倍压整流电路原理讲解
- 格式:doc
- 大小:12.55 KB
- 文档页数:2
倍压电路原理详解说明:要理解倍压电路,首先要将充电后的电容看作一个电源.可以和供电电源串联,就像普通的电池串联的原理一样.一、直流半波整流电压电路1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。
(2)正半周时,即A为正、B为负时,D1截止、D2导通,此时供电电源和C1串联后电压为2Vm,于是向C2充电,使C2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.图1 直流半波整流电压电路(a)负半周(b)正半周需要注意的是:(1)其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。
(2))如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。
(3)如果有一个负载并联在倍压器的输出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。
所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电路称为半波电压电路。
(4)正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。
图3 输出电压波形二、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理1.正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。
2.负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。
3.由于C1与C2串联,故输出直流电压,V0=Vm。
如果没有自电路抽取负载电流的话,电容器C1及C2上的电压是2Vm。
倍压整流电路原理时间:2009-02-20 14:10:59 来源:资料室作者:(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。
(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm 再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。
如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。
如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。
图1 直流半波整流电压电路(a)负半周(b)正半周图3 输出电压波形所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电路称为半波电压电路。
ab126计算公式大全正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。
2、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理.正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。
.负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。
.由于C1与C2串联,故输出直流电压,V0=Vm。
如果没有自电路抽取负载电流的话,电容器C1及C2上的电压是2Vm。
如果自电路抽取负载电流的话,电容器C1及C2上的电压是与由全波整流电路馈送的一个电容器上的电压同样的。
反激次级倍压整流电路原理1.引言1.1 概述概述部分的内容可以介绍反激次级倍压整流电路的背景和重要性。
以下是一个简单的示例:概述:反激次级倍压整流电路是一种常见的电力电子器件,用于将交流电转换为直流电。
该电路在各种电子设备和系统中得到广泛应用,如电源适配器、电动车充电器和太阳能发电系统等。
通过使用这种电路,可以有效地实现电能的转换和稳定输出。
反激次级倍压整流电路是由变压器、MOSFET开关管和整流二极管组成的。
当输入交流电通过变压器传递时,MOSFET开关管周期性地开关,使得电流通过变压器的次级绕组。
在电流经过次级绕组的过程中,电荷能量会被储存在电感中,并在MOSFET开关关闭时释放出来。
通过这种方式,反激次级倍压整流电路可以实现高效率的电能转换。
反激次级倍压整流电路的工作原理基于电感和电容的特性。
电感在电流变化时可以储存和释放能量,而电容则可以平滑输出电压。
通过合理设计电感和电容的参数,可以实现高效率和稳定的电能转换。
本文将详细介绍反激次级倍压整流电路的原理和工作原理。
我们将探讨其基本工作原理、电路结构和关键组件的功能。
通过深入理解这些原理,我们可以更好地理解反激次级倍压整流电路的工作机制,并为其在不同应用领域中的应用前景提供展望。
在接下来的章节中,我们将逐步介绍反激次级倍压整流电路的原理和工作原理。
通过细致的分析和实例的演示,我们将帮助读者全面了解这种电路的特点和优势,以及其在现代电力电子领域中的应用前景。
1.2 文章结构本文将分为引言、正文和结论三个部分来讨论反激次级倍压整流电路的原理及其在实际应用中的前景。
引言部分首先概述了反激次级倍压整流电路的背景和重要性。
随后介绍了本篇文章的结构和章节内容安排,以便读者能够清楚地了解文章的组织框架和主要内容。
正文部分将重点探讨反激次级倍压整流电路的原理和工作原理。
其中,2.1节将详细介绍反激次级倍压整流电路的原理,包括其基本工作原理和实现方式。
2.2节将进一步阐述反激次级倍压整流电路的工作原理,包括功率传输过程和电路特性等方面的内容。
倍压整流电路原理
倍压整流电路是一种非常常见的电路结构,它可以将低电压转换为高电压。
它通常用于直流发电机的控制,也用于电脑,照明,发射机和各种汽车电子控制电路。
倍压整流电路的研究非常重要,因为它和电源领域有着千丝万缕的关系。
倍压整流电路的工作原理主要是通过一系列的变压器,电容器,可调变压器,继电器,二极管和其他电子元件来实现。
其中变压器是核心部件,它可以将低电压变换成高电压,而可调变压器可以调整高电压的幅度。
当输入电压为低压时,变压器将其转换为高压;当输入电压为高压时,可调变压器可以调整其幅度以稳定输出电压。
二极管是倍压整流电路的另一个重要部件,它可以让电流从一个方向流经,从而实现整流。
二极管有五个组成部分,它们是基极,源极,集电极,集电极漏导,和发射极漏导。
它们可以把负电荷收集到发射极,从而防止它们从基极流经。
继电器是倍压整流电路中的另一重要部件,它可以使电路中的元件产生变化。
继电器的结构有两种类型:单级继电器和多级继电器。
单级继电器只能提供一种输出;多级继电器可以提供多种输出,可以实现逐步放电,准备多层次的稳态电压。
此外,电容器也是倍压整流电路中必不可少的部件,它可以抑制电路中的抖动,使电流流量稳定。
电容器的工作原理是把电流换成电压,使输出电压更加平稳。
总之,倍压整流电路可以将低电压转换成高电压,而其中的变压
器,二极管,继电器和电容器是其核心部件。
它们的工作原理是通过互相作用来实现变压和整流,抑制抖动,调整电压幅度,以实现高压输出。
因此,对倍压整流电路研究非常重要,它为电源和汽车电子控制电路提供了有效的解决方案。
在电路设计过程中,当后级需要的电压比前级高出数倍而所需要的电流并不是很大时,就可以使用倍压整流电路。
倍压整流:可以将较低的交流电压,用耐压较高的整流二极管和电容器,“整”出一个较高的直流电压。
一、倍压整流电路工作原理倍压整流电路主要是利用二极管单向导通(相当于开关)的特性和电容两端电压不能突变且可以存储能量的特性,使得能量逐步往后级输送,同时线路上的电压也逐渐升高,所以就有了二倍压、三倍压、多倍压整流电路。
但是由于倍压整流电路只是有二极管和电容组成,所以其只能用于低电流高电压的环境,不适合大电流和高电压的环境。
二、倍压整流电路分析2.1、二倍压整流电路图1 二倍压整流电路图1是一个简单的二倍压整流电路,其工作原理如下:1.在U1负半周时,UAB=-U2,二极管D26导通,D25截止,给电容C82充电,充电完成后,UC82=UCA=U2;2.U1从负半周变为正半周时,二极管D25导通,D26截止,此时C82和电源电压均向电容C85充电(电能从C82转移到C85),即UC85=UDB=2*U2;3.U1再从正半周变为负半周时,二极管D26导通,C82被充电(补充电能),D25截止,电容C85上的电压不变,即UC85=UDB=2*U2;后面电路将一直循环第2步和第3步,从而也使输出电压稳定在2*U2。
1.其实C85的电压无法在一个半周期内即充至二倍压,它必须在几个周期后才逐渐趋向于二倍压,为方便电路分析,后面电路也假设在分析周期内便达到倍压电压。
2.如果倍压电路前级没有类似变压器的隔离电路,要注意其浪涌电流的防护,以保护电路中的二极管。
3.如果电路中连接有负载RL,在步骤3过程中电容上的电压会有所下降,然后在步骤2中再通过前级充电补充,所以电路中会形成一定的纹波。
2.2、三倍压整流电路图2 三倍压整流电路图2是一个简单的三倍压整流电路,D24、D25、D26均为二极管(如1N4148),C82、C83、C85均为耐压值合适的电容,其工作原理如下:1.在U1正半周时,UAB=U2,此时二极管D24导通,D26、D25均截止,给电容C83充电,充电完成后电容C83两端电压UC83=U2;2.U1从正半周变为负半周时,UAB=-U2,且电容C83两端电压不能发生突变,UCA=2*U2,此时二极管D26、D25导通,D24截止,给电容C82、C85充电,充电完成后电容C82两端电压UDA=2*U2,C85两端电压UEB=U2;3.U1再从负半周变为正半周,UAB=U2,同时遵循电容两端电压不能突变的原则,UDB=UDA+UAB=3*U2,所以D24、D25导通,D26截止,给电容C83、C85充电,充电完成后,C85两端电压UC85=3*U2,C83两端的电压为UC83=U2;4.U1从正半周变为负半周时,UAB=-U2,此时将重复步骤2、3,一直向后级输送电能,最终输出电压也将维持在3*U2,所以该电路是一个三倍压电路。
倍压整流电路是一种用于将交流电源转换为具有较高直流电压的电路。
它通常由交流输入、变压器、整流桥和滤波电路组成。
整流桥是倍压整流电路的核心部件,它由四个二极管组成,形成一个桥式结构。
根据电压极性的不同,二极管将正半周或负半周的交流信号转换为单向的直流信号。
倍压整流电路的工作原理如下:
1. 交流输入:将交流电源连接到倍压整流电路的输入端。
2. 变压器:交流电压经过变压器降压或升压,以提供适合整流桥工作的电压。
3. 整流桥:交流电压经过变压器后,输入到整流桥。
整流桥由四个二极管组成,将交流信号转换为单向的直流信号。
- 当输入信号的电压极性为正时,D1 和D2 二极管导通,允许电流通过,而D3 和D4 二极管则被反向极化,阻止电流通过。
- 当输入信号的电压极性为负时,D3 和D4 二极管导通,允许电流通过,而D1 和D2 二极管则被反向极化,阻止电流通过。
4. 滤波电路:经过整流桥的输出是脉动的直流信号。
为了平滑输出电压,需要添加一个滤波电路来去除脉动部分。
滤波电路一般由电容器组成,它可以储存电荷并平滑输出电压波形。
5. 输出电压:滤波电路将脉动的直流信号转换为平滑的输出电压,输出端即可获取到较高的直流电压。
需要注意的是,倍压整流电路只能将交流电源电压转换成具有较高的直流电压,但输出电流通常较小。
此外,倍压整流电路还可以根据需要添加稳压电路来控制输出电压的稳定性。
倍压整流电路应用广泛,例如在通信设备、电子器件、电源适配器等领域中常见。
它具有简单、高效、稳定的特点,可以为各种设备提供所需的高直流电压。
倍压整流电路原理(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可瞧成短路,同时电容器C1充电到Vm,其电流路径及电容器C1得极性如上图(a)所示。
(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1得Vm再加上双压器二次侧得Vm使c2充电至最高值2Vm,其电流路径及电容器C2得极性如上图(b)所示.其实C2得电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。
如果半波倍压器被用于没有变压器得电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流得损害、如果有一个负载并联在倍压器得输出出得话,如一般所预期地,在(输入处)负得半周内电容器C2上得电压会降低,然后在正得半周内再被充电到2Vm如下图所示。
图1 直流半波整流电压电路(a)负半周(b)正半周图3输出电压波形所以电容器c2上得电压波形就是由电容滤波器过滤后得半波讯号,故此倍压电路称为半波电压电路。
正半周时,二极管D1所承受之最大得逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV 2Vm得二极管。
2、全波倍压电路图4全波整流电压电路(a)正半周(b)负半周图5全波电压得工作原理正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1得极性如上图(a)所示。
负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2得极性如上图(b)所示、由于C1与C2串联,故输出直流电压,V0=Vm。
如果没有自电路抽取负载电流得话,电容器C1及C2上得电压就是2Vm、如果自电路抽取负载电流得话,电容器C1及C2上得电压就是与由全波整流电路馈送得一个电容器上得电压同样得、不同之处就是,实效电容为C1及C2得串联电容,这比C1及C2单独得都要小。
倍压整流电路的工作原理及电路设计在某些电子设备中,需要高压(几千伏甚至几万伏)、小电流的电源电路。
一般都不采用前面讨论过的几种整流方式,因为那种整流电路的整流变压器的次级电压必须升的很高,圈数势必很多,绕制困难。
这里介绍的倍压整流电路,在较小电流的条件下,能提供高于变压器次级输入的交流电压幅值数倍的直流电压,可以避免使用变压比很高的升压变压器,整流元件的耐压相对也可较低,所以这类整流电路特别适用于需要高电压、小电流的场合。
倍压整流是利用电容的充放电效应工作的整流方式,它的基本电路是二倍压整流电路。
多倍压整流电路是二倍压电路的推广。
1、二倍压整流电路(1)桥式二倍压整流电路图1所示电路是桥式倍压整流电路,图1的(1)和(2)为同一电路的两种不同画法。
在这里,用两个电容器取代了全波桥式整流电路中的两只二极管。
整流管D1、D2在交流电的两个半周分别进行半波整流。
各自对电容C1和C2充电。
由负载R L与C1、C2回路看,两个电容是接成串联的。
负载R L上的直流电能是由C1、C2共同供给的。
当e2正半周时,D1导通,如果负载电阻R L很大,即流过R L的电流很小的话,整流电流i D1使C1充电到2E2的电压,并基本保持不变,极向如图中所示。
同样,当e2负半周时,经D2对C2也充上2E2的电压,极向如图中所示。
跨接在两个串联电容两端的负载R L上的电压U L=U C1+U C2,接近于e2幅值的两倍。
所以称这种电路为二倍压整流电路。
实际上,在正半周C1被充电到幅值2E2后,D1随即截止,C1将经过R L对C2放电,U C1将有所降低。
在负半周,当C2被充电到幅值2E2后,D2截止,C2的放电回路是由C1至R L,U C2也应有所降低。
这样,U C1和U C2的平均值都应略低于2E2,也即负载电压是不到次级绕组电压幅值的两倍的。
只有在负载R L很大时,U L≈2E2。
U C1、U C2及U L的变化规律如图2所示。
微波炉倍压整流原理微波炉倍压整流原理是利用变压器来实现电源电压向高压变换的过程。
整流的目的是将电源交流电转变为直流电。
在微波炉中,高压直流电是用来供给炉内的磁控管工作的。
微波炉的整流器由高效电子硅整流器和平滑滤波电容器组成。
整个变压器一般由三个主要部分构成:输入端的变压器、输出端的变压回路和整流器。
其中,输入端的变压器主要起到将电源电压变换到合适的范围的作用,而输出端的变压回路和整流器则是为了将高压交流电变换为高压直流电。
整流器内主要包括单相整流桥、筛波电容和辅助部件。
单相整流桥是整流器的核心部件,它由四个二极管组成。
当交流电进入整流器时,二极管根据不同的电压极性进行导通或截止,将交流电转变为脉冲形式的直流电。
筛波电容则用来平滑脉冲形式的直流电,将脉冲的波动部分平均,使高压直流电更加稳定。
整流器中辅助部件的作用是为了保护整流电路的正常工作。
其中,过流保护电阻用于限制电流的大小,过温保护器用于防止整流器过热,过压保护装置用于保护整流器的电源电压不受到过高的冲击。
这些辅助部件的存在保证了整流电路的安全稳定运行。
整流器工作时,输入端的变压器将低压的交流电转变为高压的交流电,然后进入整流器中的单相整流桥,通过四个二极管将交流电转换为脉冲形式的直流电。
接着,脉冲形式的直流电经过筛波电容进行平滑处理,将波动部分平均,得到稳定的高压直流电。
最后,高压直流电被供给给磁控管,使其工作。
总之,微波炉倍压整流原理是利用变压器将低压交流电转变为高压交流电,再经过单相整流桥和筛波电容的处理,将高压交流电转变为高压直流电。
通过这个过程,微波炉得到了稳定的高压直流电源,以供给磁控管的工作。
这种倍压整流原理使得微波炉能够高效地转换电源电压,实现微波炉的正常工作。
倍压整流原理详解(谷风软件)预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制倍压整流电路原理详解(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。
RJy838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。
如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。
如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。
图1 直流半波整流电压电路(a)负半周(b)正半周图3 输出电压波形所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电RJy838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号路称为半波电压电路。
ab126计算公式大全RJy838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。
RJy838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号2、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。
倍压整流电路原理讲解
倍压整流电路是一种简单有效的电路,它在电源输出端输出一个比输入电压更高的电压,其原理是通过利用开关电路的原理,将低压的输入电压转换为更高的电压。
倍压整流电路的组成由恒定阻抗、正反变换以及调节器组成,其工作原理如下:首先,恒定阻抗电路负责通过放大增加电流,由此产生了放大倍数,然后由正反变换电路将低压输入电压反转为更高的输出电压,其中包括电流变换器、压降变换器和旋转变换器的基础电路结构;最后,调节器将反转的高压输出电压经过调节,以保持输出电压恒定不变。
整流电路通常用于调节电压的大小,调节电压的大小可以达到稳定输出和节省能源的效果。
它也可以用作电源调节、照明调节、电机调节等,对于需要电路设计的应用方面有着重要的作用。
在实际应用中,倍压整流电路有许多优点。
首先,它具有耐用性强、结构简单等特点,使用起来非常方便;其次,它可以实现自动调节和无限调节,使用者可以根据实际需要调整输出电压;最后,倍压整流电路的精度高,可以实现稳定的输出,且节省能源。
倍压整流电路有着重要的应用价值,尤其在电源调节、照明调节、电机调节等方面的应用。
此外,倍压整流电路可以根据实际需要调节电压大小,可以实现输出稳定。
但是,倍压整流电路也有一些局限性,如调节范围有限、损耗大等,这些局限性在实际应用中需要特别注意。
无论是电源调节、照明调节、电机调节还是其他领域的应用,倍
压整流电路都具有重要的意义,有助于提高输出精度和节约能源。
可以看出,倍压整流电路是一种简单有效的电路,具有重要的应用价值,且能够满足不同类型的应用需求。