=x ;71.0=s 。
(3)102.01=v ;274.02=v 。
(4)选方法一,因为离散程度小。
3.4 (1)x =(万元);M e= 。
第七章 练习题参考答案7.1 (1)已知σ=5,n=40,x =25,α=0.05,z205.0=1.96样本均值的抽样标准差σx=nσ=79.0405=(2)估计误差(也称为边际误差)E=z 2αnσ=1.96*0.79=1.557.2(1)已知σ=15,n=49,x =120,α=0.05,z205.0=1.96(2)样本均值的抽样标准差σx=nσ==4915 2.14估计误差E=z 2αnσ=1.96*=4915 4.2(3)由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα±=120±1.96*2.14=120±4.2,即(115.8,124.2)7.3(1)已知σ=85414,n=100,x =104560,α=0.05,z205.0=1.96由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα±=104560±1.96*=10085414104560±16741.144即(87818.856,121301.144)7.4(1)已知n=100,x =81,s=12,α=0.1,z 21.0=1.645由于n=100为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=81±1.645*=1001281±1.974,即(79.026,82.974)(2)已知α=0.05,z205.0=1.96由于n=100为大样本,所以总体均值μ的95%的置信区间为:ns x z 2α±=81±1.96*=1001281±2.352,即(78.648,83.352)(3)已知α=0.01,z201.0=2.58由于n=100为大样本,所以总体均值μ的99%的置信区间为:ns x z 2α±=81±2.58*=1001281±3.096,即(77.94,84.096)7.5(1)已知σ=3.5,n=60,x =25,α=0.05,z205.0=1.96由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα±=25±1.96*=60.5325±0.89,即(24.11,25.89)(2)已知n=75,x =119.6,s=23.89,α=0.02,z 202.0=2.33由于n=75为大样本,所以总体均值μ的98%的置信区间为:ns x z 2α±=119.6±2.33*=759.823119.6±6.43,即(113.17,126.03)(3)已知x =3.419,s=0.974,n=32,α=0.1,z21.0=1.645由于n=32为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=3.419±1.645*=3274.90 3.419±0.283,即(3.136,3.702)7.6(1)已知:总体服从正态分布,σ=500,n=15,x =8900,α=0.05,z205.0=1.96由于总体服从正态分布,所以总体均值μ的95%的置信区间为:nx z σα2±=8900±1.96*=155008900±253.03,即(8646.97,9153.03)(2)已知:总体不服从正态分布,σ=500,n=35,x =8900,α=0.05,z205.0=1.96虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的95%的置信区间为:nx z σα2±=8900±1.96*=355008900±165.65,即(8734.35,9065.65)(3)已知:总体不服从正态分布,σ未知, n=35,x =8900,s=500,α=0.1,z 21.0=1.645虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=8900±1.645*=355008900±139.03,即(8760.97,9039.03)(4)已知:总体不服从正态分布,σ未知, n=35,x =8900,s=500,α=0.01,z 01.0=2.58虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的99%的置信区间为:ns x z 2α±=8900±2.58*=355008900±218.05,即(8681.95,9118.05)7.7 已知:n=36,当α=0.1,0.05,0.01时,相应的z21.0=1.645,z205.0=1.96,z201.0=2.58根据样本数据计算得:x =3.32,s=1.61由于n=36为大样本,所以平均上网时间的90%置信区间为:ns x z 2α±=3.32±1.645*=361.61 3.32±0.44,即(2.88,3.76)平均上网时间的95%置信区间为:ns x z 2α±=3.32±1.96*=361.61 3.32±0.53,即(2.79,3.85)平均上网时间的99%置信区间为:ns x z 2α±=3.32±2.58*=361.61 3.32±0.69,即(2.63,4.01)7.8 已知:总体服从正态分布,但σ未知,n=8为小样本,α=0.05,)(18t05.0-=2.365根据样本数据计算得:x =10,s=3.46 总体均值μ的95%的置信区间为:ns x t α±=10±2.365*=83.4610±2.89,即(7.11,12.89)7.9 已知:总体服从正态分布,但σ未知,n=16为小样本,α=0.05,)(116t205.0-=2.131根据样本数据计算得:x =9.375,s=4.113从家里到单位平均距离的95%的置信区间为:ns x t α±=9.375±2.131*=144.1139.375±2.191,即(7.18,11.57)7.10 (1)已知:n=36,x =149.5,α=0.05,z205.0=1.96由于n=36为大样本,所以零件平均长度的95%的置信区间为:ns x z 2α±=149.5±1.96*=361.93149.5±0.63,即(148.87,150.13)(2)在上面的估计中,使用了统计中的中心极限定理。
7.1从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σ=n σ=405=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =nα/2σZ =1.96×0.7906=1.5496。
7.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x nσ=49==2.143 (2)在95%的置信水平下,求边际误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115.8,124.2) 7.37.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:2x z x z n n αα⎛-+ ⎝n 100=1.2 (1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。
2z α=0.005z =2.576,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(77.91,84.09)7.57.67.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,3.3 3.1 6.2 5.8 2.34.15.4 4.5 3.2 4.4 2.0 5.4 2.66.4 1.8 3.5 5.7 2.3 2.1 1.9 1.2 5.1 4.3 4.2 3.6 0.8 1.5 4.71.41.22.93.52.40.53.62.5求该校大学生平均上网时间的置信区间,置信水平分别为90%,95%和99%。
解:(1)样本均值x =3.32,样本标准差s=1.61; (2)抽样平均误差: 重复抽样:x σnn ≈不重复抽样:x σ1N n N n--1N n N n -≈-7500367500136--=0.2680.995×0.998=0.267(3)置信水平下的概率度: 1α-=0.9,t=z α=0.05z =1.645 1α-=0.95,t=2z α=0.025z =1.96 1α-=0.99,t=2z α=0.005z =2.576 (4)边际误差(极限误差): 2x x x t z ασσ∆=⋅=⋅1α-=0.9,2x x x t z ασσ∆=⋅=⋅=0.05x z σ⋅重复抽样:2x x z ασ∆=⋅=0.05x z σ⋅=1.645×0.268=0.441 不重复抽样:2x x z ασ∆=⋅=0.05x z σ⋅=1.645×0.267=0.4391α-=0.95,2x x x t z ασσ∆=⋅=⋅=0.025xz σ⋅重复抽样:2x x z ασ∆=⋅=0.025x z σ⋅=1.96×0.268=0.525 不重复抽样:2x x z ασ∆=⋅=0.025x z σ⋅=1.96×0.267=0.5231α-=0.99,2x x x t z ασσ∆=⋅=⋅=0.005x z σ⋅重复抽样:2x x z ασ∆=⋅=0.005x z σ⋅=2.576×0.268=0.69 不重复抽样:2x x z ασ∆=⋅=0.005x z σ⋅=2.576×0.267=0.688(5)置信区间:(),x x x x -∆+∆1α-=0.9,重复抽样:(),x x x x -∆+∆=()3.320.441,3.320.441-+=(2.88,3.76) 不重复抽样:(),x x x x -∆+∆=()3.320.439,3.320.439-+=(2.88,3.76)1α-=0.95,重复抽样:(),x x x x -∆+∆=()3.320.525,3.320.525-+=(2.79,3.85) 不重复抽样:(),x x x x -∆+∆=()3.320.441,3.320.441-+=(2.80,3.84)1α-=0.99,重复抽样:(),x x x x -∆+∆=()3.320.69,3.320.69-+=(2.63,4.01) 不重复抽样:(),x x x x -∆+∆=()3.320.688,3.320.688-+=(2.63,4.01)7.8从一个正态总体中随机抽取容量为8 的样本,各样本值分别为:10,8,12,15,6,13,5,11。
求总体均值95%的置信区间。
解:(7.1,12.9)。
7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
解:小样本,总体方差未知,用t 统计量x t s n=()1t n -均值=9.375,样本标准差s=4.11 置信区间:()()221,1x t n x t n n n αα⎛--⋅+-⋅ ⎪⎝⎭1α-=0.95,n=16,()21t n α-=()0.02515t =2.13()()221,1x t n x t n n n αα⎛--⋅+-⋅ ⎪⎝⎭=9.375 2.13,9.375 2.131616⎛-⨯+⨯ ⎪⎝⎭=(7.18,11.57) 7.107.11 某企业生产的袋装食品采用自动打包机包装,每袋标准重量为l00g 。
现从某天生产的一批每包重量(g ) 包数 96~98 98~100 100~102 102~104 104~106 2 3 34 7 4 合计50已知食品包重量服从正态分布,要求:(1)确定该种食品平均重量的95%的置信区间。
解:大样本,总体方差未知,用z 统计量x z s n=()0,1N样本均值=101.4,样本标准差s=1.829 置信区间:x z x z n n αα⎛-+ ⎝1α-=0.95,2z α=0.025z =1.9622,x z x z n n αα⎛-⋅+⋅ ⎪⎝⎭=101.4 1.96,101.4 1.965050⎛-⨯+⨯ ⎪⎝⎭=(100.89,101.91) (2)如果规定食品重量低于l00g 属于不合格,确定该批食品合格率的95%的置信区间。
解:总体比率的估计大样本,总体方差未知,用z 统计量()1z p p n=-()0,1N样本比率=(50-5)/50=0.9 置信区间:()()2211,p p p p p z p z n n αα⎛⎫-- ⎪-⋅+⋅ ⎪⎝⎭ 1α-=0.95,2z α=0.025z =1.96()()2211,p p p p p z p z n n αα⎛⎫-- ⎪-⋅+⋅ ⎪⎝⎭=()()0.910.90.910.90.9 1.96,0.9 1.965050⎛⎫-- ⎪-⨯+⨯⎪⎝⎭=(0.8168,0.9832) 7.127.13 一家研究机构想估计在网络公司工作的员工每周加班的平均时间,为此随机抽取了18个员工。
得到他们每周加班的时间数据如下(单位:小时): 6 321 817 1220 117 90 218 2516 1529 16间。
解:小样本,总体方差未知,用t 统计量x t s n=()1t n -均值=13.56,样本标准差s=7.801 置信区间:()()221,1x t n x t n n n αα⎛--⋅+-⋅ ⎪⎝⎭1α-=0.90,n=18,()21t n α-=()0.0517t =1.7369()()221,1x t n x t n n n αα⎛--⋅+-⋅ ⎪⎝⎭=13.56 1.7369,13.56 1.73691818⎛-⨯+⨯ ⎪⎝⎭=(10.36,16.75) 7.147.15 在一项家电市场调查中.随机抽取了200个居民户,调查他们是否拥有某一品牌的电视机。
其中拥有该品牌电视机的家庭占23%。
求总体比例的置信区间,置信水平分别为90%和95%。
解:总体比率的估计大样本,总体方差未知,用z 统计量()1z p p n=-()0,1N样本比率=0.23 置信区间:()()2211,p p p p p z p z n n αα⎛⎫-- ⎪-⋅+⋅ ⎪⎝⎭ 1α-=0.90,2z α=0.025z =1.645()()2211,p p p p p z p z n n αα⎛⎫-- ⎪-⋅+⋅ ⎪⎝⎭=()()0.2310.230.2310.230.23 1.645,0.23 1.645200200⎛⎫-- ⎪-⨯+⨯⎪⎝⎭=(0.1811,0.2789)1α-=0.95,2z α=0.025z =1.96()()2211,p p p p p z p z n n αα⎛⎫-- ⎪-⋅+⋅ ⎪⎝⎭=()()0.2310.230.2310.230.23 1.96,0.23 1.96200200⎛⎫-- ⎪-⨯+⨯⎪⎝⎭=(0.1717,0.2883) 7.16、7.177.187.197.20 顾客到银行办理业务时往往需要等待一段时间,而等待时间的长短与许多因素有关,比如,银行业务员办理业务的速度,顾客等待排队的方式等。
为此,某银行准备采取两种排队方式进行试验,第一种排队方式是:所有顾客都进入一个等待队列;第二种排队方式是:顾客在三个业务窗口处列队三排等待。
为比较哪种排队方式使顾客等待的时间更短,银行各随机抽取10名顾客,他们在办理业务时所等待的时间(单位:分钟)如下:方式1 6.5 6.6 6.7 6.87.17.37.47.77.77.7方式2 4.2 5.4 5.8 6.2 6.77.77.78.59.310要求:(1)构建第一种排队方式等待时间标准差的95%的置信区间。