高中数学第三章导数应用31函数的单调性与极值极值问题易错点辨析素材北师大版2-2.
- 格式:doc
- 大小:111.00 KB
- 文档页数:2
3.1.1 导数与函数的单调性导数是依照实际问题为背景提出的概念.利用函数的导数可以研究函数的许多性质,这节课我们就利用导数来研究函数的单调性. 高手支招1细品教材 一、函数的单调性 状元笔记如何判断一个函数是增函数还是减函数呢?可以根据定义,在区间内任取两个数x 1,x 2,先假设x 1<x 2,然后比较f(x 1)与f(x 2)的大小,f(x 1)<f(x 2)则是增函数;f(x 1)>f(x 2)则是减函数. 1.增函数和减函数(1)增函数:对于任意的两个数x 1,x 2∈I,如果当x 1<x 2时,都有f(x 1)<f(x 2),那么函数f(x)就是区间I 上的增函数.(2)减函数:对于任意的两个数x 1,x 2∈I,如果当x 1<x 2时,都有f(x 1)>f(x 2),那么函数f(x)就是区间I 上的减函数. 2.函数的单调性如果函数f(x)在某个区间上是增函数或减函数,那么就说f(x)在这个区间上具有单调性.二、用导数判断函数单调性的法则 状元笔记一般地,如果一个函数在某一范围内的导数的绝对值较大,说明函数在这个范围内变化得快,这时,函数的图像就比较“陡峭”(向上或向下);反之,函数的图像就较“平缓”.1.切线的斜率和f(x)的导数的关系(1)切线的斜率为正,f′(x)>0;切线的斜率为负,f′(x)<0.(2)用曲线的切线的斜率来理解法则.当切线斜率非负时,切线的倾斜角小于2π,函数曲线呈向上增加状态;当切线斜率为负时,切线的倾斜角大于2π、小于π,函数曲线呈向下减小状态.【示例】 证明函数f(x)=e x +e -x 在[0,+∞)上是增函数. 思路分析:只需证明f′(x)在[0,+∞)上大于等于零恒成立.证明:f′(x)=(e x)′+(x e1)′=e x +(x e 1-)=e x -e -x =x x e e 1)(2-,∵当x∈[0,+∞)时,e x ≥1,∴f′(x)≥0. ∴f(x)=e x +e -x 在[0,+∞)上为增函数. 2.用导数判断函数的单调性 状元笔记对于可导函数f(x)来说,f′(x)>0是函数f(x)在(a,b)上为单调增函数的充分不必要条件,f′(x)<0是函数f(x)在(a,b)上为单调减函数的充分不必要条件,如函数f(x)=x 3在R 上为增函数,但f′(0)=0,所以在x=0处不满足f′(x)>0. (1)一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(a,b)内,如果f′(x)>0,那么函数f(x)在这个区间内单调递增;如果f′(x)<0,那么函数f(x)在这个区间内单调递减.【示例】 f(x)=5x 2-2x 的单调增区间为 …( )A.(51,+∞) B.(-∞,51) C.(51-,+∞) D.(-∞,51-)思路分析:求f′(x),解不等式f′(x)>0. 答案:A(2)利用导数判断函数单调性的一般步骤: ①求导数f′(x);②在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0; ③根据②的结果确定函数f(x)的单调区间. 【示例】求下列函数的单调区间. (1)y=x 4-2x 2+6;(2)y=-lnx+2x 2.思路分析:求出导数y′,分别令y′>0和y′<0,解出x 的取值范围,便可得出单调区间.解:(1)y′=4x 3-4x,令y′>0,即4x 3-4x >0,解得-1<x <0或x >1,所以单调增区间为(-1,0)和(1,+∞).令y′<0,解得x <-1或0<x <1,因此单调减区间为(-∞,-1)和(0,1).(2)y′=4x -x 1,令y′>0,即4x-x 1>0,解得21<x <0或x >21;令y′<0,即4x-x 1<0,解得x <21或0<x <21.∵定义域为x >0,∴单调增区间为(21,+∞),单调减区间为(0,21).高手支招2基础整理本节是通过联系单调性的定义和斜率的结构式来得到函数的导数与单调性的关系的.利用导数解决含有参数的单调性问题,一般是将问题转化为不等式的恒成立问题,要注意分类讨论和数形结合思想的应用.。
导数与函数的单调性(三)一、教学目标:1.正确理解利用导数判断函数的单调性的原理;2.掌握利用导数判断函数单调性的方法二、教学重难点:利用导数判断函数单调性.三、教学方法:探究归纳,讲练结合四、教学过程(一)、复习:1. 函数的单调性. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)<f (x 2),那么函数f (x )就是区间I 上的增函数. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)>f (x 2),那么函数f (x )就是区间I 上的减函数.2. 导数的概念及其四则运算3、定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y ≥0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/y ≤0,那么函数y=f(x) 在为这个区间内的减函数4、用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ).②令f ′(x ) ≥0解不等式,得x 的范围就是递增区间.③令f ′(x )≤0解不等式,得x 的范围,就是递减区间.(二)、探究新课例1、确定函数f (x )=x 2-2x +4在哪个区间内是增函数,哪个区间内是减函数.解:f ′(x )=(x 2-2x +4)′=2x -2.令2x -2>0,解得x >1.∴当x ∈(1,+∞)时,f ′(x )>0,f (x )是增函数.令2x -2<0,解得x <1.∴当x ∈(-∞,1)时,f ′(x )<0,f (x )是减函数.例2、确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数,哪个区间内是减函数.解:f ′(x )=(2x 3-6x 2+7)′=6x 2-12x ,令6x 2-12x >0,解得x >2或x <0∴当x ∈(-∞,0)时,f ′(x )>0,f (x )是增函数.当x ∈(2,+∞)时,f ′(x )>0,f (x )是增函数.令6x 2-12x <0,解得0<x <2.∴当x ∈(0,2)时,f ′(x )<0,f (x )是减函数.例3、证明函数f (x )=x1在(0,+∞)上是减函数. 证法一:(用以前学的方法证)任取两个数x 1,x 2∈(0,+∞)设x 1<x 2.f (x 1)-f (x 2)=21122111x x x x x x -=-∵x 1>0,x 2>0,∴x 1x 2>0∵x 1<x 2,∴x 2-x 1>0, ∴2112x x x x ->0∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴f (x )= x1在(0,+∞)上是减函数. 证法二:(用导数方法证)∵f ′(x )=( x 1)′=(-1)·x -2=-21x ,x >0,∴x 2>0,∴-21x<0. ∴f ′(x )<0, ∴f (x )= 21x在(0,+∞)上是减函数. 例4、求函数y =x 2(1-x )3的单调区间.解:y ′=[x 2(1-x )3]′=2x (1-x )3+x 2·3(1-x )2·(-1)=x (1-x )2[2(1-x )-3x ]=x (1-x )2·(2-5x )令x (1-x )2(2-5x )>0,解得0<x <52. ∴y =x 2(1-x )3的单调增区间是(0,52) 令x (1-x )2(2-5x )<0,解得x <0或x >52且x ≠1.∵1x =为拐点, ∴y =x 2(1-x )3的单调减区间是(-∞,0),(52,+∞) 例5、已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围. 解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤;所以实数a 的取值范围为[]1,1-.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.(三)、小结:本节课学习了利用导数判断函数单调性.(四)、课堂练习:第62页练习4(五)、课后作业:1、求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.证明:因为()()()'22661262612y x x x x x x =+-=+-=-+ 当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.2、已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围. 解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-。
导数中的“看图说话”导数的引入,为研究函数的单调性、求最值提供了有力的工具,与传统的证明和各种求解技巧相比,导数的优势是简洁.使用导数首先要学会“看图说话”,因为导数往往和函数图象,各种图表联系紧密.一、解析几何中的许多问题是通过图象来表达出来的,因此要能够根据文字语言、数学语言、图形语言的提示信息,准确读懂图表,并将隐藏其中的数学信息挖掘出来. 例1 若函数2()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象是( )解析:()2f x x b '=+,由()f x 图象的顶点在第四象限得0b <,则直线()2f x x b '=+的斜率为2,且直线在y 轴的截距为负.易知,只有A符合要求.二、函数的增减性,由导数值的符号反映出来,由导函数图象可大略知道函数的图象,做此类题需要对导数含义深刻理解.例2 已知函数()y xf x '=的图象如图1所示(其中()f x '是函数()f x 的导函数),下面四个图象中()y f x =图象大致为( )解析:由图1知,当1x <-时,()0x f x '<·,()0f x '>∴,()f x 为增函数,表现在图象上是上升的,当10x -<<时,()0xf x '>.()0f x '<∴,()f x 为减函数,表现在图象上为下降.当1x >时,()0xf x '>,()0f x '>∴,()f x 为增函数,表现在图象上为上升.由以上分析知,C符合.三、其实,许多看似无从下手的问题,如果有应用导数的意识的话,也许会比较简单. 例3 已知函数32()(0)f x ax bx x a b ab =++∈≠R ,,的图象如图2所示(12x x ,为两个极值点),且12x x >,则有( ) A.00a b >>,B.00a b <<, C.00a b >>,D.00a b ><,解析:因为12x x >,根据图象,显然有1200x x <>,,120x x <·,又12x x >,即12x x ->,120x x +<. 12x x ,为()f x 的两个极值点,求导数有2()321f x ax bx '=++,即方程23210ax bx ++=的两个实根为12x x ,,由根与系数的关系1223b x x a +=-,1213x x a=·,因此00a b <<,.故选B.。
3.2 生活中的最优化问题导数是探讨数学乃至自然科学的重要的、最有效的工具,它也给出了我们生活中很多问题的答案。
诸如用料最省、容量最大、亮度最强等,本文将介绍用导数求解生活中几个常见问题,供参考。
1、最大亮度问题例1、如图,设电灯可沿铅垂线OB 移动,问灯与水平面OA的距离多大时,才能使水平面上的点A 处获得最大亮度?(根据物理学知识可知:亮度J 与θsin 成正比,与距离AB r =的平方 成反比,即2sin r k J θ=,其中k 为正常数) 解析:由r h h a r =+=θsin ,222 得23222)(sin -+==h a kh rk J θ, 那么)2()()(3)(222522252222322/h a h a k h a kh h a k J -+=+-+=---, 令0/=J ,得a h 22=, Θa h 22<时,0/>J ;a h 22>时,0/<J ; 所以,当a h 22=时J 有最大值,即A 处获得最大亮度。
点评:亮度问题是我们日常生活中最常遇到的,也是最有感受的。
如何使亮度最大?本题先结合题目中的条件,得到亮度J 关于距离h 的函数关系,再用导数产生结论。
2、最经济的车速例2. 货车欲以x 千米小时的速度行驶,去130千米远的某地,按交通法规,限制 x的允许范围是50≤x≤100.假使汽油的价格为2元升,而汽油消耗的速度是)3602(2x +升小时,司机的工资是14元小时,试问最经济的车速是多少?这次行车的总费用最低是多少?解: 汽车运行的时间为x 130小时,耗油量为x 130·)3602(2x +升,耗油费用为2×x 130·)3602(2x +元,司机的工资为14×x130元, 故这次行车的总费用为y=2·x 130·)3602(2x ++14×x 130=)18180(130xx +⨯. 所以)181801(1302x y -⨯='.令y′=0,得50≤x≤100内的唯一解为x=1018≈57千米小时.所以最经济的车速为57千米小时,最低费用为)571818057(130+⨯≈82.2元. 点评:此题也可直接使用基本不等式101218180≥+x x 即x=1018求解,求出的x 正好在定义域范围内.3、物理中的问题 例3、已知电源电压为E ,内阻为r ,求负载电阻R 多大时,输出功率最大? 解析:由电学知识知道,消耗在负载电阻R 上的功率为i R i P ,2=是回路中的电流 而R r E i +=,于是)0()()(2222>+=⋅+==R R r R E R R r E R i P 又32/)()(R r R r E P +-=,令0/=P 得r R = r R <Θ时,0/>P ;r R >时, 0/<P ;所以,当r R =时,输出功率P 最大;点评:这是我们刚刚学过的电学知识,借助于导数可以轻松的求出输出功率的最大值。
3.1 运用导数解决有关单调性问题一般地,设函数y =f (x )在某个区间内可导.如果f '(x )>0,则f (x )为增函数;如果f '(x )<0,则f (x )为减函数.单调性是导数应用的重点内容,主要有三类问题:①运用导数判断单调区间或证明单调性;②已知单调性求参数;③先证明其单调性,再运用单调性证明不等式等问题.下面举例说明.一、求单调区间或证明单调性单调区间的求解过程:已知)(x f y =(1)分析 )(x f y =的定义域;(2)求导数 )(x f y '=';(3)解不等式0)(>'x f ,解集在定义域内的部分为增区间;(4)解不等式0)(<'x f ,解集在定义域内的部分为减区间.例1 求下列函数单调区间(1)5221)(23+--==x x x x f y (2)xx y 12-= (3)x xk y +=2)0(>k (4)αln 22-=x y解:(1)232--='x x y )1)(23(-+=x x , )32,(--∞∈x ),1(∞+Y 时0>'y )1,32(-∈x 0<'y ∴ )32,(--∞,),1(∞+为增区间, )1,32(-为减区间. (2)221x x y +=',∴ )0,(-∞,),0(∞+为增区间.(3)221xk y -=, ∴ ),(k x --∞∈),(∞+k Y ,0>'y .),0()0,(k k x Y -∈,0<'y∴ ),(k --∞,(,)k +∞为增区间; )0,(k -,),0(k 减区间.(4)xx x x y 14142-=-=',定义域为),0(∞+ )21,0(∈x 0<'y 减区间; ),21(∞+∈x 0>'y 增区间.二、已知单调性求参数例2 求满足条件的a :(1)使ax x y +=sin 为R 上增函数.(2)使a ax x y ++=3为R 上增函数.解:(1)a x y +='cos ,∴ 1>a , 1=a 时,x x y +=sin 也成立.∴ ),1[∞+∈a(2)a x y +='23,0>a ,0=a 时,3x y =也成立. ∴ ),0[∞+∈a三、证明不等式若)(x f y =,],[b a x ∈⑴0)(>'x f 恒成立,∴)(x f y =为),(b a 上↑.∴ 对任意),(b a x ∈ 不等式)()()(b f x f a f << 恒成立(2)0)(<'x f 恒成立,∴ )(x f y =在),(b a 上↓∴ 对任意),(b a x ∈不等式)()()(b f x f a f >> 恒成立例3 求证下列不等式(1)πxx 2sin > )2,0(π∈x(2)x x x x -<-tan sin )2,0(π∈x 证: (1)原式π2sin >⇔x x ,令 sin ()x f x x = . 又)2,0(π∈x ,0cos >x ,0tan <-x x ∴ 2)tan (cos )(x x x x x f -=', ∴ )2,0(π∈x ,0)(<'x f ,)2,0(π↓,ππ2)2(=f ,∴ πx x 2sin > (2)令x x x x f sin 2tan )(+-=,0)0(=f .x x x x x x x f 222cos )sin )(cos cos 1(cos 2sec )(+-=+-=' )2,0(π∈x ,0)(>'x f .∴ ↑)2,0(π∴ x x x x sin tan ->-.。
§1函数的单调性与极值1. 1 导数与函数的单调性学习目标核心素养1.掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性.(重难点)3.会求不超过三次的多项式函数的单调区间和其它函数的单调区间.(重点) 1.借助图象认识函数的单调性与导数的关系,提升学生的直观想象的核心素养.2.通过利用导数研究函数的单调性的学习,培养学生的数学抽象和数学运算的核心素养.1.函数的单调性与其导数正负的关系一般地,在区间(a,b)内函数的单调性与导数有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0 常数函数2.函数图像的变化趋势与导数值大小的关系一般地,设函数y=f(x),在区间(a,b)上:导数的绝对值函数值变化函数的图像越大大比较“陡峭”(向上或向下)越小小比较“平缓”(向上或向下) 思考:如果在区间(a,b)内恒有f′(x)=0,则f(x)有什么特性?[提示]函数f(x)为常函数.1.若在区间(a,b)内,f′(x)>0,且f(a)≥0,则在(a,b)内有( )A.f(x)>0 B.f(x)<0C.f(x)=0 D.不能确定A[由条件可知,f(x)在(a,b)内单调递增,∵f(a)≥0,∴在(a,b)内有f(x)>0.]2.已知函数y=f(x)的图像是下列四个图象之一,且其导函数y=f′(x)的图像如图所示,则该函数的图像是( )B [由f′(x)图像可知,f′(x)>0,函数单调递增,且开始和结尾增长速度慢,故应选B.] 3.已知函数f(x)=12x 2-x ,则函数f(x)的单调增区间是( )A .(-∞,-1)和(0,+∞)B .(0,+∞)C .(-1,0)和(1,+∞)D .(1,+∞)D [法一:f(x)=12x 2-x =12(x -1)2-12,对应的抛物线开口向上,对称轴为直线x =1,可知函数f(x)的单调增区间是(1,+∞).法二:f′(x)=x -1,令f′(x)>0,解得x>1.故函数f(x)的单调增区间是(1,+∞).]单调性与导数的关系【例1】 (1)函数y =f(x)的图像如图所示,给出以下说法: ①函数y =f(x)的定义域是[-1,5]; ②函数y =f(x)的值域是(-∞,0]∪[2,4]; ③函数y =f(x)在定义域内是增函数; ④函数y =f(x)在定义域内的导数f′(x)>0. 其中正确的序号是( ) A .①② B .①③ C .②③D .②④(2)设函数f(x)在定义域内可导,y =f(x)的图像如图所示,则导函数y =f′(x)的图像可能为( )A BC D思路探究:研究一个函数的图像与其导函数图像之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图像在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.(1)A (2)D[(1)由图像可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图像可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.]1.利用导数判断函数的单调性比利用函数单调性的定义简单得多,只需判断导数在该区间内的正负即可.2.通过图像研究函数单调性的方法(1)观察原函数的图像重在找出“上升”“下降”产生变化的点,分析函数值的变化趋势;(2)观察导函数的图像重在找出导函数图像与x轴的交点,分析导数的正负.1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图像画在同一个直角坐标系中,不正确的是( )A B C D(2)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图像可能是( )(1)D (2)D [(1)A ,B ,C 均有可能;对于D ,若C 1为导函数,则y =f(x)应为增函数,不符合;若C 2为导函数,则y =f(x)应为减函数,也不符合.(2)根据函数的导数的正负与单调性的关系,对照图像可知,答案应选D.]利用导数求函数的单调区间【例2】 求函数f(x)=x +ax(a≠0)的单调区间.思路探究:求出导数f′(x),分a>0和a<0两种情况.由f′(x)>0求得单调增区间,由f′(x)<0求得单调减区间.[解] f(x)=x +ax的定义域是(-∞,0)∪(0,+∞),f′(x)=1-ax 2.当a>0时,令f′(x)=1-ax2>0,解得x>a 或x<-a ;令f′(x)=1-a x 2<0,解得-a<x<0或0<x<a ;当a<0时,f′(x)=1-ax2>0恒成立,所以当a>0时,f(x)的单调递增区间为(-∞,-a)和(a ,+∞);单调递减区间为(-a ,0)和(0,a).当a<0时,f(x)的单调递增区间为(-∞,0)和(0,+∞).利用导数求函数单调区间的步骤1.确定函数f(x)的定义域. 2.求导数f′(x).3.由f′(x)>0(或f′(x)<0),解出相应的x 的范围.当f′(x)>0时,f(x)在相应区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.4.结合定义域写出单调区间.2.(1)函数f(x)=e x-ex ,x∈R 的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)(2)函数f(x)=ln x -x 的单调递增区间是( ) A .(-∞,1) B .(0,1) C .(0,+∞)D .(1,+∞)(1)D (2)B [(1)∵f′(x)=(e x-ex)′=e x-e , 由f′(x)=e x-e>0,可得x>1.即函数f(x)=e x -ex ,x∈R 的单调增区间为(1,+∞),选D. (2)函数的定义域为(0,+∞),又f′(x)=1x -1,由f′(x)=1x-1>0,得0<x<1,所以函数f(x)=ln x -x 的单调递增区间是(0,1),选B.]已知函数的单调性求参数的取值范围1.函数f(x)=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b<0时,f(x)的单调性如何? [提示] 求函数的导函数f′(x)=3x 2+2ax +b ,导函数对应方程f′(x)=0的Δ=4(a 2-3b)<0,所以f′(x)>0恒成立,故f(x)是增函数.2.函数单调性的充要条件如何?[提示] (1)在某个区间内,f′(x)>0(f′(x)<0)是函数f(x)在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数f(x)=x 3在定义域(-∞,+∞)上是增函数,但f′(x)=3x 2≥0.(2)函数f(x)在(a ,b)内单调递增(减)的充要条件是f′(x)≥0(f′(x)≤0)在(a ,b)内恒成立,且f′(x)在(a ,b)的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有f′(x)=0并不影响函数f(x)在该区间内的单调性.【例3】 已知关于x 的函数y =x 3-ax +b.(1)若函数y 在(1,+∞)内是增函数,求a 的取值范围; (2)若函数y 的一个单调递增区间为(1,+∞),求a 的值.思路探究:(1)函数在区间(1,+∞)内是增函数,则必有y′≥0在(1,+∞)上恒成立,由此即可求出a 的取值范围.(2)函数y 的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值. [解] y′=3x 2-a.(1)若函数y =x 3-ax +b 在(1,+∞)内是增函数.则y′=3x 2-a≥0在x∈(1,+∞)时恒成立, 即a≤3x 2在x∈(1,+∞)时恒成立, 则a≤(3x 2)min . 因为x>1,所以3x 2>3.所以a≤3,即a 的取值范围是(-∞,3].(2)令y′>0,得x 2>a3.若a≤0,则x 2>a3恒成立,即y′>0恒成立,此时,函数y =x 3-ax +b 在R 上是增函数,与题意不符. 若a>0,令y′>0,得x>a3或x<-a 3. 因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a =3.1.将本例(1)改为“若函数y 在(1,+∞)上不单调”,则a 的取值范围又如何? [解] y′=3x 2-a ,当a<0时,y′=3x 2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y 在(1,+∞)上不单调,即y′=3x 2-a =0在区间(1,+∞)上有根.由3x 2-a =0可得x =a3或x =-a3(舍去). 依题意,有a3>1,∴a>3, ∴a 的取值范围是(3,+∞).2.本例(1)中函数改为f(x)=x 3-ax 2-3x.区间“(1,+∞)”改为“[1,+∞),a 的取值范围如何? [解] 由f(x)=x 3-ax 2-3x 得 f′(x)=3x 2-2ax -3,∵f(x)在x∈[1,+∞)上是增函数, ∴3x 2-2ax -3≥0, ∴a 3≤x 2-12x. 令g(x)=x 2-12x,x∈[1,+∞),g′(x)=x 2+12x2>0,即g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=0, ∴a 的取值范围为a≤0.1.解答本题注意可导函数f(x)在(a ,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a ,b)上恒成立,且f′(x)在(a ,b)的任何子区间内都不恒等于0.2.已知f(x)在区间(a ,b)上的单调性,求参数取值范围的方法(1)利用集合的包含关系处理f(x)在(a ,b)上单调递增(减)的问题,则区间(a ,b)是相应单调区间的子集;(2)利用不等式的恒成立处理f(x)在(a ,b)上单调递增(减)的问题,则f′(x)≥0(f′(x)≤0)在(a ,b)内恒成立,注意验证等号是否成立.3.已知函数f(x)=2ax 3+4x 2+3x -1在R 上是增函数,求实数a 的取值范围. [解] f′(x)=6ax 2+8x +3.∵f(x)在R 上是增函数,∴f′(x)≥0在R 上恒成立, 即6ax 2+8x +3≥0在R 上恒成立,∴⎩⎪⎨⎪⎧64-72a≤0,a>0,解得a≥89.经检验,当a =89时,只有个别点使f′(x)=0,符合题意.故实数a 的取值范围为⎣⎢⎡⎭⎪⎫89,+∞.1.函数的单调性与导数符号的关系 设函数y =f(x)在区间(a ,b)内可导,(1)如果在(a ,b)内,f′(x)>0,则f(x)在此区间是增函数,(a ,b)为f(x)的单调增区间; (2)如果在(a ,b)内,f′(x)<0,则f(x)在此区间是减函数,(a ,b)为f(x)的单调减区间. 2.利用导数求函数的单调区间的步骤求函数的单调区间,就是解不等式f′(x)>0或f′(x)<0,不等式的解集就是所求的单调区间,其步骤如下:(1)求函数f(x)的定义域; (2)求出f′(x);(3)解不等式f′(x)>0可得函数f(x)的单调增区间,解不等式f′(x)<0可得函数f(x)的单调减区间. 3.函数f(x)在(a ,b)内单调递增(减)的充要条件是f ′(x)≥0(f′(x)≤0)在(a ,b)内恒成立,且f′(x)在(a,b)的任意区间内都不恒等于0.这就是说,在区间内的个别点处有f′(x)=0并不影响函数f(x)在该区间内的单调性.1.判断(正确的打“√”,错误的打“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.[答案](1)×(2)×(3)√2.已知函数f(x)=x+ln x,则有( )A.f(2)<f(e)<f(3)B.f(e)<f(2)<f(3)C.f(3)<f(e)<f(2)D.f(e)<f(3)<f(2)A[因为在定义域(0,+∞)上f′(x)=12x +1x>0,所以f(x)在(0,+∞)上是增函数,所以有f(2)<f(e)<f(3).故选A.]3.函数f(x)=2x3-9x2+12x+1的单调减区间是________.(1,2)[f′(x)=6x2-18x+12,令f′(x)<0,即6x2-18x+12<0,解得1<x<2.] 4.已知函数f(x)=x3-ax-1.(1)是否存在a,使f(x)的单调减区间是(-1,1);(2)若f(x)在R上是增函数,求a的取值范围.[解]f′(x)=3x2-a.(1)∵f(x)的单调减区间是(-1,1),∴-1<x<1是f′(x)<0的解,∴x=±1是方程3x2-a=0的两根,所以a=3.(2)∵f(x)在R上是增函数,∴f′(x)=3x2-a≥0对x∈R恒成立,即a≤3x2对x∈R恒成立.∵y=3x2在R上的最小值为0.∴a≤0,∴a的取值范围是(-∞,0].1.2 函数的极值学习目标核心素养1.理解函数的极大值和极小值的概念.(难点) 2.掌握求极值的步骤,会利用导数求函数的极值.(重点、难点) 1.借助图象理解函数的极大值和极小值,提升了学生的直观想象的核心素养.2.通过利用导数求函数的极值的学习,培养了学生的逻辑推理和数学运算的核心素养.1.极大值点与极大值如图,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于或等于x0点的函数值,称点x0为函数y=f(x)的极大值点,其函数值f(x0)为函数的极大值.2.极小值点与极小值如图,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于或等于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.[提醒]在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值不一定比极大值小.3.极值的判断方法如果函数y=f(x)在区间(a,x0)上是增加的,在区间(x0,b)上是减少的,则x0是极大值点,f(x0)是极大值;如果函数y=f(x)在区间(a,x0)上是减少的,在区间(x0,b)上是增加的,则x0是极小值点,f(x0)是极小值.4.求函数y=f(x)极值点的步骤(1)求出导数f′(x).(2)解方程f′(x)=0.(3)对于方程f′(x)=0的每一个解x0,分析f′(x)在x0左、右两侧的符号(即f(x)的单调性),确定极值点:①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.思考:导数为0的点都是极值点吗?[提示]不一定,如f(x)=x3,f′(0)=0,但x=0不是f(x)=x3的极值点.所以,当f′(x0)=0时,要判断x =x 0是否为f(x)的极值点,还要看f′(x)在x 0两侧的符号是否相反.1.下列四个函数中,在x =0处取得极值的函数是( ) ①y=x 3;②y=x 2+1;③y=|x|;④y=2x. A .①② B .②③ C .③④D .①③B [y′=3x 2≥0恒成立,所以函数y =x 3在R 上单调递增,无极值点,①不符合;y′=2x ,当x>0时,函数y =x 2+1单调递增,当x<0时,函数y =x 2+1单调递减,②符合;结合该函数图像可知,函数y =|x|在(0,+∞)上单调递增,在(-∞,0]上单调递减,③符合;函数y =2x在R 上单调递增,无极值点,④不符合.]2.函数y =x 3-3x 2-9x(-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值 D .极小值-27,无极大值C [由y′=3x 2-6x -9=0,得x =-1或x =3.当x <-1或x >3时,y′>0;由-1<x <3时,y′<0, ∴当x =-1时,函数有极大值5;3∉(-2,2),故无极小值.] 3.函数f(x)=x 3-3x 2+1在x =__________处取得极小值. 2 [由f(x)=x 3-3x 2+1, 得f′(x)=3x 2-6x =3x(x -2).当x∈(0,2)时,f′(x)<0,f(x)为减函数;当x∈(-∞,0)和(2,+∞)时,f′(x)>0,f(x)为增函数. 故当x =2时,函数f(x)取得极小值.]求函数的极值(1)f(x)=x 2-2x -1; (2)f(x)=x 44-23x 3+x22-6;(3)f(x)=|x|.[解] (1)f′(x)=2x -2,令f′(x)=0,解得x =1. 因为当x<1时,f′(x)<0,当x>1时,f′(x)>0, 所以函数在x =1处有极小值, 且f(x)极小值=-2.(2)f′(x)=x 3-2x 2+x =x(x 2-2x +1)=x(x -1)2.令f′(x)=0,解得x 1=0,x 2=1.所以当x 变化时,f′(x),f(x)的变化情况如下表:x (-∞,0)0 (0,1) 1 (1,+∞)f′(x) - 0 + 0 + f(x)单调 递减↘极小 值单调 递增↗无极值单调 递增↗所以当x =0时,函数取得极小值,且f(x)极小值=-6.(3)f(x)=|x|=⎩⎪⎨⎪⎧x ,x≥0,-x ,x<0.显然函数f(x)=|x|在x =0处不可导, 当x>0时,f′(x)=x′=1>0,函数f(x)=|x|在(0,+∞)内单调递增; 当x<0时,f′(x)=(-x)′=-1<0, 函数f(x)=|x|在(-∞,0)内单调递减. 故当x =0时,函数取得极小值, 且f(x)极小值=0.极值点与导数的关系1.可导函数的极值点一定是导数值为0的点,导数值为0的点不一定是极值点. 点x 0是可导函数f(x)在区间(a ,b)内的极值点的充要条件: (1)f′(x 0)=0;(2)点x 0两侧f′(x)的符号不同.2.不可导的点可能是极值点(如本例(3)中x =0点),也可能不是极值点(如y =x ,在x =0处不可导,在x =0处也取不到极值),所以函数的极值点可能是f′(x)=0的根,也可能是不可导点.1.已知函数f(x)=x 2-2ln x ,则f(x)的极小值是________. 1 [∵f′(x)=2x -2x ,且函数定义域为(0,+∞),令f′(x)=0,得x =1或x =-1(舍去), 当x∈(0,1)时,f′(x)<0, 当x∈(1,+∞)时,f′(x)>0,∴当x =1时,函数有极小值,极小值为f(1)=1.]利用函数的极值求参数【例2】 已知f(x)=x 3+ax 2+bx +c 在x =1与x =-3时都取得极值.(1)求a ,b 的值;(2)若f(-1)=32,求f(x)的单调区间和极值.思路探究:(1)求导函数f′(x),则由x =1和x =-23是f′(x)=0的两根及根与系数的关系求出a ,b.(2)由f(-1)=32求出c ,再列表求解.[解] (1)f′(x)=3x 2+2ax +b ,令f ′(x)=0,由题设知x =1与x =-23为f′(x)=0的解.∴⎩⎪⎨⎪⎧1-23=-23a ,1×⎝ ⎛⎭⎪⎫-23=b 3,∴a=-12,b =-2.(2)由(1)知f(x)=x 3-12x 2-2x +c ,由f(-1)=-1-12+2+c =32,得c =1,∴f(x )=x 3-12x 2-2x +1,∴f′(x)=3x 2-x -2.当x 变化时,f′(x),f(x)的变化情况如下表:x (-∞,⎭⎪⎫-23 -23 ⎝ ⎛⎭⎪⎫-23,1 1 (1,+∞)f′(x) + 0 - 0 + f(x)单调递增 ↗4927单调递减 ↘-12单调递增 ↗∴f(x)的递增区间为⎝ ⎛⎭⎪⎫-∞,-3和(1,+∞),递减区间为⎝ ⎛⎭⎪⎫-3,1.当x =-23时,f(x)有极大值为f ⎝ ⎛⎭⎪⎫-23=4927;当x =1时,f(x)有极小值为f(1)=-12.已知函数极值求解析式的两点注意(1)根据极值点处导数值为0和极值两个条件列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.已知函数f(x)=13x 3-12(m +3)x 2+(m +6)x(x∈R,m 为常数)在区间(1,+∞)内有两个极值点,求实数m 的取值范围.[解] f′(x)=x 2-(m +3)x +m +6. 因为函数f(x)在(1,+∞)内有两个极值点,所以导数f′(x)=x 2-(m +3)x +m +6在(1,+∞)内与x 轴有两个不同的交点,如图所示.所以⎩⎪⎨⎪⎧Δ=(m +3)2-4(m +6)>0,f′(1)=1-(m +3)+m +6>0,m +32>1,解得m>3,故实数m 的取值范围是(3,+∞).函数极值的综合应用[探究问题]1.函数f(x)的定义域为开区间(a ,b),导函数f′(x)在(a ,b)内的图像如图所示,则函数f(x)在开区间(a ,b)内有几个极小值点?[提示] 一个.x 1,x 2,x 3是极值点,其中x 2是极小值点,x 1,x 3是极大值点. 2.函数y =f(x)在给定区间(a ,b)内一定有极值点吗?[提示] 不一定,若函数y =f(x)在区间(a ,b)内是单调函数,就没有极值点.【例3】 已知函数f(x)=x 3-3x +a(a 为实数),若方程f(x)=0有三个不同实根,求实数a 的取值范围.思路探究:求出函数的极值,要使f(x)=0有三个不同实根,则应有极大值大于0,极小值小于0,由此可得a 的取值范围.[解] 令f′(x)=3x 2-3=3(x +1)(x -1)=0, 解得x 1=-1,x 2=1. 当x<-1时,f′(x)>0; 当-1<x<1时,f′(x)<0; 当x>1时,f′(x)>0.所以当x =-1时,f(x)有极大值f(-1)=2+a ; 当x =1时,f(x)有极小值f(1)=-2+a. 因为方程f(x)=0有三个不同实根,所以y =f(x)的图像与x 轴有三个交点,如图.由已知应有⎩⎪⎨⎪⎧2+a>0,-2+a<0,解得-2<a<2,故实数a 的取值范围是(-2,2).1.本例中,若把“三个不同实根”改为“唯一一个实根”,结果如何? [解] 由已知应有 2+a<0或-2+a>0. 即a>2或a<-2.2.本例中,若把“三个不同实根”改为“恰有两个实根”,结果如何? [解] 由条件可知,只要 2+a =0或-2+a =0即可, 即a =±2.转化的思想求导数范围的应用方程f(x)=0的根就是函数y =f(x)的零点,是函数图像与x 轴交点的横坐标,研究方程的根的问题可以转化为函数图像与x 轴交点的问题.我们可以根据函数图像在坐标轴中的位置不同,结合极值的大小确定参数的范围.3.设a 为实数,函数f(x)=x 3-x 2-x +a. (1)求f(x)的极值;(2)当a 在什么范围内取值时,曲线y =f(x)与x 轴仅有一个交点?[解] (1)f′(x)=3x 2-2x -1. 令f′(x)=0,则x =-13或x =1.当x 变化时,f′(x),f(x)的变化情况如下表:x ⎝ ⎛⎭⎪⎫-∞,-13 -13 ⎝ ⎛⎭⎪⎫-13,1 1 (1,+∞)f′(x) + 0 - 0 + f(x)单调递 增↗极大值单调递 减↘极小值单调递 增↗所以f(x)的极大值是f ⎝ ⎛⎭⎪⎫-13=527+a ,极小值是f(1)=a -1.(2)函数f(x)=x 3-x 2-x +a =(x -1)2(x +1)+a -1,由此可知,x 取足够大的正数时,有f(x)>0, x 取足够小的负数时,有f(x)<0, 所以曲线y =f(x)与x 轴至少有一个交点.由(1)知f(x)极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f(x)极小值=f(1)=a -1.∵曲线y =f(x)与x 轴仅有一个交点, ∴f(x)极大值<0或f(x)极小值>0, 即527+a<0或a -1>0,∴a<-527或a>1, ∴当a∈⎝⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f(x)与x 轴仅有一个交点.1.函数的极值是一个局部性的概念,是仅对某一点的左右两侧附近的点而言的.由图可以看出,极大值的对应点是局部的“高峰”,极小值的对应点是局部的“低谷”.2.极值点是函数定义域内的自变量的值,而函数定义域的端点绝不是函数的极值点.3.函数在定义域内可能有许多极大值或极小值,但极大值不一定比极小值大,极小值也不一定比极大值小.4.若函数f(x)在[a ,b]上有极值且函数图像连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样,相邻两个极小值点之间必有一个极大值点.1.判断(正确的打“√”,错误的打“×”)(1)函数f(x)=x 3+ax 2-x +1必有两个极值. ( ) (2)在可导函数的极值点处,切线与x 轴平行或重合. ( ) (3)函数f(x)=1x 有极值.( )[答案] (1)√ (2)√ (3)×2.已知a 为函数f(x)=x 3-12x 的极小值点,则a =( ) A .-4 B .-2 C .4D .2D [由题意得f′(x)=3x 2-12,令f′(x)=0得x =±2,∴当x<-2或x>2时,f′(x)>0;当-2<x<2时,f′(x)<0,∴f(x)在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f(x)在x =2处取得极小值,∴a=2.]3.设a ∈R,若函数y =e x+ax(x∈R)有大于零的极值点,则a 的取值范围为________. (-∞,-1) [∵y=e x+ax ,∴y′=e x+a ,令y′=e x+a =0,则e x=-a , 即x =ln(-a),又∵x>0,∴-a >1,即a <-1.] 4.求函数y =x 4-4x 3+5的极值. [解] y′=4x 3-12x 2=4x 2(x -3). 令y′=4x 2(x -3)=0,得x 1=0,x 2=3. 当x 变化时,y′,y 的变化情况如下表:故当x 极小值。
2.3 极值问题易错点辨析
一、错误认识一:极大值一定比极小值大
在求解极值问题的过程中,有些同学因为受“极大值”、“极小值”字面含义的影响,就在潜意识里形成了这样一种认识:极大值一定比极小值大.事实上,这种认识是错误的.请看下面的例子.
例1 求函数()(0)p f x x p x
=+>的极值. 解:22()11p p f x x px x x -'⎛⎫'=+=-=- ⎪⎝
⎭, 令()0f x '=
,得x =.
当x 变化时,()()f x f x ',变化状态如下表:
从上表可以看出,
当x =()f x 有极大值-;
当x =()f x 有极小值
评注:从本例可知,函数的极大值不一定比极小值大.事实上,极
值只是相对于一点附近的局部性质(这与最值不同,最值是相对整个定
义域内或所研究问题的整体的性质).理解这个问题时要紧扣极值的概
念,并通过一些例子加深对该问题的认识.用几何画板能够作出函数
()(0)p f x x p x =+>的图象,如图所示,我们可以直观地看出,极大值反而比极小值小.
二、错误认识二:极大(小)值点是唯一的
由于平时所做的练习题中,命题者为了降低题目难度,常把函数的极大值和极小值设计成唯一的,这样就导致有些同学认为函数的极大值和极小值是唯一的,其实不然,请看下例.
例2 求函数1()cos (2ππ)2f x x x x =
+-<<的极值. 解:1()sin 2
f x x '=-,令()0f x '=, 2ππx -<<∵,11π6x =-
∴,7π5ππ666-,,. 可以得到,
11π6
x =-时,11()π12f x =-+最大值
7π6
x =-时,7()π12f x =--最小值;
π6x =时,π()12f x =+极大值
5π6
x =时,5()π12f x =-最小值
三、错误认识三:导数为0的点一定是极大(小)值点
有些同学通过求解一部分极值问题,总结出这样的规律:导数为0的点就是极大(小)值点.这是一种错误的思维定势,如下面的例子.
例3 求函数23()(1)1f x x =-+的极值.
解:22()6(1)f x x x '=-,令()0f x '=,得1231
01x x x =-==,,. 当x 变化时,()()f x f x ',变化状态如下表:
从上表可以看出,1x =-和1x =都不是函数的极值点.
以上列举了同学们在解题中常出现的三种错误认识,通过对这些错误认识的辨析,我们认识到,在解题中既要准确把握定义,又不能以偏概全.对于平时自己出现的某些模糊认识,要经常翻看课本,回顾概念,并养成跟同学讨论的习惯,还可以结合一些特例,或借助计算机作图对有关概念进行更深入的理解和把握.。