晶振电路知识讲解之晶体参数详解
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
晶振的工作原理是什么? [标签:电子资料]石英晶体若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应,晶振就是根据压电效应研制而成。
如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。
在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。
它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。
提问者:bangbanghoutai浏览次数:1539 提问时间:2007-12-08 15:55姓名:帮帮笔名:bangbanghoutai等级:副连长 (三级)回答数: 6395 次通过率: 43.47%主营行业:精细化学品公司:擅长领域:阿里旺旺雅虎实战案例答案收藏答案收藏答案分享给好友最新回答者:woyige等级:列兵 (一级)回答的其他贡献者:woyige>>目录∙1、石英晶体振荡器的结构∙2、压电效应∙3、符号和等效电路∙4、谐振频率∙5、石英晶体振荡器类型特点∙6、石英晶体振荡器的主要参数∙7、石英晶体振荡器的发展趋势∙8、石英晶体振荡器的应用1、石英晶体振荡器的结构编辑本段石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。
其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。
下图是一种金属外壳封装的石英晶体结构示意图。
2、压电效应编辑本段若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。
反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。
晶振与晶体的参数详解晶振和晶体是电子器件中常见的元器件,被广泛应用于各种电子设备中。
下面将详细解释晶振和晶体的参数及其作用。
首先,我们来解释一些晶振的参数:1.频率:晶振频率是指晶振器产生的振荡信号的频率。
晶振的频率通常通过外部电路进行调节,可以根据需要选择不同的频率值。
2.稳定度:晶振的稳定度是指晶振器在一段时间内产生的频率变化范围。
晶振的稳定度越高,产生的频率变化越小,可以提供更稳定、可靠的时钟信号。
3.温度系数:晶振的温度系数是指晶振器频率随温度变化的比例。
温度系数越小,晶振器的频率随温度变化的影响越小。
4.驱动能力:晶振的驱动能力是指晶振器输出信号的电流或电压幅度。
不同的应用场景需要不同幅度的驱动能力。
5.电源电压:晶振器需要一定的电源电压才能正常工作,通常以工作电压范围表示。
接下来,我们来解释一些晶体的参数:1.晶体结构:晶体的结构是指晶体的原子排列方式。
晶体结构可以分为立方晶体、六方晶体、斜方晶体等。
2.晶体尺寸:晶体尺寸是指晶体的长度、宽度和厚度。
晶体的尺寸可以影响晶体的振荡频率和稳定度。
3.谐振频率:晶体的谐振频率是指晶体在特定尺寸和结构下能够实现最佳振荡的频率。
4.谐振模式:晶体的谐振模式是指晶体在振荡时所产生的振动模式,可以分为纵向谐振模式、横向谐振模式等。
5.振荡电路:晶体需要通过外部的振荡电路来产生振荡信号。
振荡电路的设计和参数设置可以影响晶体的性能和稳定度。
晶振和晶体在电子设备中具有重要的作用,主要用于提供稳定的时钟信号和振荡信号。
晶振器通过晶体的振荡产生稳定的信号,可以被用作时钟信号源,用于同步控制电路的工作。
晶振器通常被广泛应用于各种电子设备中,例如计算机、通信设备、汽车电子等。
总结起来,晶振和晶体在电子器件中扮演重要角色,他们的参数和性能直接影响着整个电子设备的稳定性和可靠性。
只有合理选择和使用晶振和晶体,才能确保电子设备的正常工作和性能表现。
晶振等效电路中的各个参数
在晶振的等效电路中,有几个重要的参数,包括:
1. 谐振频率(Resonance Frequency):晶振的谐振频率是指在晶体的压电效应下,电路中产生的机械振动的频率。
这个频率是晶振的主要特性,通常以 MHz 或 kHz 为单位表示。
2. 负载电容(Load Capacitance):负载电容是指与晶振并联的电容,它会影响晶振的谐振频率和工作稳定性。
负载电容的大小需要根据具体的晶振规格和应用要求来选择。
3. 动态电阻(Dynamic Resistance):动态电阻是指晶振在谐振频率下的等效电阻。
它反映了晶体在振动过程中的能量损耗,动态电阻的值越小,晶振的能量损耗就越小,效率就越高。
4. 激励电平(Excitation Level):激励电平是指晶振所需的最小驱动功率。
晶振需要一定的激励电平时才能正常工作,如果激励电平过低,晶振可能无法起振或工作不稳定。
5. 品质因数(Quality Factor):品质因数是衡量晶振谐振特性的参数,它反映了晶振的频率选择性和能量损耗。
品质因数越高,晶振的频率稳定性和抗干扰能力就越强。
这些参数对于晶振的设计、选择和应用非常重要。
在实际使用中,需要根据具体的应用需求和晶振规格来确定合适的参数值,以确保晶振能够正常工作并满足性能要求。
如果你需要更详细的关于晶振等效电路中各个参数的信息,建议查阅相关的技术资料或咨询专业的工程师。
晶振的精度参数详解以晶振的精度参数详解为题,首先需要了解什么是晶振。
晶振是一种电子元器件,主要用于产生稳定的时钟信号,常见于各种电子设备中。
而晶振的精度参数则是衡量晶振稳定性和精确性的重要指标。
晶振的精度参数通常有三个主要指标:频率精度、温度稳定性和负载能力。
首先是频率精度,它指的是晶振输出的时钟信号频率与其额定频率之间的偏差。
频率精度通常用ppm(百万分之一)来表示,如10ppm。
这意味着晶振的输出频率与其额定频率之间的差异为每百万分之十。
频率精度越高,晶振的输出频率越稳定,能够更准确地提供时钟信号。
其次是温度稳定性,它是指晶振在不同温度下输出频率的变化程度。
温度稳定性通常用ppm/℃来表示,如±10ppm/℃。
这意味着当温度变化每摄氏度时,晶振的输出频率会相应变化每百万分之十。
温度稳定性越高,晶振的输出频率在温度变化下的波动越小,能够更好地适应不同温度环境下的工作。
最后是负载能力,它是指晶振在输出时钟信号时所能承受的负载容量。
负载能力通常以pF(皮法)为单位表示,如10pF。
这意味着晶振的输出时钟信号能够驱动的最大负载容量为10皮法。
负载能力越高,晶振能够驱动的负载容量越大,能够适应更复杂的电路连接。
除了以上三个主要指标,还有一些次要指标也需要考虑,如起振时间、功耗、尺寸等。
起振时间是指晶振从通电到能够输出稳定时钟信号所需的时间,一般来说,起振时间越短越好。
功耗是指晶振在工作过程中所消耗的电能,一般来说,功耗越低越好。
尺寸是指晶振的外形尺寸,一般来说,尺寸越小越好,能够更方便地嵌入到各种电子设备中。
了解了晶振的精度参数后,我们可以根据实际需求选择合适的晶振。
如果需要高精度的时钟信号,可以选择频率精度较高、温度稳定性较好的晶振;如果工作环境温度变化较大,可以选择温度稳定性较好的晶振;如果需要驱动复杂的电路连接,可以选择负载能力较高的晶振。
总结一下,晶振的精度参数是衡量晶振稳定性和精确性的重要指标,包括频率精度、温度稳定性和负载能力等。
晶振主要参数介绍晶振是一种被广泛应用于电子设备中的关键元件,它能够产生一定频率的交变电场,用于驱动数字系统的时钟信号。
晶振的主要参数是指影响晶振性能和稳定性的关键指标,包括频率稳定性、频率漂移、负载能力等。
本文将详细介绍晶振的主要参数,以及这些参数对晶振性能的影响。
频率稳定性频率稳定性是晶振的一个重要参数,它指的是晶振输出频率的稳定程度。
频率稳定性可以通过频率偏差来描述,即晶振输出频率与额定频率之间的差异。
频率稳定性的单位通常为ppm(百万分之一)。
晶振的频率稳定性取决于晶振内部的谐振器结构和工艺技术。
一般来说,晶振的频率稳定性越高,其输出的时钟信号越准确可靠。
频率漂移频率漂移是指晶振输出频率随环境温度变化而发生的变化。
由于晶体的物理特性受温度的影响,晶振的频率也会随温度的变化而发生漂移。
频率漂移通常用ppm/℃(百万分之一/摄氏度)来表示,它可以通过温度系数来计算,即单位温度变化下频率发生的变化。
频率漂移对于某些应用场合来说非常重要,特别是对于需要高精度时钟信号的系统。
原因频率漂移的主要原因是晶体振荡器内部晶体的温度特性。
晶体振荡器中的振荡回路包含晶体谐振器,而晶体谐振器的频率与其温度特性密切相关。
晶体振荡器在工作过程中会产生一定的热量,这将会影响晶体振荡器的温度,从而导致频率漂移。
不同品牌和型号的晶振在频率漂移方面表现也有所不同,所以在选择晶振时需要考虑其频率漂移特性。
解决方法为了解决频率漂移问题,可以采取以下方法:1.选择温度补偿晶振:温度补偿晶振是一种内部集成了温度补偿电路的晶振,它能够根据温度变化自动调整其输出频率,从而达到抵消频率漂移的效果。
2.冷却措施:对于一些特殊应用场合,可以采取冷却措施来降低晶振的工作温度,从而减小频率漂移。
负载能力负载能力是晶振的另一个重要参数,它指的是晶振能够驱动的最大负载电容。
晶振内部的谐振器结构会产生振荡信号,这个信号需要通过负载电容来加载,负载能力可以用来描述晶振输出信号的负载能力。
晶振电路周期性输出信号的标称频率(Normal Frequency),就是晶体元件规格书中所指定的频率,也是工程师在电路设计和元件选购时首要关注的参数。
晶振常用标称频率在1~200MHz之间,比如32768Hz、8MHz、12MHz、24MHz、125MHz等,更高的输出频率也常用PLL(锁相环)将低频进行倍频至1GHz以上。
输出信号的频率不可避免会有一定的偏差,我们用频率误差(Frequency Tolerance)或频率稳定度(Frequency Stability)来表示,单位是ppm,即百万分之一(parts per million)(1/106),是相对标称频率的变化量,此值越小表示精度越高。
比如,12MHz晶振偏差为±20ppm,表示它的频率偏差为12×±20Hz=±240Hz,即频率范围是(11999760~12000240Hz)。
另外,还有一个温度频差(Frequency Stability vs Temp),表示在特定温度范围内,工作频率相对于基准温度时工作频率的允许偏离,它的单位也是ppm。
我们经常还看到其它的一些参数,比如负载电容、谐振电阻、静电容等参数,这些与晶体的物理特性有关。
石英晶体有一种特性,如果在晶片某轴向上施加压力时,相应施力的方向会产生一定的电位。
相反的,在晶体的某轴向施加电场时,会使晶体产生机械变形;如果在石英晶片上加上交变电压,晶体就会产生机械振动,机械形变振动又会产生交变电场,尽管这种交变电场的电压极其微弱,但其振动频率是十分稳定的。
当外加交变电压的频率与晶片的固有频率(与切割后的晶片尺寸有关,晶体愈薄,切割难度越大,谐振频率越高)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。
将石英晶片按一定的形状进行切割后,再用两个电极板夹住就形成了无源晶振,其符号图如下所示:下图是一个在谐振频率附近有与晶体谐振器具有相同阻抗特性的简化电路。
晶振重要基础知识点晶振(Crystal Oscillator)是一种电子元件,作为电路中的重要组成部分,主要用于产生稳定的电信号。
在电子技术领域中,晶振是一项重要的基础知识点,对于电路的设计和工作原理具有关键性的影响。
以下是有关晶振的几个重要基础知识点。
1. 晶体的特性:晶振的核心部件是晶体,通常采用石英晶体。
晶体具有特殊的物理特性,能够产生稳定的振荡频率。
这是由于晶体的晶格结构和内部电荷特性决定的。
因此,晶体的选择对于晶振的性能和稳定性至关重要。
2. 振荡电路的构成:晶振一般包含振荡电路,该电路由晶体振荡器、放大电路和输出电路组成。
晶体振荡器是整个晶振的核心部件,用于产生基准频率信号。
放大电路用于放大振荡器输出的信号,以便提供足够的幅度和驱动能力。
输出电路则将放大后的信号输出给其他电路或系统。
3. 振荡频率和精度:晶振的一个关键参数是振荡频率,即晶体的振荡周期。
该频率取决于晶体的物理特性和电路参数。
晶振的精度取决于晶体的制作工艺和电路设计。
通常情况下,晶振的频率精度可以达到百万分之一甚至更高的水平。
4. 温度特性:晶振的频率通常会随着温度的变化而发生微小的变化,这是由晶体的温度特性决定的。
为了确保晶振在不同温度下的稳定性,通常会采取一些温度补偿措施,例如使用温度补偿电路或选择温度稳定性较好的晶体材料。
5. 应用领域:晶振在电子领域有广泛的应用。
最常见的应用是在时钟电路中,用于提供计时信号。
此外,晶振还用于无线通信设备、计算机系统、自动化控制系统等领域,为这些系统提供稳定的基准时钟信号。
综上所述,晶振作为电子领域的重要基础知识点,涉及晶体的特性、振荡电路的构成、振荡频率和精度、温度特性以及应用领域等方面。
深入理解和熟悉晶振的相关知识,对于电子工程师和电路设计师来说至关重要,能够帮助他们设计出稳定性高、性能优越的电子系统。
1、晶体元件参数 1.1等效电路作为一个电气元件,晶体是由一选定的晶片,连同在石英上形成电场能够导电的电极及防护壳罩和内部支架装置所组成。
晶体谐振器的等效电路图见图1。
等效电路由动态参数L 1、C 1、R 1和并电容C 0组成。
这些参数之间都是有联系的,一个参数变化时可能会引起其他参数变化。
而这些等效电路的参数值跟晶体的切型、振动模式、工作频率及制造商实施的具体设计方案关系极大。
下面的两个等式是工程上常用的近似式:角频率ω=1/11C L 品质因数Q=ωL 1/R 1其中 L1为等效动电感,单位mHC1为等效电容,也叫动态电容,单位fF R1为等效电阻,一般叫谐振电阻,单位Ω图2、图3、图4给出了各种频率范围和各种切型实现参数L 1、C 1、R 1的范围。
图2常用切型晶体的电感范围 图3 常用切型的电容范围对谐振电阻来说,供应商对同一型号的任何一批中可以有3:1的差别,批和批之间的差别可能会更大。
对于一给定的频率,采用的晶体盒越小,则R 1和L 1的平均值可能越高。
1.2 晶体元件的频率,晶体元件的频率通常与晶体盒尺寸和振动模式有关。
一般晶体尺寸越小可获得的最低频率越高。
晶体盒的尺寸确定了所容纳的振子的最大尺寸,在选择产品时应充分考虑可实现的可能性,超出这个可能范围,成本会急剧增加或成为不可能,当频率接近晶体盒下限时,应与供应商沟通。
下表是不同晶体盒可实现的频率范围。
图4 充有一个大气压力气体(90%氮、10%氦)的气密晶体元件的频率、切型和电阻范围晶体盒型号振动模式频段(MHz)HC-49UAT基频 1.8432-30 BT基频20-40 AT三次泛音20-85 AT五次泛音50-180HC-49SAT基频 3.579-30 AT三次泛音20-65 AT五次泛音50-150SMD7×5AT 基频6-40 AT 三次泛音33-100 AT 五次泛音50-180SMD6×3.5AT 基频8-40 AT 三次泛音35-100 AT 五次泛音50-180SMD5×3.2AT 基频12-45 AT 三次泛音35-100 AT 五次泛音60-1801.3 频差规定工作温度范围及频率允许偏差。
晶振主要参数频率准确度在标称电源电压、标称负载阻抗、基准温度(252℃)以及其他条件保持不变,技术'>晶体振荡器的频率相对与其规定标称值的最大允许偏差,即(f⅛aχ-fπιin)∕fθ;温度稳定度其他条件保持不变,在规定温度范围内晶体振荡器输出频率的最大变化量相对于温度范围内输出频率极值之和的允许频偏值,即(fmaχ-fmin)/(fmax+fmin);频率调节范围通过调节晶振的某可变元件改变输出频率的范围。
调频(压控)特性包括调频频偏、调频灵敏度、调频线性度。
①调频频偏:压控晶体振荡器控制电压由标称的最大值变化到最小值时输出频率差。
②调频灵敏度:压控晶体振荡器变化单位外加控制电压所引起的输出频率的变化量。
③调频线性度:是一种与理想直线(最小二乘法)相比较的调制系统传输特性的量度。
负载特性其他条件保持不变,负载在规定变化范围内晶体振荡器输出频率相对于标称负载下的输出频率的最大允许频偏。
电压特性其他条件保持不变,电源电压在规定变化范围内晶体振荡器输出频率相对于标称电源电压下的输出频率的最大允许频偏。
杂波输出信号中与主频无谐波(副谐波除外)关系的离散频谱分量与主频的功率比,用dBc表示。
谐波谐波分量功率Pi与载波功率PO之比,用dBc表示。
频率老化在规定的环境条件下,由于元件(主要是石英谐振器)老化而引起的输出频率随时间的系统漂移过程。
通常用某一时间间隔内的频差来量度。
对于高稳定晶振,由于输出频率在较长的工作时间内呈近似线性的单方向漂移,往往用老化率(单位时间内的相对频率变化)来量度。
日波动指振荡器经过规定的预热时间后,每隔一小时测量一次,连续测量24小时,将测试数据按S=(fmaχ-fmin)∕fθ式计算,得到日波动。
开机特性在规定的预热时间内,振荡器频率值的最大变化,用V=(fmaχ-fmin)∕fθ表示。
相位噪声短期稳定度的频域量度。
用单边带噪声与载波噪声之比?(f)表示,?(f)与噪声起伏的频谱密度S6(f)和频率起伏的频谱密度Sy(f)直接相关,由下式表示:f2S(f)=fO2Sy(f)=2f2?(f)f—傅立叶频率或偏离载波频率;f0一载波频率。
关于晶振,看这一篇就够了。
一、晶振简介无源晶振,准确的说叫晶体(Crystal),它没有极性。
一般有两个引脚,需要专门的时钟电路和起振电容配合才能输出时钟信号。
晶体一般是2脚或者4脚,2脚最常见。
有源晶振(oscillator),只需要供电就可以输出时钟信号。
可以认为是晶体和外围电路的结合(晶振里面包含了晶体和起振电路)。
一般是四个引脚。
二、重要参数1、标称频率(Normal Frequency)晶振的标准频率,如8MHz、26MHz、32.768KHz等。
2、温度频差(Frequency Stability vs Temp)表示在特定温度范围内,工作频率相对于基准温度时工作频率的允许偏离,它的单位是ppm。
此值越小表示精度越高,1MHz的晶振,1个PPM就是1Hz的偏差。
3、负载电容CL负载电容是指晶振正常震荡工作所需要的电容。
为使晶体能够正常工作,需要在晶体两端外接电容,来匹配达到晶体的负载电容。
一般IC的数据手册中会给出负载电容的大小。
晶振负载电容的计算公式是:CL=C1*C2/(C1+C2)+Cic+CpC1和C2为晶振两脚对地电容,称为匹配电容。
Cic为集成电路内部电容,Cp为PCB板的寄生电容,一般大小为3~5pF。
匹配电容一般取C1=C2=2CL,这样并联起来就接近负载电容CL 了,在一般情况下,增大负载电容会使振荡频率下降,而减小负载电容会使振荡频率升高。
如果晶体所接的IC内部有负载电容,那外部的C1和C2就不需要了。
三、PCB设计注意事项①两个匹配电容尽量靠近晶振摆放。
②晶振由石英晶体构成,容易受外力撞击或跌落的影响,所以在布局时,最好不要放在PCB边缘,尽量靠近芯片摆放。
③晶振的走线需要用GND保护好,并且远离敏感信号,如RF及高速信号。
④晶振的摆放需要远离热源,因为高温也会影响晶振频偏。
晶振的四个重要参数晶振,全称晶体振荡器,它能够产生中央处理器(CPU)执行指令所必须要的时钟频率信号,CPU一切指令的执行都是建立在这个基础上的,时钟信号频率越高,通常CPU的运行速度也就越快。
凡是包含CPU的电子产品,其中至少含有一个时钟源,哪怕我们在电路板中看不到实际的振荡电路,那也是晶振在芯片内部被集成,往往被人们称之为电路系统的心脏。
一旦心脏停止跳动,整块电路板可能出现瘫痪的状况。
因此晶振的质量问题是很多厂商放在第一位的最终抉择的考虑基础!所以很多客户对日系晶振有了十足的信任感,近年来台系的TXC晶振在国内厂商也有了较高的重视度晶振质量的好坏由什么决定了?有人会说从外观的崭新程度分辨,或者是外包装,又或者产品印字标识。
这一切真的能有助于我们分辨晶振的好坏吗?像晶振这样的电子元器件拿在手上我们是无法判断其好坏程度的,通常晶振人所指的坏即是在电路工作中晶振不起振,或者时而稳定时而不稳定的现象!那么这一切现象终究是归根于质量问题还是晶振参数?晶振不可忽视的四个参数1,频率单位,频率单位通常分为KHZ与MHZ,而对于有源晶振和无源晶振来讲,32.768既存在KHZ的单位,也存在MHZ的单位,因此频率的单位一定要标准清晰。
2,精度要求,贴片晶振最高精度通常为10PPM比较常见,比较特殊的精度要求得订货。
其次15ppm,20ppm,25ppm,30ppm,50ppm的等级依次分布。
插件晶振以圆柱晶振为例,5ppm是其圆柱晶振中精度最高的一个等级,其次10ppm,20ppm,30ppm.3,负载电容,负载电容有时候是一个非常至关重要的参数,如果晶振的负载电容与晶振外部两端连接的电容参数匹配不正确的话,很容易造成频率偏差,精度误差等等,从而导致产品无法达到最终的精准要求。
当然也存在对负载电容参数不是特别严格的厂家,那么我们说说关于音叉晶体一块,常见的负载电容有6PF,7PF,9PF,12.5PF;MHZ晶振常见的负载电容以20PF和12PF最为广泛,其次8PF,9PF,15PF,18PF等等比较常用。
晶振主要参数晶振是一种电子元件,可以将电信号转换成机械振动信号,广泛应用于电子产品中。
晶振的主要参数包括频率、精度、稳定性、温度系数、负载能力等。
1. 频率:晶振的频率是指其振荡的频率,通常用赫兹(Hz)表示。
不同的应用需要不同的频率,常见的频率有4MHz、8MHz、16MHz等。
频率越高,晶振的精度和稳定性就越高,但成本也越高。
2. 精度:晶振的精度是指其输出频率与标称频率之间的偏差,通常用ppm(百万分之几)表示。
例如,一个10MHz的晶振,如果其精度为±50ppm,那么其实际输出频率可能在10MHz的基础上偏差不超过500Hz。
精度越高,晶振的稳定性就越好,但成本也越高。
3. 稳定性:晶振的稳定性是指其输出频率在长时间使用中的变化程度,通常用ppm/年表示。
例如,一个10MHz的晶振,如果其稳定性为±10ppm/年,那么在一年的时间内,其输出频率可能会发生不超过100Hz的变化。
稳定性越高,晶振的可靠性就越好,但成本也越高。
4. 温度系数:晶振的温度系数是指其输出频率随温度变化的程度,通常用ppm/℃表示。
例如,一个10MHz的晶振,如果其温度系数为±10ppm/℃,那么在温度变化1℃的情况下,其输出频率可能会发生不超过100Hz的变化。
温度系数越小,晶振的稳定性就越好,但成本也越高。
5. 负载能力:晶振的负载能力是指其能够驱动的负载电容的大小,通常用pF表示。
例如,一个10MHz的晶振,如果其负载能力为20pF,那么其输出频率可能会因为负载电容的变化而发生不超过100Hz的变化。
负载能力越大,晶振的适用范围就越广,但成本也越高。
总之,晶振的主要参数包括频率、精度、稳定性、温度系数、负载能力等,不同的应用需要不同的参数。
在选择晶振时,需要根据具体的应用需求来选择合适的晶振,以保证系统的稳定性和可靠性。
晶振原理及参数2009年04月02日星期四 12:07晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
晶振的应用:一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。
无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator (振荡器)。
无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
晶振的种类:谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。
晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。
石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。
晶振的一些主要电气参数晶振是电子设备中常见的元器件之一,它在电路中起着提供稳定时钟信号的重要作用。
本文将介绍晶振的一些主要电气参数,包括频率稳定度、频率偏差、温度特性和负载能力等。
1. 频率稳定度:频率稳定度是指晶振输出信号的频率变化范围。
一般来说,频率稳定度越高,晶振输出的时钟信号越稳定。
频率稳定度通常用ppm(百万分之一)来表示,例如,一个频率稳定度为±10ppm的晶振,其输出频率在标称频率上下浮动不超过10ppm。
2. 频率偏差:频率偏差是指晶振输出频率与标称频率之间的差异。
频率偏差可以由多种因素引起,如温度变化、供电电压波动等。
对于某些应用来说,频率偏差的控制非常重要,因为它会影响到整个系统的时序精度。
3. 温度特性:晶振的频率会随着温度的变化而发生变化,这就是温度特性。
温度特性通常用ppm/℃来表示,表示晶振频率每升高1摄氏度,频率变化的百万分之一。
温度特性是晶振在不同温度下工作时频率稳定度的重要指标。
4. 负载能力:晶振的负载能力是指晶振输出信号能够驱动的负载电容大小。
负载能力越大,晶振输出信号的波形失真越小,频率稳定度越高。
负载能力一般用pF(皮法拉)来表示,例如,一个负载能力为10pF的晶振,可以驱动不超过10pF的负载电容。
除了以上几个主要电气参数外,晶振还有一些其他参数,如启动时间、功耗、工作电压范围等。
启动时间是指晶振从断电到输出稳定的时间,对于某些实时性要求较高的应用来说,启动时间的快慢非常重要。
功耗是指晶振在工作过程中消耗的电功率,功耗越低,对于一些功耗敏感的应用来说,晶振的选择就越合适。
工作电压范围是指晶振能够正常工作的电压范围,超出该范围晶振可能无法正常工作。
晶振的主要电气参数包括频率稳定度、频率偏差、温度特性和负载能力等。
了解这些参数对于正确选择和使用晶振非常重要,可以确保系统的时序精度和稳定性。
在实际应用中,根据具体需求选择合适的晶振,并合理设计电路,可以提高系统的性能和可靠性。
32.786晶振参数一、晶振参数概述晶体振荡器,或简称晶振,是一个重要的电子元件,主要用于产生振荡频率。
其工作原理基于晶体在受到物理冲击或电场变化时,会产生机械振动,这种振动又会产生电场变化,进而形成电压输出。
晶振的参数是描述其性能和特性的重要指标,对于其应用和选择具有重要意义。
二、晶振的主要参数1.频率范围:指晶振所能产生的振荡频率范围。
不同的晶振有不同的频率范围,根据应用需求选择合适的频率范围是关键。
2.精度:指晶振的输出频率的准确性。
一般来说,晶振的频率精度越高,其性能越好。
3.温度稳定性:指晶振在温度变化下的频率稳定性。
温度稳定性是衡量晶振性能的重要指标,对于需要高精度频率源的应用尤为重要。
4.负载电容:指晶振在实际应用中所需的最小电容值。
负载电容会影响晶振的输出频率,因此在实际应用中需要特别注意。
5.激励电平:指驱动晶振的电压或电流大小。
过大的激励电平可能会损坏晶振,过小的激励电平则可能导致晶振无法正常工作。
6.输出波形:指晶振输出的信号波形。
一般来说,晶振输出的波形为正弦波或方波。
三、晶振的测试与验证为了确保晶振的性能和可靠性,需要进行一系列的测试与验证。
这些测试包括但不限于:1.频率精度测试:通过专用测试设备对晶振的输出频率进行测量,以评估其精度。
2.温度稳定性测试:在不同的温度环境下测试晶振的频率变化情况,以评估其在不同温度下的性能。
3.负载电容测试:测量晶振在不同负载电容下的输出频率,以确定其最佳工作条件。
4.激励电平测试:测量晶振在不同激励电平下的性能表现,以确定其正常工作范围。
5.长期老化测试:长时间运行晶振以评估其性能随时间的退化程度,这是确保晶振可靠性必不可少的环节。
通过以上测试与验证,可以对晶振的性能有一个全面、深入的了解,从而为其应用和选择提供可靠的依据。
四、晶振的应用与选择晶振的应用非常广泛,如通信、导航、电子测量、自动控制等领域。
在选择晶振时,需要考虑以下因素:1.应用需求:不同的应用对晶振的性能要求不同,应根据实际需求进行选择。
晶振基础知识介绍晶振:即所谓石英晶体谐振器(无源)和石英晶体振荡器(有源)的统称。
无源和有源的区别:无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。
无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。
石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC共同作用来工作的。
振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。
振荡器比谐振器多了一个重要技术参数:谐振电阻(RR),谐振器没有电阻要求。
RR的大小直接影响电路的性能,因此这是各商家竞争的一个重要参数。
晶振的原理:压电效应(物理特性):在水晶片上施以机械应力时,,会产生电荷的偏移,即为压电效应。
逆压电效应:相对在水晶片上印加电场会造成水晶片的变形即产生逆压电效应,利用这种特性产生机械振荡,变换成电气信号。
晶振的作用:一、为频率合成电路提供基准时钟,产生原始的时钟频率。
二、为电路产生震荡电流,发出时钟信号晶振的分类:一、按材质封装(1).金属封装-SEAMTYPE (2).陶瓷封装-GLASSTYPE二、贴装方式(1).直插封装-DIP (2).贴片封装-SMD三、按产品类型(1).crystal resonator—晶体谐振器(无源晶体)(2).crystal oscillator—晶体振荡器(有源晶振)---SPXO 普通有源晶体振荡器---VCXO电压控制晶体振荡器---TCXO 温度补偿晶体振荡器---VC-TCXO压控温补晶体振荡器(3).crystal filter—晶体滤波器(4).tuning fork x’tal (khz)-水晶振动子部分 KDS晶振图例:DT-14/DT-26/DT-38 DMX-26S DSX220G DSO321SR/221SR HC-49S/AT-49DSX321G/221 G SM-14J DSV531SV DSX530G/840GDSA/B321SDA晶振的名词术语:SMT :Surface Mount Technology 表面贴装技术SMD :Surface Mount Device 表面贴装元件OSC :Oscillator Crystal 晶体振荡器TCXO :Temperature Compensate X‘tal Oscillator 温度补偿晶体振荡器VC-TCXO :Voltage Controlled, Temperature Compensated Crystal Oscillator 压控温度补偿晶体振动器 VCXO :Voltage Control Oscillator 压控晶体振动器 DST410S/310S/210A DSX320G DSA/B321SCL HC-49SMD/SMD-49晶振的重要参数:1、标称频率F:晶体元件规范(或合同)指定的频率。
晶振电路知识讲解之晶体参数详解
1. 晶振与晶体的区别晶振是有源晶振的简称,又叫晶体则是无源晶振的简称,也叫(无源)一般是直插两个脚的无极性元件,需要借助(有源)一般是表贴四个脚的封装,内部有时钟电路,只需供电便可产生振荡信号。
一般分7050、5032、3225、2520几种封装形式。
2. MEMS硅晶振与石英晶振区别MEMS硅晶振采用硅为原材料,采用先进的半导体工艺
3. 晶体谐振器的等效电路
4. 关键参数4.1 标称频率4.2 调整频差4.3 温度频差在整个温度范围内工作频率相对于基准温度时工作频率的允许偏离。
常用ppm表示。
4.4 老化率指在规定条件下,由于时间所引起的频率漂移。
这一指标对精密晶体是必要的,但它“没有明确的试验条件,而是由制造商通过对所有产品有计划抽验进行连续监督的,某些晶体元件可能比规定的水平要差,这是允许的”(根据IEC的公告)。
老化问题的最好解决方法只能靠制造商和用户之间的密切协商。
4.5 谐振电阻(Rr)指晶体元件在谐振频率处的等效电阻,当不考虑C0的作用,也近似等于所谓晶体的动态电阻R1或称等效串联电阻(ESR)。
这个参数控制着晶体元件的品质因数,还决定所应用电路中的晶体振荡电平,因而影响晶体的稳定性以致是否可以理想的起振。
所以它是晶体元件的一个重要指标参数。
一般的,对于一给定频率,选用的晶体盒越小,ESR的平均值可能就越高;绝大多数情况,在制造过程中并不能预计具体某个晶体元件的电阻值,而只能保证电阻将低于规范中所给的最大值。
4.6 负载谐振电阻(RL)指晶体元件与规定外部电容相串联,在负载谐振频率FL时的电阻。
对一给定晶体元体,其负载谐振电阻值取决于和该元件一起工作的负载电容值,串上负载电容后的谐振电阻,总是大于晶体元件本身的谐振电阻。
4.7 负载电容(CL)与晶体元件一起决定负载谐振频率FL的有效外界电容。
晶体元件规范中的CL是一个4.8 静态电容(C0)等效电路静态臂里的电容。
它的大小主要取决于电极面积、晶片厚度和晶片加工工艺。
4.9 动态电容(C1)等效电路中动态臂里的电容。
它的大小主要取决于电极面积,另外还和晶片平行度、微调量的大小有关。
4.10 动态电感(L1)等效电路中动态臂里的电感。
动态电感与动态电容是一对相关量。
4.11 谐振频率(Fr)指在规定条件下,晶体元件电气阻抗为电阻性的两个。