无源晶振参数
- 格式:docx
- 大小:36.99 KB
- 文档页数:3
3225晶振技术参数和
外部尺寸图
本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
3225晶振是贴片晶振中的一种封装尺寸,3225晶振又分为有源贴片3225晶振和无源贴片3225晶振,这两种可以做的频率是不一样的,有源贴片3225晶振最低可以做到1MHZ,但无源贴片3225晶振目前为止最低只能做到12MHZ下面为大家分别介绍两种晶振的参数可广泛应用于通讯数码电子,消费类电子,汽车电子等领域,其技术参数和封装尺寸如下:
3225无源贴片晶振技术参数表:
3225无源贴片晶振外尺寸图:
3225有源贴片晶振技术参数表:
3225有源贴片晶振外尺寸图。
有源晶振(Oscillator)和⽆源晶振(Crystal)⽆源晶振有⼀个参数叫做负载电容(Load capacitance),负载电容是指在电路中跨接晶振两端的总的外界有效电容。
负载电容是⼯作条件,即电路设计时要满⾜负载电容等于或接近晶振数据⼿册给出的数值才能使晶振按预期⼯作。
⼀般情况下,增⼤负载电容会使振荡频率下降,⽽减⼩负载电容会使振荡频率升⾼。
通过初步的计算发现CL改变1pF,Fx可以改变⼏百Hz。
相关知识点:⼀、什么是负载电容?负载是指连接在电路中的电源两端的电⼦元件负载包括容性负载、阻性负载和感性负载三种。
电路中不应没有负载⽽直接把电源两极相连,此连接称为短路。
常⽤的负载有电阻、引擎和灯泡等可消耗功率的元件。
不消耗功率的元件,如电容,也可接上去,但此情况为断路。
容性负载的含义是指具有电容的性质(充放电,电压不能突变)即和电源相⽐当负载电流超前负载电压⼀个相位差时负载为容性(如负载为补偿电容)。
负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振在电路中串接了⼀个电容。
图中CI,C2这两个电容就叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,⼀般在⼏⼗⽪法它会影响到晶振的谐振频率和输出幅度,⼀般订购晶振时候供货⽅会问你负载电容是多少。
晶振的负载电容=[(C1*C2)/(C1+C2)]+Cic+△C式中C1,C2为分别接在晶振的两个脚上和对地的电容,Cic内部电容+△CPCB上电容经验值为3⾄5pf。
因此晶振的数据表中规定12pF的有效负载电容要求在每个引脚XIN 与 XOUT上具有22pF 2 * 12pF = 24pF = 22pF + 2pF 寄⽣电容。
两边电容为C1,C2,负载电容为:Cl,Cl=cg*cd/(cg+cd)+a就是说负载电容15pf的话两边两个接27pf的差不多了。
各种的晶振引脚可以等效为电容三点式。
晶振引脚的内部通常是⼀个反相器, 或者是奇数个反相器串联。
晶振基础知识介绍晶振:即所谓石英晶体谐振器(无源)和石英晶体振荡器(有源)的统称。
无源和有源的区别:无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。
无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。
石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC共同作用来工作的。
振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。
振荡器比谐振器多了一个重要技术参数:谐振电阻(RR),谐振器没有电阻要求。
RR的大小直接影响电路的性能,因此这是各商家竞争的一个重要参数。
晶振的原理:压电效应(物理特性):在水晶片上施以机械应力时,,会产生电荷的偏移,即为压电效应。
逆压电效应:相对在水晶片上印加电场会造成水晶片的变形即产生逆压电效应,利用这种特性产生机械振荡,变换成电气信号。
晶振的作用:一、为频率合成电路提供基准时钟,产生原始的时钟频率。
二、为电路产生震荡电流,发出时钟信号晶振的分类:一、按材质封装(1).金属封装-SEAMTYPE (2).陶瓷封装-GLASSTYPE二、贴装方式(1).直插封装-DIP (2).贴片封装-SMD三、按产品类型(1).crystal resonator—晶体谐振器(无源晶体)(2).crystal oscillator—晶体振荡器(有源晶振)---SPXO 普通有源晶体振荡器---VCXO电压控制晶体振荡器---TCXO 温度补偿晶体振荡器---VC-TCXO压控温补晶体振荡器(3).crystal filter—晶体滤波器(4).tuning fork x’tal (khz)-水晶振动子部分 KDS晶振图例:DT-14/DT-26/DT-38 DMX-26S DSX220G DSO321SR/221SR HC-49S/AT-49DSX321G/221 G SM-14J DSV531SV DSX530G/840GDSA/B321SDA晶振的名词术语:SMT :Surface Mount Technology 表面贴装技术SMD :Surface Mount Device 表面贴装元件OSC :Oscillator Crystal 晶体振荡器TCXO :Temperature Compensate X‘tal Oscillator 温度补偿晶体振荡器VC-TCXO :Voltage Controlled, Temperature Compensated Crystal Oscillator 压控温度补偿晶体振动器 VCXO :Voltage Control Oscillator 压控晶体振动器 DST410S/310S/210A DSX320G DSA/B321SCL HC-49SMD/SMD-49晶振的重要参数:1、标称频率F:晶体元件规范(或合同)指定的频率。
8m无源晶振的晶振电路一、无源晶振的基本概念无源晶振,又称无源谐振器,是一种利用石英晶体材料的压电效应来实现频率振荡的电子元件。
它广泛应用于各种电子设备中,如计时、通信、控制等领域。
无源晶振因其体积小、精度高、稳定性好等特点,成为现代电子技术中不可或缺的组成部分。
二、8m无源晶振的参数解析8m无源晶振,指的是频率为8MHz(即8百万分之一秒)的无源晶振。
在选择和使用8m无源晶振时,需要了解以下几个关键参数:1.频率:8MHz2.负载电容:CL(典型值约为15pF)3.工作电压:VCC(一般为3.3V或5V)4.温度范围:T(一般为0℃~70℃)5.封装形式:如DIP、SMD等三、晶振电路的组成及工作原理晶振电路是由石英晶体、电容、电阻等元件组成的振荡电路。
其工作原理如下:1.石英晶体在电场作用下产生压电效应,将电能转化为机械能;2.机械能振动传递到晶振电路的负载电容上,形成电信号;3.电信号经过放大、滤波等处理,输出稳定的振荡信号。
四、晶振电路的性能优化与应用为了提高晶振电路的性能,可以采取以下措施:1.选用高品质的无源晶振,确保频率稳定性和精度;2.合理设计负载电容和电阻,以提高电路的稳定性;3.采用屏蔽和滤波技术,降低外部干扰对电路的影响;4.优化电路布局,减小信号传输过程中的损耗。
晶振电路的应用领域十分广泛,如:1.计时:用于电子钟、计时器等设备;2.通信:用于调制和解调信号,实现数据传输;3.控制:用于嵌入式系统、智能家居等领域的控制器;4.测量:用于频率计、示波器等测试仪器。
五、总结与展望本文从无源晶振的基本概念出发,详细介绍了8m无源晶振的参数及其应用,并对晶振电路的组成和工作原理进行了阐述。
随着现代电子技术的不断发展,对晶振电路的需求和要求也越来越高。
讲讲关于无源晶体的几个重要参数
前言
很多工程师选择无源晶体时,会对它的参数有点模糊,每个厂家标定的又有些区别。
尤其很多人常常搞混负载电容的意思。
今天我们把复杂的问题简单化,说说晶体的主要参数。
首先我们要清楚晶振它是干什幺的,它全称晶体振荡器,它能够产生中央处理器(CPU)执行指令所必须要的时钟频率信号,CPU一切指令的执行都是建立在这个基础上的,其信号频率越高,通常CPU的运行速度也就越快。
你买的手机CPU显示的主频,都是基于晶振能力说明的。
凡是包含CPU的电子产品,其中至少含有一个时钟源,包括许多其他的震荡器,即使你没有看见,那也是晶振在芯片内部被集成了。
往往晶振被人们称之为电路系统的心脏。
一旦心脏停止跳动,整块电路板可能出现瘫痪的状况。
因此晶振的质量问题是很多厂商放在第一位的最终抉择的考虑基础!
那幺晶振质量的好坏由什幺决定了呢?有的人说,频率精度,功耗水平,使用寿命,温度漂移,外包装,又或者产品印字标识等等。
这一切真的能有助于我们分辨晶振的好坏吗?一般像晶振这样的电子元器件拿在手上我们是。
晶振电路周期性输出信号的标称频率(Normal Frequency),就是晶体元件规格书中所指定的频率,也是工程师在电路设计和元件选购时首要关注的参数。
晶振常用标称频率在1~200MHz之间,比如32768Hz、8MHz、12MHz、24MHz、125MHz等,更高的输出频率也常用PLL(锁相环)将低频进行倍频至1GHz以上。
输出信号的频率不可避免会有一定的偏差,我们用频率误差(Frequency Tolerance)或频率稳定度(Frequency Stability)来表示,单位是ppm,即百万分之一(parts per million)(1/106),是相对标称频率的变化量,此值越小表示精度越高。
比如,12MHz晶振偏差为±20ppm,表示它的频率偏差为12×±20Hz=±240Hz,即频率范围是(11999760~12000240Hz)。
另外,还有一个温度频差(Frequency Stability vs Temp),表示在特定温度范围内,工作频率相对于基准温度时工作频率的允许偏离,它的单位也是ppm。
我们经常还看到其它的一些参数,比如负载电容、谐振电阻、静电容等参数,这些与晶体的物理特性有关。
石英晶体有一种特性,如果在晶片某轴向上施加压力时,相应施力的方向会产生一定的电位。
相反的,在晶体的某轴向施加电场时,会使晶体产生机械变形;如果在石英晶片上加上交变电压,晶体就会产生机械振动,机械形变振动又会产生交变电场,尽管这种交变电场的电压极其微弱,但其振动频率是十分稳定的。
当外加交变电压的频率与晶片的固有频率(与切割后的晶片尺寸有关,晶体愈薄,切割难度越大,谐振频率越高)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。
将石英晶片按一定的形状进行切割后,再用两个电极板夹住就形成了无源晶振,其符号图如下所示:下图是一个在谐振频率附近有与晶体谐振器具有相同阻抗特性的简化电路。
常用无源晶振封装尺寸及实物图A、直插封装(Through-Hole) (3)1、HC-51/U 0.455 - 4.5 MHz 18.4 x 9.3 x 19.7 (3)2、HC-33/U 0.455 - 4.5 MHz 18.4 x 9.3 x 19.7 (3)3、HC-49/U 1 - 150 MHz 11.2 x 4.7 x 13.6 (4)4、HC-49/U-S 3.2 - 70 MHz 11.2 x 4.7 x 3.6 (4)5、CSA-310 3.5 - 4 MHz Ø 3.2 x 10.5 (5)6、CSA-309 4 - 70 MHz Ø 3.2 x 9.0 (5)7、UM-1 1 - 200 MHz 7.0 x 2.2 x 8.0 (6)B、贴片封装(SMD) (7)1、HC-49/MJ 1 - 150 MHz 13.8/17.1 x 11.5 x 5.4 (7)2、UM-1/MJ 1 - 200 MHz 7.9 x 3.5 x 8.2/12.5 (8)3、UM-5/MJ 10 - 200 MHz 7.9 x 3.5 x 6.2/10.5 (8)4、SM-49 3.2 - 66 MHz 12.9 x 4.7 x 4.0 (9)5、SM-49-4 3.5 - 66 MHz 13.0 x 4.7 x 5.0 (9)6、SM-49-F 3.5 - 60 MHz 12.5 x 5.85 x 3.0 (10)7、MM-39SL 3.579 - 70 MHz 12.5 x 4.6 x 3.7 (11)8、CPX-25 3.5 - 30 MHz 11.6 x 5.5 x 2.0 (11)9、CPX-20 3.5 - 60 MHz 11.0 x 5.0 x 3.8 (12)10、CPX-84 10 - 80 MHz 8.0 x 4.5 x 1.6 (13)11、CPX-02 8 - 100 MHz 8.0 x 4.5 x 1.8 (13)12、CPX-75GN 9.8 - 100 MHz 7.0 x 5.0 x 1.6 (14)13、CPX-75GN2 9.8 - 100 MHz 7.0 x 5.0 x 1.6 (15)14、CPX-75GT 12.8 - 100 MHz 7.0 x 5.0 x 1.1 (15)15、CPX-75GT2 12.8 - 100 MHz 7.0 x 5.0 x 1.1 (16)16、CPX-49S 8 - 150 MHz 7.5 x 5.0 x 1.5 (17)17、CPX-63GA 10 - 100 MHz 6.0 x 3.5 x 1.1 (18)18、CPX-63GB 10 - 100 MHz 6.0 x 3.5 x 1.1 (18)19、CPX-49SM 8 - 150 MHz 6.0 x 3.5 x 1.2 (19)20、CPX-49SP 8 - 45 MHz 5.0 x 3.2 x 0.8 (20)21、CPX-53GA 8 - 50 MHz 5.0 x 3.2 x 0.8 (21)22、CPX-53GB 8 - 50 MHz 5.0 x 3.2 x 1.2 (22)23、CPX-42 12 - 40 MHz 4.0 x 2.5 x 0.8 (23)24、CPX-32 13 - 54 MHz 3.2 x 2.5 x 0.7 (24)25、CPX-22 16 - 40 MHz 2.5 x 2.0 x 0.45 (25)C、时钟晶振(CLOCkCrystals (kHz-Crystals)) (26)1、TC-38 32.768 kHz Ø 3.0 x 8.2 (26)2、TC-26 32.768 kHz Ø 2.1 x 6.2 (26)3、TC-26 Funkuhrquarz 77.5 kHz Ø 2.1 x 6.2 (26)4、TC-15 32.768 kHz Ø 1.5 x 5.1 (27)5、MM-25S 30 - 150 kHz 8.0 x 3.8 x 2.5 (27)6、MM-20SS 32.768 kHz 8.0 x 3.8 x 2.5 (27)7、MM-11B 32.768 kHz 6.9 x 1.4 x 1.3 (28)8、TSM-250 77.5 - 120 kHz Ø 2.0 x 6.1/9.1 (28)9、TSM-26B 32.768 kHz Ø 2.0 x 6.1/9.1 (29)10、TSM-26BJ 32.768 kHz 2.95 x 2.3 x 6.5/9.0 (29)11、SM-14J 32.768 kHz 5.05/6.88 x 1.57 x 1.65 (30)12、CMJ-206 32.768 kHz 6.0/8.3 x 2.5 x 2.1 (31)13、CMJ-145 32.768 kHz 3.7/6.9 x 1.8 x 1.65 (31)14、CM-519 32.768 kHz 4.9 x 1.8 x 1.0 (31)15、CM-415 32.768 kHz 4.1 x 1.5 x 0.9 (32)16、CM-315 32.768 kHz 3.2 x 1.5 x 0.9 (32)17、CT-3215 32.768 kHz 3.2 x 1.5 x 0.75 (33)A、直插封装(Through-Hole)1、HC-51/U 0.455 - 4.5 M Hz 18.4 x 9.3 x 19.72、HC-33/U 0.455 - 4.5 M Hz 18.4 x 9.3 x 19.73、HC-49/U 1 - 150 MHz 11.2 x 4.7 x 13.64、HC-49/U-S 3.2 - 70 M Hz 11.2 x 4.7 x 3.65、CSA-310 3.5 - 4 M Hz Ø 3.2 x 10.56、CSA-309 4 - 70 M Hz Ø 3.2 x 9.07、UM-1 1 - 200 M Hz 7.0 x 2.2 x 8.08、UM-5 10 - 200 M Hz 7.0 x 2.2 x 6.0B、贴片封装(SMD)1、HC-49/MJ 1 - 150 M Hz 13.8/17.1 x 11.5 x 5.42、UM-1/MJ 1 - 200 M Hz 7.9 x 3.5 x 8.2/12.53、UM-5/MJ 10 - 200 M Hz 7.9 x 3.5 x 6.2/10.54、SM-49 3.2 - 66 M Hz 12.9 x 4.7 x 4.05、SM-49-4 3.5 - 66 M Hz 13.0 x 4.7 x 5.06、SM-49-F 3.5 - 60 M Hz 12.5 x 5.85 x 3.07、MM-39SL 3.579 - 70 M Hz 12.5 x 4.6 x 3.78、CPX-25 3.5 - 30 M Hz 11.6 x 5.5 x 2.09、CPX-20 3.5 - 60 M Hz 11.0 x 5.0 x 3.810、CPX-84 10 - 80 M Hz 8.0 x 4.5 x 1.611、CPX-02 8 - 100 M Hz 8.0 x 4.5 x 1.812、CPX-75GN 9.8 - 100 M Hz 7.0 x 5.0 x 1.613、CPX-75GN2 9.8 - 100 M Hz 7.0 x 5.0 x 1.614、CPX-75GT 12.8 - 100 M Hz 7.0 x 5.0 x 1.115、CPX-75GT2 12.8 - 100 M Hz 7.0 x 5.0 x 1.116、CPX-49S 8 - 150 M Hz 7.5 x 5.0 x 1.517、CPX-63GA 10 - 100 M Hz 6.0 x 3.5 x 1.118、CPX-63GB 10 - 100 M Hz 6.0 x 3.5 x 1.119、CPX-49SM 8 - 150 M Hz 6.0 x 3.5 x 1.220、CPX-49SP 8 - 45 M Hz 5.0 x 3.2 x 0.821、CPX-53GA 8 - 50 M Hz 5.0 x 3.2 x 0.822、CPX-53GB 8 - 50 M Hz 5.0 x 3.2 x 1.223、CPX-42 12 - 40 M Hz 4.0 x 2.5 x 0.824、CPX-32 13 - 54 M Hz 3.2 x 2.5 x 0.725、CPX-22 16 - 40 M Hz 2.5 x 2.0 x 0.45C、时钟晶振(C LOC k Crystal s (k Hz-Crystals))1、TC-38 32.768 k Hz Ø 3.0 x 8.22、TC-26 32.768 k Hz Ø 2.1 x 6.23、TC-26 Funkuhrquarz 77.5 k Hz Ø 2.1 x 6.24、TC-15 32.768 k Hz Ø 1.5 x 5.15、MM-25S 30 - 150 k Hz 8.0 x 3.8 x 2.56、MM-20SS 32.768 k Hz 8.0 x 3.8 x 2.57、MM-11B 32.768 k Hz 6.9 x 1.4 x 1.38、TSM-250 77.5 - 120 k Hz Ø 2.0 x 6.1/9.19、TSM-26B 32.768 k Hz Ø 2.0 x 6.1/9.110、TSM-26BJ 32.768 k Hz 2.95 x 2.3 x 6.5/9.011、SM-14J 32.768 k Hz 5.05/6.88 x 1.57 x 1.6512、CMJ-206 32.768 k Hz 6.0/8.3 x 2.5 x 2.113、CMJ-145 32.768 k Hz 3.7/6.9 x 1.8 x 1.6514、CM-519 32.768 k Hz 4.9 x 1.8 x 1.015、CM-415 32.768 k Hz 4.1 x 1.5 x 0.916、CM-315 32.768 k Hz 3.2 x 1.5 x 0.917、CT-3215 32.768 k Hz 3.2 x 1.5 x 0.75。
mcu无源晶振电压幅度
摘要:
1.无源晶振的概念与特点
2.无源晶振的电压幅度问题
3.如何选择合适的无源晶振
4.无源晶振在MCU 中的应用
正文:
一、无源晶振的概念与特点
无源晶振是一种无需外部电源供电的晶体振荡器,其工作原理是通过晶体自身的特性产生稳定的振荡信号。
无源晶振具有结构简单、成本低廉、信号质量较好等优点,在各种电子设备中得到了广泛的应用。
二、无源晶振的电压幅度问题
无源晶振的电压幅度通常取决于其内部晶体的特性。
不同的晶体材料和工艺制成的晶振,其电压幅度范围也会有所不同。
一般来说,无源晶振的电压幅度在1.5V 至3V 之间,但也有更高电压幅度的晶振。
在选用无源晶振时,需要根据实际应用场景选择合适电压幅度的晶振。
三、如何选择合适的无源晶振
在选择无源晶振时,需要考虑以下几个方面:
1.晶振的频率:根据应用系统的时钟频率要求,选择合适频率的晶振。
2.晶振的电压幅度:根据实际应用场景选择合适电压幅度的晶振。
3.晶振的稳定性:选择稳定性好的晶振,可以保证振荡信号的稳定性和可靠性。
4.晶振的负载能力:根据实际应用场景选择具备足够负载能力的晶振。
四、无源晶振在MCU 中的应用
无源晶振广泛应用于各类微控制器(MCU)中,作为系统时钟信号的源。
MCU 内部的数字信号处理、数据传输、程序运行等都需要依赖于稳定的时钟信号。
而无源晶振正是提供这种稳定时钟信号的关键元件。
村田无源晶振使用指南及注意事项大家好,我是你们的好朋友小智。
今天我要给大家普及一下村田无源晶振的使用指南及注意事项,让大家在使用过程中更加得心应手。
我们要明确什么是无源晶振,它有什么作用?简单来说,无源晶振就是没有外部电源驱动的晶振,它的作用是提供一个稳定的频率信号给电路。
那么,接下来就让我们一起来看看如何正确使用村田无源晶振吧!1.1 选择合适的晶振型号在使用村田无源晶振之前,我们需要先了解自己的电路需要什么样的频率。
一般来说,晶振的频率有不同的范围,如2.4MHz、3.5MHz、40MHz等。
我们可以根据自己的需求来选择合适的晶振型号。
例如,如果你的电路需要一个2.4MHz的频率,那么你就需要选择一个2.4MHz的村田无源晶振。
1.2 安装晶振在选择了合适的晶振型号之后,我们就可以开始安装了。
要确定晶振的引脚方向。
一般来说,晶振有两个引脚,一个是VCC(电压),一个是GND(地)。
我们需要将这两个引脚分别连接到电路中的相应位置。
注意,连接时要确保接触良好,避免出现接触不良的情况。
1.3 调整频率在安装好晶振之后,我们还需要对晶振的频率进行调整。
这是因为不同型号的晶振可能存在一定的频率偏差,所以我们需要通过调整来使其达到最佳的工作状态。
调整频率的方法有很多种,这里给大家推荐一种简单的方法:使用示波器观察晶振的工作波形,根据波形来调整频率。
这种方法需要一定的电子基础知识和操作技巧,如果大家不熟悉的话,可以请教专业的电子工程师。
2.1 防止过热在使用村田无源晶振的过程中,我们还需要注意防止过热的问题。
因为晶振在工作过程中会产生热量,如果热量过大,可能会导致晶振损坏甚至失效。
为了防止这种情况的发生,我们可以采取以下措施:保持通风良好的环境。
不要长时间连续使用晶振。
在高温环境下尽量减少对晶振的使用。
2.2 避免静电干扰静电干扰也是影响村田无源晶振正常工作的一个重要因素。
为了避免静电干扰,我们可以采取以下措施:在操作过程中尽量避免触摸晶振。
DSX321G无源晶振一,简介无源晶体需要用DSP片内的振荡器,在datasheet上有建议的连接方法。
无源晶体没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶体可以适用于多种电压,可用于多种不同时钟信号电压要求的DSP,而且价格通常也较低,因此对于一般的应用如果条件许可建议用晶体,这尤其适合于产品线丰富批量大的生产者。
无源晶体相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。
建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷警惕。
其中由日本KDS大真空生产的DSX321G无源晶振可以满足以上电路的需求,而目前世界上只有少数的欧美日晶振制造商掌握着核心技术,日本的大真空KDS便是这样一家专业从事晶振的企业。
二,KDS大真空株式会社KDS即是日本大真空株式会社(DASHINKU CORP),成立于1951年,至今已有50多年的历史。
是全球领先的三大晶振制造商之一。
其制造工场主要分布在日本本土、中国大陆、中国台湾、泰国、印度尼西亚等十个制造中心。
其中天津工场是全球晶振行业最大的单体制造工厂。
也是全球最大的TF型(主要是32.768KHz)晶振制造工厂。
KDS还拥有遍布全球的销售网络,另外在大陆地区有极少数的代理商。
上海唐辉电子有限公司是其较早的代理,该司在上海、深圳、苏州和香港以及美国等地设有办事机构,能快速准确的为客户提供高品质的KDS产品以及优质的服务,在行业内有一定的知名度三,DSX321G晶振主要参数;频率范围;8-64MHZ精度;10PPM 20PPM 30PPM 50PPM 负载电容;8PF 10PF 12PF工作温度;-30~+85℃(宽温)尺寸封装;SMD 3.2*2.5最小包装数;3000PCS注;DSX321G系列中,1表示;两个角,G表示;glass-style。
无源晶振参数
一、什么是无源晶振?
无源晶振是一种电子元器件,它可以提供一个稳定的频率信号作为微控制器或其他数字电路的时钟信号。
与有源晶振不同,无源晶振不需要外部电源或驱动电路来工作。
二、无源晶振的参数
1. 频率范围
无源晶振的频率范围通常在几千赫兹到几十兆赫兹之间。
具体频率范围取决于其设计和制造过程中所使用的材料和技术。
2. 稳定性
稳定性是指无源晶振输出频率的变化程度。
它通常用ppm(百万分之一)来表示。
例如,一个100MHz的无源晶振,如果其稳定性为
±50ppm,则其输出频率可能在100MHz上下波动50kHz。
3. 工作温度范围
无源晶振的工作温度范围通常在-40℃到+85℃之间。
这个参数通常被称为工业级温度范围,适用于大多数商业和工业应用。
4. 尺寸和封装类型
无源晶振的尺寸和封装类型也是重要参数。
它们通常被设计成表面贴装(SMD)或插针式封装。
尺寸和封装类型的选择取决于应用场景和电路板的设计。
5. 电容负载
无源晶振需要一个电容负载来保持其稳定性和准确性。
这个参数通常被称为额定电容负载,它是指无源晶振所需的最小电容值。
额定电容负载通常在10pF到30pF之间。
三、如何选择无源晶振?
选择适合您应用的无源晶振需要考虑多个因素,包括输出频率、稳定性、工作温度范围、封装类型和电容负载等参数。
此外,还需要考虑制造商的声誉和产品可靠性等因素。
在选择无源晶振时,建议先确定所需的频率范围和稳定性,并根据应
用场景选择适当的工作温度范围和封装类型。
最后,确保选购的无源
晶振符合应用要求,并能够提供所需的精度和可靠性。
四、总结
无源晶振是一种重要的时钟信号发生器,在数字电路中起着关键作用。
了解其参数并正确地选择适合您应用的无源晶振,可以确保您的电路
具有稳定和准确的时钟信号,从而提高整个系统的性能和可靠性。