沪教版高中物理选修3-2第3讲:楞次定律(教师版)——劲松郭伟
- 格式:docx
- 大小:7.67 MB
- 文档页数:14
高中物理选修32楞次定律知识点归纳楞次定律是高中物理学中的一个重要定律,下面是店铺给大家带来的高中物理选修32楞次定律知识点归纳,希望对你有帮助。
高中物理楞次定律知识点1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化.在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。
A、从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。
B、从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。
又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。
磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。
C、从“阻碍自身电流变化”的角度来看,就是自感现象。
自感现象中产生的自感电动势总是阻碍自身电流的变化。
2、实质:能量的转化与守恒。
3、应用:对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。
“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。
“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。
用以判断感应电流的方向,其步骤如下:1)确定穿过闭合电路的原磁场方向;2)确定穿过闭合电路的磁通量是如何变化的(增大还是减小);3)根据楞次定律,确定闭合回路中感应电流的磁场方向; 4)应用安培定则,确定感应电流的方向。
高中物理学习技巧一、联系实际,帮助理解从初中物理到高中物理最大的变化就是知识要求的变化。
初中物理是通过现象认识规律,因此,初中物理主要的学习方法是“记忆”;高中物理则是通过对规律的认识理解来解决一些实际问题、解释一些自然现象,所以高中物理主要的学习方法是“理解”。
做到理解的基本步骤是:一练、二讲、三应用。
“一练”即要在老师的指导下进行适当的练习,通过对不同类型习题的练习,多方面、多角度地认识概念、认识规律、认识知识点、认识考点。
《楞次定律》教学设计一、教材分析:本节课教学内容是人教版教材,高中物理选修3-2第一章第三节“感应电流的方向——楞次定律”。
楞次定律是电磁感应规律的重要组成部分,它与法拉第电磁感应定律一样也是本章的一个教学重点,是分析和处理电磁感应现象问题的两个重要支柱之一。
由于此定律所牵涉的物理量和物理规律较多,只有对原磁场方向、原磁通量变化情况、感应电流的磁场方向、以及会用安培定则进行正确的判定,才能得到正确的感应电流的方向。
同时,学生还必须能正确运用安培定则,左手定则,安培定则解决问题,所以这部分内容也是电学部分的一个难点。
二、教学重难点:教学重点:理解感应电流的方向与引起感应电流的磁通量变化之间的关系。
教学难点:根据教学目标,进行实验设计与操作。
三、学情分析:学生已经掌握了磁通量的概念,并会分析磁通量的变化。
已经知道了条形磁铁的磁感线的分布。
学生已经利用(条形磁铁、电流计、线圈等)实验器材研究感应电流产生的条件。
四、教学目标:1.知识与技能(1)会表述感应电流的方向与引起感应电流的磁通量的变化之间的关系。
(2)会用自己的语言组织表述“感应电流的磁场总要阻碍引起感应电流的磁通量的变化”中的“阻碍”的意义。
(3)会用楞次定律判断电磁感应现象中感应电流的方向。
2.过程与方法(1)通过探究过程体会提出问题、猜想与假设、制定计划与设计实验、分析论证、验证等科学探究要素。
(2)通过楞次定律的学习过程,了解物理学的研究方法,认识物理实验在物理学发展过程中的作用。
(3)通过实验探究,学会用实验探究的方法研究物理问题。
3.情感态度与价值观(1)通过楞次对法拉第研究成果的关注到发现感应电流方向的规律的介绍,让学生发展对科学的好奇心与求知欲,能体验探索自然规律的艰辛与喜悦。
(2)通过实验学会与他人主动交流合作,培养团队精神。
五、设计思路:本节作为一堂物理规律课的教学,重点在于指导学生思考问题的方法和利用实验研究物理规律的手段,为此本课采用学生分组随堂实验探究的操作模式,学生在老师的启发和帮助下通过自己实验操作来发现、解决问题,获取新知识。
《楞次定律》教学设计一、教材分析:本节课教学内容是人教版教材,高中物理选修3-2第一章第三节“感应电流的方向——楞次定律”。
楞次定律是电磁感应规律的重要组成部分,它及法拉第电磁感应定律一样也是本章的一个教学重点,是分析和处理电磁感应现象问题的两个重要支柱之一。
由于此定律所牵涉的物理量和物理规律较多,只有对原磁场方向、原磁通量变化情况、感应电流的磁场方向、以及会用安培定则进行正确的判定,才能得到正确的感应电流的方向。
同时,学生还必须能正确运用安培定则,左手定则,安培定则解决问题,所以这部分内容也是电学部分的一个难点。
二、教学重难点:教学重点:理解感应电流的方向及引起感应电流的磁通量变化之间的关系。
教学难点:根据教学目标,进行实验设计及操作。
三、学情分析:学生已经掌握了磁通量的概念,并会分析磁通量的变化。
已经知道了条形磁铁的磁感线的分布。
学生已经利用(条形磁铁、电流计、线圈等)实验器材研究感应电流产生的条件。
四、教学目标:1.知识及技能(1)会表述感应电流的方向及引起感应电流的磁通量的变化之间的关系。
(2)会用自己的语言组织表述“感应电流的磁场总要阻碍引起感应电流的磁通量的变化”中的“阻碍”的意义。
(3)会用楞次定律判断电磁感应现象中感应电流的方向。
2.过程及方法(1)通过探究过程体会提出问题、猜想及假设、制定计划及设计实验、分析论证、验证等科学探究要素。
(2)通过楞次定律的学习过程,了解物理学的研究方法,认识物理实验在物理学发展过程中的作用。
(3)通过实验探究,学会用实验探究的方法研究物理问题。
3.情感态度及价值观(1)通过楞次对法拉第研究成果的关注到发现感应电流方向的规律的介绍,让学生发展对科学的好奇心及求知欲,能体验探索自然规律的艰辛及喜悦。
(2)通过实验学会及他人主动交流合作,培养团队精神。
五、设计思路:本节作为一堂物理规律课的教学,重点在于指导学生思考问题的方法和利用实验研究物理规律的手段,为此本课采用学生分组随堂实验探究的操作模式,学生在老师的启发和帮助下通过自己实验操作来发现、解决问题,获取新知识。
楞次定律____________________________________________________________________________________________________________________________________________________________________1、掌握楞次定律的内容,能运用楞次定律判断感应电流方向。
2、掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式。
3、知道磁通量的变化率的意义,并能区别,,。
4、理解法拉第电磁感应定律内容、数学表达式。
5、会用解决问题。
一、电磁感应现象1.产生感应电流的条件穿过闭合电路的磁通量发生变化。
2.产生感应电动势的条件无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源。
3.电磁感应现象的实质产生感应电动势,如果电路闭合,则有感应电流;电路不闭合,则只有感应电动势而无感应电流。
二、感应电流方向的判定1.右手定则(1)内容:伸开右手,使拇指与其余四指垂直,并且都与手掌在同一平面内,让磁感线从手心垂直进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用范围:适用于判断闭合电路中的部分导体切割磁感线产生感应电流的情况。
2.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用情况:所有电磁感应现象。
三、法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)表达式:(单匝线圈);(n匝线圈)题目类型:磁通量的计算例1. 如图所示,在磁感应强度为B的匀强磁场中有一面积为S的矩形线圈abcd,垂直于磁场方向放置,现使线圈以ab边为轴转180°,此过程磁通量的变化()A.0B.2BSC.2BS cosθD.2BS sinθ解析:由于,磁感应强度B为矢量,有方向,所以磁通量也有方向性,开始的磁通量为BS,旋转180度以后,磁通量为-BS,所以磁通量的变化为2BS.答案:B题目类型:电磁感应现象产生的条件例2.在右图所示的条件下,闭合矩形线圈中能产生感应电流的是()解析:产生感应电流的条件是,闭合电路的一部分导体做切割磁感线的运动,或者时穿过闭合回路的磁通量发生变化。
答案:EFGH题目类型:楞次定律的应用例3.如图所示,光滑固定导轨m、n水平放置,两根导体棒p、q平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时,下列说法正确的是( )A.p、q将互相靠拢B.p、q将互相远离C.磁铁的加速度仍为g D.磁铁的加速度大于g解析:根据楞次定律,磁体向下运动,穿过闭合回路的磁通量不断增大,感应电流的磁场一定阻碍磁通量的增加,所以线框的面积会渐渐变小。
根据“来拒去留”原理,线圈对磁铁有向上的作用力。
答案:A例4.某实验小组用如图所示的实验装置来验证楞次定律,当条形磁铁自上而下穿过固定的线圈时,通过电流表的感应电流方向是( )A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b解析:先由楞次定律判断出回路中感应电流的磁场方向,然后再由安培定则判断感应电流的方向。
答案:D例5.如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力的作用下运动时,MN在磁场力作用下向右运动,则PQ所做的运动可能是( )A.向右匀加速运动B.向左匀加速运动C.向右匀减速运动D.向左匀减速运动解析:答案:BC题目类型:的应用例6.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路.线圈的半径为r1, 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示.图线与横、纵轴的截距分别为t0和B0. 导线的电阻不计.求0至t1时间内:(a) (b)(1)通过电阻R 1上的电流大小和方向;(2)通过电阻R 1上的电荷量q 及电阻R 1上产生的热量.解析:(1)穿过闭合线圈的磁场的面积为S =πr 22由题图(b)可知,磁感应强度B 的变化率的大小为 ΔB Δt =B 0t 0根据法拉第电磁感应定律得:E =n ΔΦΔt =nS ΔB Δt =nB 0πr22t 0由闭合电路欧姆定律可知流过电阻R 1的电流为:I =ER +2R =nB 0πr223Rt 0再根据楞次定律可以判断,流过电阻R 1的电流方向应由b 到a (2)0至t 1时间内通过电阻R 1的电荷量为q =It 1=nB 0πr 22t 13Rt 0电阻R 1上产生的热量为Q =I 2R 1t 1=2n 2B 20π2r 42t 19Rt 2答案 (1)nB 0πr 223Rt 0 方向从b 到a (2)nB 0πr 22t 13Rt 0 2n 2B 20π2r 42t 19Rt20 例7.如图甲所示,边长为L 、质量为m 、总电阻为R 的正方形导线框静置于光滑水平面上,处于与水平面垂直的匀强磁场中,匀强磁场磁感应强度B 随时间t 的变化规律如图乙所示.求:甲 乙(1)在t =0到t =t 0时间内,通过导线框的感应电流大小; (2)在t =t 02时刻,ab 边所受磁场作用力大小; (3)在t =0到t =t 0时间内,导线框中电流做的功. 解析 (1)由法拉第电磁感应定律得,导线框的感应电动势 E =ΔΦΔt =B 0L 2t 0通过导线框的感应电流大小:I =E R =B 0L 2Rt 0(2)t =t 02时刻,ab 边所受磁场作用力大小:F =BIL F =B 20L32Rt 0(3)在t =0到t =t 0时间内,导线框中电流做的功:W =I 2Rt 0=B 20L4Rt 0.答案 (1)B 0L 2Rt 0 (2)B 20L 32Rt 0 (3)B 20L4Rt 0基础演练1.关于感应电流,下列说法中正确的有( )A .只要闭合电路内有磁通量,闭合电路中就有感应电流产生B .穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C .线框不闭合时,即使穿过线圈的磁通量发生变化,线圈中也不会有感应电流D .只要电路的一部分导体做切割磁感线运动,电路中就一定有感应电流 答案:C2.如图所示,ab 是水平面上一个圆的直径,在过ab 的竖直面内有一根通电直导线e f ,且e f 平行于ab ,当e f 竖直向上平移时,穿过圆面积的磁通量将( )A .逐渐变大B .逐渐减小C .始终为零D .不为零,但始终保持不变 答案:C 3.(2014·北京理综)物理课上,老师做了一个奇妙的“跳环实验”。
如图,她把一个带铁芯的线圈L 、开关S 和电源用导线连接起来后。
将一金属套环置于线圈L 上,且使铁芯穿过套环。
闭合开关S 的瞬间,套环立刻跳起。
某同学另找来器材再探究此实验。
他连接好电路,经重复试验,线圈上的套环均未动。
对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是( )A .线圈接在了直流电源上B .电源电压过高C .所选线圈的匝数过多D .所用套环的材料与老师的不同 答案:D4.如图所示,在水平放置的光滑绝缘杆ab 上,挂有两个金属环M 和N ,两环套在一个通电密绕长螺线管的中部,螺线管中部区域的管外磁场可以忽略,当变阻器的滑动触头向左移动时,两环将怎样运动( )A .两环一起向左移动B .两环一起向右移动C .两环互相靠近D .两环互相离开 答案:C5.(2014·惠州模拟)如图所示,A 、B 都是很轻的铝环,分别吊在绝缘细杆的两端,杆可绕竖直轴在水平面内转动,环A 是闭合的,环B 是断开的.若用磁铁分别靠近这两个圆环,则下面说法正确的是( )A .图中磁铁N 极接近A 环时,A 环被吸引,而后被推开B .图中磁铁N 极远离A 环时,A 环被排斥,而后随磁铁运动C .用磁铁N 极接近B 环时,B 环被推斥,远离磁铁运动D .用磁铁的任意一磁极接近A 环时,A 环均被排斥 答案:D6.如图所示,在长直载流导线MN 附近有一个矩形闭合线圈ABCD ,线圈与导线在同一个平面内.某时刻,线圈中产生了A →B →C →D →A 方向的电流,则可能的情况是( )A .线圈ABCD 沿MN 方向向下平移B .线圈ABCD 以导线MN 为轴绕MN 转动C .MN 中由M 到N 方向的电流在减小D .MN 中电流恒定,方向由M 到N ,且正从AB 左侧向AB 靠近 答案:C7.在图(1)中,G 为指针在中央的灵敏电流表,连接在直流电路中时的偏转情况.今把它与一线圈串联进行电磁感应实验,则图(2)中的条形磁铁的运动方向是________;图(3)中电流计的指针从中央向________偏转;图(4)中的条形磁铁上端为________极.答案:向下 右 N8.为判断线圈绕向,可将灵敏电流计G 与线圈L 连接,如图所示。
已知线圈由a 端开始绕至b 端;当电流从电流计G 左端流入时,指针向左偏转。
(1)将磁铁N 极向下从线圈上方竖直插入L 时,发现指针向左偏转。
俯视线圈,其绕向为________(填“顺时针”或“逆时针”)。
(2)当条形磁铁从图中虚线位置向右远离L 时,指针向右偏转。
俯视线圈,其绕向为________(填“顺时针”或“逆时针”)。
答案:(1)顺时针 (2)逆时针9.穿过一个单匝线圈的磁通量始终为每秒均匀地增加2 Wb ,则( ) A .线圈中的感应电动势每秒增加2 V B .线圈中的感应电动势每秒减小2 V C .线圈中的感应电动势始终为2 V D .线圈中不产生感应电动势 答案:C10.穿过某线圈的磁通量随时间变化的关系,如图所示,在下列几段时间内,线圈中感应电动势最小的是( )A.0~2s B.2s~4sC.4s~5s D.5s~10s答案:D巩固提高1.(2014·山东聊城检测)如图所示,一个半球壳放在匀强磁场中,磁感线的方向与半球底面垂直,设半球壳表面积为S1,底面积为S2,半球面上的磁通密度为B1,底面处的磁通密度为B2,穿过它们的磁通量分别为Φ1和Φ2,则下列说法中正确的是( )A.由于Φ1=Φ2,且S1>S2,所以B1<B2B.由于B1=B2,且S1>S2,所以Φ1>Φ2C.Φ1=Φ2,B1=B2D.因为半球面是一曲面,无法判断上述结论是否正确答案:C2.如图所示,固定的水平长直导线中通有直流I,矩形线框与导线在同一竖直平面内,且一边与导线平行。
线框由静止释放,在下落过程中( )A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变C.线框所受安培力的合力为零D.线框的机械能不断增大答案:B3.直导线ab放在如图所示的水平导体框架上,构成一个闭合回路。