玻璃纤维增强机理综述
- 格式:docx
- 大小:20.02 KB
- 文档页数:4
玻璃纤维增强原理玻璃纤维增强原理详解玻璃纤维是由熔化的玻璃经过纺丝加工而成的细丝,被广泛应用于建筑、汽车、体育器材等领域,玻璃纤维强度高、重量轻、抗腐蚀性能好等特点受到人们的青睐。
然而,单独的玻璃纤维在某些情况下难以满足使用的要求,为此,我们将其进行增强形成玻璃纤维增强材料。
那么,玻璃纤维增强的原理是什么呢?一、载荷作用下的基体软化在玻璃纤维增强材料中,基体是指被加固的物质(通常是塑料),对于基体来说,其强度和刚度较低,容易发生软化变形或破碎。
当外部载荷作用在基体上时,会使其产生塑性变形,并导致材料变形或破坏。
因此,为了提高材料的强度和刚度,需要将其加固。
二、纤维结构的增强作用玻璃纤维增强材料中加入一定量的玻璃纤维,可以使材料发生相应的强化效应。
这是由于玻璃纤维具有较高的强度和刚度等优良的物理性质,它们的加入可以有效地抵消基体的软化和应力集中效应。
三、界面传递载荷玻璃纤维在增强材料中的作用,不仅仅是靠其本身的高强度和刚度,更重要的是要通过和基体之间紧密的物理结合优化载荷传递的方式。
在增强材料的加工过程中,通过化学方法或者机械加工等方式,可以使玻璃纤维与基体之间有一定的结合,形成颗粒体或者有机体。
这样,在当外部载荷作用在材料上时,界面得以平稳地传递应力,从而使材料的强度和刚度得到了提高。
综上所述,玻璃纤维增强材料的强化效应主要是由基体的软化、纤维结构的增强作用和界面传递载荷三部分组成的。
通过加入玻璃纤维,可以有效地提高基体的强度和刚度,从而使材料具有更好的耐久性和使用寿命。
尽管玻璃纤维增强材料在生产加工过程中存在一些技术难点,但是随着科技的不断发展,相信它们的应用范围将得到更广泛的拓展。
玻璃纤维增强材料
玻璃纤维增强材料是一种由玻璃纤维和基体材料组成的复合材料,它具有优异
的机械性能和化学性能,被广泛应用于航空航天、汽车、建筑等领域。
作为一种轻质、高强度、耐腐蚀的材料,玻璃纤维增强材料在现代工业中扮演着重要的角色。
首先,玻璃纤维增强材料具有优异的机械性能。
由于玻璃纤维本身具有高强度
和刚性,当它与基体材料结合后,可以大大提高复合材料的强度和刚性。
这使得玻璃纤维增强材料在航空航天领域得到广泛应用,例如飞机的机身和翼梁等结构部件常常采用玻璃纤维增强材料制造,以确保其具有足够的强度和刚度。
其次,玻璃纤维增强材料具有优异的耐腐蚀性能。
由于玻璃纤维本身不会受到
大气、水、酸、碱等介质的侵蚀,因此玻璃纤维增强材料具有良好的耐腐蚀性能。
这使得玻璃纤维增强材料在化工设备、海洋工程等领域得到广泛应用,例如化工管道、储罐、船舶等结构部件常常采用玻璃纤维增强材料制造,以确保其具有足够的耐腐蚀性能。
此外,玻璃纤维增强材料还具有良好的绝缘性能和耐高温性能,这使得它在电
气设备、高温工艺设备等领域得到广泛应用。
例如电力输电线路、电气绝缘材料、高温烟气处理设备等都可以采用玻璃纤维增强材料制造,以确保其具有良好的绝缘性能和耐高温性能。
总的来说,玻璃纤维增强材料是一种具有优异性能的复合材料,它在航空航天、汽车、建筑、化工、电力等领域都有着广泛的应用前景。
随着科技的不断进步,相信玻璃纤维增强材料将会在更多领域展现其优越性能,为人类社会的发展做出更大的贡献。
玻璃纤维——文献综述玻璃纤维,文献综述玻璃纤维是一种由玻璃制成的纤维材料,具有高强度、耐腐蚀、绝缘和耐高温等优良特性,在工业和建筑领域中得到广泛应用。
本文将通过文献综述的方式介绍玻璃纤维的生产工艺、性能特点以及应用领域等。
一、玻璃纤维的生产工艺玻璃纤维的生产工艺主要包括玻璃制备、纤维拉拔和纤维成型等步骤。
首先,通过熔融法制备玻璃原料,然后将熔融玻璃注入纤维拉拔机,将熔融玻璃拉拔成纤维状态,并通过冷却固化,最后经过拉伸、纺丝和包覆等加工工艺形成玻璃纤维产品。
二、玻璃纤维的性能特点1.高强度:玻璃纤维具有优异的机械强度,在同等质量下的强度要高于钢材。
这使得玻璃纤维成为一种轻质但高强度的材料。
2.耐腐蚀性:玻璃纤维具有良好的耐酸碱性能,不易受到化学物质的侵蚀和腐蚀,能够在腐蚀性介质中长期使用。
3.绝缘性:玻璃纤维具有良好的绝缘性能,能够有效隔离电流和热量,广泛用于电力设备和绝缘材料的制造。
4.耐高温性:玻璃纤维具有优异的耐高温性能,能够在高温环境下保持稳定的性能和形状。
5.耐磨性:玻璃纤维具有良好的耐磨性能,能够抵抗摩擦和磨损,延长使用寿命。
三、玻璃纤维的应用领域玻璃纤维由于其优异的性能特点,在各个领域都有广泛的应用。
1.建筑领域:玻璃纤维在建筑领域中被广泛应用于墙体隔热、屋面防水、室内装饰等方面。
由于玻璃纤维具有轻质、高强度和防火等特点,能够提高建筑结构的稳定性和安全性。
2.汽车工业:玻璃纤维在汽车工业中主要用于制造汽车外壳、座椅和内饰等部件。
其轻质性能能够减轻车辆的重量,提高燃油效率和车辆的动力性能。
3.航空航天领域:玻璃纤维在航空航天领域中被广泛应用于制造飞机和航天器的结构部件。
其高强度和耐高温性能能够满足飞行器在极端环境下的使用需求。
4.电子工业:玻璃纤维在电子工业中应用广泛,用于制造电子产品的外壳、散热器和电路板等部件。
其绝缘性能能够有效保护电子元器件不受外界干扰。
总结:玻璃纤维作为一种优异的纤维材料,在工业和建筑领域中得到了广泛应用。
玻璃纤维增强聚酰胺复合材料的摩擦磨损特性一、玻璃纤维增强聚酰胺复合材料概述玻璃纤维增强聚酰胺复合材料是一种高性能的工程塑料,它通过将玻璃纤维与聚酰胺基体材料结合,以提高材料的机械性能和耐热性。
这种复合材料广泛应用于汽车、航空航天、电子电器和机械制造等领域。
玻璃纤维的加入,使得聚酰胺材料的强度、刚度和耐热性得到显著提升,同时,其摩擦磨损特性也成为研究的重点。
1.1 复合材料的组成与特性玻璃纤维增强聚酰胺复合材料主要由以下两部分组成:一是聚酰胺基体,它是一种半结晶性热塑性塑料,具有良好的化学稳定性和加工性能;二是玻璃纤维,它是一种无机非金属材料,具有高强度、高模量和良好的耐热性。
当玻璃纤维以一定比例分散在聚酰胺基体中时,可以显著提高复合材料的力学性能。
1.2 复合材料的制备工艺玻璃纤维增强聚酰胺复合材料的制备通常采用熔融浸渍法、热压成型法或注射成型法。
在制备过程中,玻璃纤维与聚酰胺基体的均匀分散是关键,它直接影响到复合材料的最终性能。
通过优化工艺参数,如温度、压力、注射速度等,可以实现玻璃纤维在聚酰胺基体中的均匀分布。
二、复合材料的摩擦磨损特性分析摩擦磨损特性是评价材料在实际应用中耐用性的重要指标,对于玻璃纤维增强聚酰胺复合材料而言,其在不同工况下的摩擦磨损性能直接关系到产品的使用寿命和可靠性。
2.1 影响摩擦磨损特性的因素影响玻璃纤维增强聚酰胺复合材料摩擦磨损特性的因素众多,包括复合材料的组成比例、基体材料的分子结构、玻璃纤维的类型和表面处理、复合材料的加工工艺等。
此外,外部条件如载荷、滑动速度、环境温度和湿度等也会对摩擦磨损特性产生影响。
2.2 摩擦磨损测试方法对玻璃纤维增强聚酰胺复合材料进行摩擦磨损测试,常用的方法有往复式摩擦磨损试验、旋转式摩擦磨损试验和三点弯曲摩擦磨损试验等。
通过这些测试方法,可以模拟复合材料在实际工况下的摩擦磨损行为,从而评估其耐磨性和耐久性。
2.3 复合材料的磨损机理玻璃纤维增强聚酰胺复合材料的磨损机理较为复杂,通常包括粘着磨损、磨粒磨损、疲劳磨损和腐蚀磨损等。
纤维增强机理
纤维增强是指在材料中加入纤维,以增强材料的强度和刚度。
纤维增强材料具有优异的机械性能、良好的耐久性和较高的热稳定性,因而得到了广泛的应用。
其增强机理主要包括以下几个方面: 1. 纤维与基体材料之间的化学结合:纤维表面常常具有一层氧化物、羟基或氨基等官能团,可与基体材料中的活性官能团结合形成较强的化学键,从而提高材料的强度和刚度。
2. 纤维对基体材料中断裂的抑制作用:当外力作用于材料时,纤维可以通过吸收和分散应力的方式,减少基体材料中的应力集中,从而抑制材料的断裂。
3. 纤维对基体材料中裂纹扩展的抑制作用:纤维的存在可以阻碍裂纹的扩展,提高材料的韧性和抗疲劳性能。
4. 纤维的增强作用:纤维本身具有很高的强度和刚度,加入材料中后可以增加材料的强度和刚度。
总之,纤维增强机理是一个综合的过程,包括了化学结合、强化作用、断裂抑制和裂纹抑制等多个方面,对提高材料的性能起到了重要的作用。
- 1 -。
玻璃钢工艺中纤维增强机理研究玻璃钢,又称玻璃钢制品,是一种由玻璃纤维和树脂组成的复合材料。
它具有高强度、耐腐蚀、防水防火等特性,广泛应用于船舶、汽车、建筑、电力等领域。
而纤维增强玻璃钢(FRP),则是在玻璃钢基础上加强了纤维材料,进一步提高其强度和耐久性。
纤维增强机理是纤维增强玻璃钢的关键,其研究涉及纤维材料的性能、树脂基体的粘合力、成型工艺等诸多因素。
以下是该领域的一些探讨。
纤维材料性能与机理纤维增强玻璃钢中,玻璃纤维是增强材料的重要组成部分。
玻璃纤维是一种硅酸盐氧化物,其主要成分是二氧化硅(SiO2)。
它具有高强度、高模量、耐热、耐腐蚀等特点,适合用于制造轻质但又具有高刚性的材料。
同时,玻璃纤维的表面密布着微小的凹坑和孔洞,这些不仅可以增加材料的表面积,还可以优化树脂的渗透性和附着力。
而不同类型的纤维材料性能也千差万别,比如碳纤维、芳纶纤维等,它们都具有不同的强度和刚性。
一般来说,使用高性能的纤维材料可以提高复合材料的强度和耐久性,但其价格也相对较高。
树脂基体的粘合力和成型工艺树脂基体是玻璃钢复合材料中的另一个主要组成部分。
它是将树脂根据一定比例混合后,在模具中加热压制的得到的。
因此,在成型工艺中,除了需要优化树脂的配方,还需要考虑树脂与纤维材料之间的粘合力。
树脂与纤维材料之间的粘合力主要受到树脂的粘附性和浸润性的影响。
粘附性指树脂与纤维材料之间的物理粘合能力,而浸润性指树脂能否渗入纤维材料内部并固化。
树脂粘附性低或浸润性差,容易导致复合材料的层间剥离和开裂,影响其力学性能。
因此,在成型工艺中,需要优化树脂的流动性和分散性,加强纤维与树脂的粘附力和浸润性。
一些方法包括改进树脂配方、提高成型温度和压力、应用预浸法等。
应用前景纤维增强玻璃钢具有高强度、轻质、耐久等特性,适用于船舶、车辆、建筑、电力等等广泛领域,是现代工程领域的代表。
比如在船舶制造中,纤维增强玻璃钢可以用于船体、桥架、道具等部位,以减轻重量、提高结构强度和抗腐蚀性。
玻璃纤维增强水泥耐久性分析与应用建筑行业在我国城镇化建设中成为国民经济的支柱产业,建筑材料制品是建筑业重要的物资基础。
装饰工程新材料新工艺,除了具有传统材料的优良性质,新型装饰材料还具有较为明显的安装省工省时、节能环保等优势。
作为内墙装饰材料的玻璃纤维增强水泥板,具有比传统材料更为优异性能的一类材料。
具有体重轻、易粘结、安装速度快、防火、保护生态环境、节约能源、减少污染、有利于提高建筑综合效益的特点与作用。
玻璃纤维增强水泥是以玻璃纤维为增强材料,以水泥净浆或水泥砂浆为基体而形成的一种复合材料。
它不但具有优良的抗拉、抗弯、抗冲击性能,还具有抗裂性好、重量轻、易模性好、加工方便、不怕潮、不燃烧等优点。
然而玻璃纤维增强水泥的耐久性问题一直是限制其在更大范围内使用的主要原因之一。
因此,对玻璃纤维增强水泥长期性能下降机理及耐久性改善措施研究十分必要。
玻璃纤维增强水泥长期性能降低的机理国内外学者曾提出:水泥水化产生的Ca(OH)与玻璃纤维相互作用生成新的物质,从而造成对玻璃纤维的侵蚀,导致了玻璃纤维丧失抗拉强度。
结晶压力概念认为,玻璃纤维裂缝和缺陷中,水泥水化物晶体生长时产生的结晶压力是玻璃纤维强度下降的重要原因之一。
应力侵蚀概念认为,应力侵蚀主要由于玻璃纤维表面存在缺陷,水、蒸汽和水泥水化物等均可在缺陷端部造成应力集中,使缺陷扩展,从而使玻璃纤维收到侵蚀。
玻璃纤维出来受Ca(OH)的化学侵蚀外,还可能收到水泥水化物的物理侵蚀,即水泥水化物的结晶生长对玻璃纤维起破坏作用。
玻璃纤维增强水泥长期技能下降的机理主要包括:1、水泥水化后孔溶液中的OH离子对玻璃纤维硅氧骨架(-Si-O-Si-)的侵蚀,即典型的化学侵蚀机理。
2、由于界面区Ca(OH)晶体生长所产生的压力造成的破坏。
3、玻璃单丝与水泥水化产物胶结处形成的应力集中原因。
4、水泥水化物填充了玻璃纤维间的空隙,是玻璃纤维的变形自由度下降,导致玻璃纤维增强水泥的破坏。
玻璃纤维增强复合材料制备及其性能研究随着科技的快速发展,新材料的应用领域不断拓展,其中玻璃纤维增强复合材料是一种应用广泛的新型材料,它具有轻质、高强度、耐腐蚀、绝缘等特点,被广泛应用于航空、汽车、建筑、电子等领域。
本文将探讨玻璃纤维增强复合材料的制备及其性能研究。
一、玻璃纤维增强复合材料的制备玻璃纤维增强复合材料主要由纤维、基体和界面剂三部分组成。
其中玻璃纤维是制备该材料的核心材料,其制备需经历筛选、拉伸、整理等多道工序,以保障纤维的高强度和一致性。
基体部分常采用热固性树脂,如环氧树脂、酚醛树脂等,这些树脂具有良好的耐热、耐腐蚀性能,可通过模压、注塑、涂覆等方法制备而成。
界面剂则是用于增强纤维与基体间的粘结力,以提升复合材料的机械和物理性能。
二、玻璃纤维增强复合材料的性能研究1. 机械性能玻璃纤维增强复合材料具有轻质高强的特点,其最大强度可达到1500MPa以上,具有很好的抗拉强度、弯曲强度和碎裂韧性。
这主要归功于玻璃纤维的高强度和树脂基体的高黏度。
2. 耐热性能选择合适的树脂基体是保障复合材料耐高温的关键。
一般而言,环氧树脂、酚醛树脂等具有耐高温性能,可用于高温环境下的使用。
3. 耐腐蚀性能玻璃纤维增强复合材料的基体通常具有良好的耐腐蚀性能,这是因为树脂基体具有低渗透性、耐酸碱的性质。
此外,界面剂的选用也会显著影响复合材料的耐腐蚀性能。
4. 绝缘性能由于玻璃纤维增强复合材料具有低介电常数和低介质损耗的特点,所以被广泛应用于电子电器领域。
结论玻璃纤维增强复合材料是一种性能优异的新型材料,其制备和性能研究已成为当前材料科学研究的热点。
未来,随着新材料应用领域不断扩大,玻璃纤维增强复合材料将会在更广泛的领域发挥巨大作用。
玻璃纤维增强机理综述高材11101班柯超13号摘要:玻璃纤维是一种性能优异的无机非金属材料。
英文原名为:glass fiber 。
成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。
它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺。
最后形成各类产品,玻璃纤维单丝的直径从几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都有数百根甚至上千根单丝组成,通常作为复材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等,广泛应用于国民经济各个领域。
关键词:玻璃纤维复合材料增强机理一.前言玻璃纤维是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。
它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。
玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。
玻璃纤维按形态和长度,可分为连续纤维、定长纤维和玻璃棉;按玻璃成分,可分为无碱、耐化学、高碱、中碱、高强度、高弹性模量和耐碱(抗碱)玻璃纤维等。
二.正文(1)增强机理玻璃纤维增强机理,其实相关的增强理论还是变形层理论和抑制层理论与之相应。
玻璃纤维本身的模量很高,且玻璃纤维沿机体内部生长,受到外力时外力扩散与整个材料,抗冲击及弯曲性能提高。
(2)生产过程生产玻璃纤维的主要原料是:石英砂、氧化铝和叶蜡石、石灰石、白云石、硼酸、纯碱、芒硝、萤石磨碎玻璃纤维磨碎玻璃纤维等。
生产方法大致分两类:一类是将熔融玻璃直接制成纤维;一类是将熔融玻璃先制成直径20mm的玻璃球或棒,再以多种方式加热重熔后制成直径为3~80μm的甚细纤维。
通过铂合金板以机械拉丝方法拉制的无限长的纤维,称为连续玻璃纤维,通称长纤维。
玻璃纤维增强机理综述
高材11101班柯超13号
摘要:玻璃纤维是一种性能优异的无机非金属材料。
英文原名为:glass fiber 。
成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。
它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺。
最后形成各类产品,玻璃纤维单丝的直径从几个微米到二十几米个微米,相当于一根头发丝的
1/20-1/5 ,每束纤维原丝都有数百根甚至上千根单丝组成,通常作为复材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等,广泛应用于国民经济各个领域。
关键词:玻璃纤维复合材料增强机理
一.前言
玻璃纤维是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。
它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。
玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。
玻璃纤维按形态和长度,可分为连续纤维、定长纤维和玻璃棉;按玻璃成分,可分为无碱、耐化学、高碱、中碱、高强度、高弹性模量和耐碱(抗碱)玻璃纤维等。
二.正文
(1)增强机理
玻璃纤维增强机理,其实相关的增强理论还是变形层理论和抑制层理论与之相应。
玻璃纤维本身的模量很高,且玻璃纤维沿机体内部生长,受到外力时外力扩散与整个材料,抗冲击及弯曲性能提高。
(2)生产过程
生产玻璃纤维的主要原料是:石英砂、氧化铝和叶蜡石、石灰石、白云石、硼酸、纯碱、芒硝、萤石磨碎玻璃纤维磨碎玻璃纤维等。
生产方法大致分两类:一类是将熔融玻璃直接制成纤维;一类是将熔融玻璃先制成直径20mm的玻璃球或棒,再以多种方式加热重熔后制成直径为3~80μm的甚细纤维。
通过铂合金板以机械拉丝方法拉制的无限长的纤维,称为连续玻璃纤维,通称长纤维。
通过辊筒或气流制成的非连续纤维,称为定长玻璃纤维,通称短纤维。
玻璃纤维按组成、性质和用途,分为不同的级别。
按标准级规定(见表),E级玻璃纤维使用最普遍,广泛用于电绝缘材料;S级为特殊纤维。
(3)特点介绍
原料及其应用:玻璃纤维比有机纤维耐温高,不燃,抗腐,隔热、隔音性好,抗
拉强度高,电绝缘性好。
但性脆,耐磨性较差。
用来制造增强塑料(见彩图)或增强橡胶,作为补强材玻璃纤维具有以下之特点,这些特点使玻璃纤维之使用远较其他种类纤维来得广泛,发展速度亦遥遥领先其特性列举如下:
(1)拉伸强度高,伸长小(3%)。
2)弹性系数高,刚性佳。
(3)弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。
(4)为无机纤维,具不燃性,耐化学性佳。
(5)吸水性小。
(6)尺度安定性,耐热性均佳。
(7)加工性佳,可作成股、束、毡、织布等不同形态之产品。
(8)透明可透过光线。
(9)与树脂接着性良好之表面处理剂之开发完成。
(10)价格便宜。
(11)不易燃烧,高温下可熔成玻璃状小珠。
(4)材料分类
生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。
国际上已经商品化的纤维用的玻璃成分如下:
E-玻璃
亦称无碱玻璃,是一种硼硅酸盐玻璃。
目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。
C-玻璃
亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。
在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其价格低于无碱玻璃纤维而有较强的竞争力。
AR玻璃纤维
亦称耐碱玻璃纤维,耐碱玻璃纤维是玻璃纤维增强(水泥)混凝土(简称GRC)的肋筋材料,是100%无机纤维,在非承重的水泥构件中是钢材和石棉的理想替代品。
耐碱玻璃纤维的特点是耐碱性好,能有效抵抗水泥中高碱物质的侵蚀,握裹力强,弹性模量、抗冲击、抗拉、抗弯强度极高,不燃、抗冻、耐温度、湿度变化能力强,抗裂、抗渗性能卓越,具有可设计性强,易成型等特点,耐碱玻璃纤维是广泛应用在高性能增强(水泥)混凝土中的一种新型的绿色环保型增强材料。
A玻璃
亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。
E-CR玻璃
是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无
碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。
D玻璃
亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。
除了以上的玻璃纤维成分以外,如今还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。
另外还有一种双玻璃成分的玻璃纤维,已用在生产玻璃棉中,据称在作玻璃钢增强材料方面也有潜力。
此外还有无氟玻璃纤维,是为环保要求而开发出来的改进型无碱玻璃纤维。
(4)工艺过程
玻璃纤维生产工艺有两种:两次成型-坩埚拉丝法,一次成型-池窑拉丝法。
坩埚拉丝法工艺繁多,先把玻璃原料高温熔制成玻璃球,然后将玻璃球二次熔化,高速拉丝制成玻璃纤维原丝。
这种工艺有能耗高、成型工艺不稳定、劳动生产率低等种种弊端,基本被大型玻纤生产厂家淘汰。
池窑拉丝法把叶腊石等原料在窑炉中熔制成玻璃溶液,排除气泡后经通路运送至多孔漏板,高速拉制成玻纤原丝。
窑炉可以通过多条通路连接上百个漏板同时生产。
这种工艺工序简单、节能降耗、成型稳定、高效高产,便于大规模全自动化生产,成为国际主流生产工艺,用该工艺生产的玻璃纤维约占全球产量的90%以上。
(5)玻璃纤维织物
以下介绍的是以玻璃纤维纱线织造的各种玻璃纤维织物。
(1)玻璃布我国生产的玻璃布,分为无碱和中碱两类,国外大多数是无碱玻璃布。
玻璃布主要用于生产各种电绝缘层压板、印刷线路板、各种车辆车体、贮罐、船艇、模具等。
中碱玻璃布主要用于生产涂塑包装布,以及用于耐腐蚀场合。
织物的特性由纤维性能、经纬密度、纱线结构和织纹所决定。
经纬密度又由纱结构和织纹决定。
经纬密加上纱结构,就决定了织物的物理性质,如重量、厚度和断裂强度等。
有五种基本的织纹:平纹、斜纹、缎纹、罗纹和席纹。
(2)玻璃带玻璃带分为有织边带和无织边带(毛边带)主要织法是平纹。
玻璃带常用于制造高强度、介电性能好的电气设备零部件。
(3)单向织物单向织物是一种粗经纱和细纬纱织成的四经破缎纹或长轴缎纹织物。
其特点是在经纱主向上具有高强度。
(4)立体织物立体织物是相对平面织物而言,其结构特征从一维二维发展到了三维,从而使以此为增强体的复合材料具有良好的整体性和仿形性,大大提高了复合材料的层间剪切强度和抗损伤容限。
它是随着航天、航空、兵器、船舶等部门的特殊需求发展起来的,今天其应用已拓展至汽车、体育运动器材、医疗器械等部门。
主要有五类:机织三维织物、针织三维织物、正交及非正交非织造三维织物、三维编织织物和其它形式的三维织物。
立体织物的形状有块状、柱状、管状、空心截锥体及变厚度异形截面等。
(5)异形织物异形织物的形状和它所要增强的制品的形状非常相似,必须在专用的织机上织造。
对称形状的异形织物有:圆盖、锥体、帽、哑铃形织物等,还可以制成箱、船壳等不对称形状。
(6)槽芯织物槽芯织物是由两层平行的织物,用纵向的竖条连接起来所组成的
织物,其横截面形状可以是三角形或矩形。
(7)玻璃纤维缝编织物亦称为针织毡或编织毡,它既不同于普通的织物,也不同于通常意义的毡。
最典型的缝编织物是一层经纱与一层纬纱重叠在一起,通过缝编将经纱与纬纱编织在一起成为织物。
缝编织物的优点如下:①它可以增加玻璃钢层合制品的极限抗张强度,张力下的抗脱层强度以及抗弯强度;②减轻玻璃钢制品的重量;③表面平整使玻璃钢表面光滑;④简化手糊操作,提高劳动生产率。
这种增强材料可以在拉挤法玻璃钢及RTM中代替连续原丝毡,还可以在离心法玻璃钢管生产中取代方格布。
(8) 玻璃纤维绝缘套管以玻璃纤维纱编织成管。
并涂以树脂材料制成的各种绝缘等级的套管. 有PVC树脂玻纤漆管。
丙烯酸玻纤漆管,硅树脂玻纤漆管等
组合玻璃纤维
70年代以来,出现了把短切原丝毡、连续原丝毡、无捻粗纱织物和无捻粗纱等,按一定的顺序组合起来的增强材料,大体有以下几种:
(1)短切原丝毡+无捻粗纱织物
(2)短切原丝毡+无捻粗纱布+短切原丝毡
(3)短切原丝毡+连续原丝毡+短切原丝毡
(4)短切原比毡+随机无捻粗纱
(5)短切原丝毡或布+单向碳纤维
(6)短切原丝+表面毡
(7)玻璃布+单向无捻粗纱或玻璃细棒+玻璃布
三.总结
1玻璃纤维是复合材料中的增强材料。
2玻璃纤维增强机理,其实相关的增强理论还是变形层理论和抑制层理论与之相应。