场效应管及IGBT的应用和发展趋势
- 格式:pdf
- 大小:230.26 KB
- 文档页数:3
20n03场效应管参数摘要:1.场效应管的基本原理2.场效应管的主要参数3.场效应管的分类与应用4.场效应管的优缺点5.场效应管在我国的发展现状与前景正文:场效应管(Field Effect Transistor,简称FET)是一种半导体器件,以其高输入电阻、低噪声和低功耗等特点在电子电路中得到广泛应用。
自从20世纪40年代问世以来,场效应管不断发展和改进,已经成为现代电子技术的重要组成部分。
本文将介绍场效应管的基本原理、主要参数、分类与应用,以及在我国的发展现状与前景。
一、场效应管的基本原理场效应管是依据电子在半导体材料中的移动规律而工作的。
它由源极、漏极和栅极三个端子组成。
当栅极电压发生变化时,栅极与漏极之间的电场强度随之改变,从而控制漏极的电流。
这种控制方式使得场效应管具有很高的输入电阻,降低了电路中的噪声和功耗。
二、场效应管的主要参数1.转移曲线:描述了栅极电压与漏极电流之间的关系。
转移曲线越陡峭,场效应管的灵敏度越高。
2.阈值电压:在场效应管的转移曲线中,栅极电压达到阈值电压时,漏极电流才开始线性增加。
阈值电压是场效应管的一个重要参数,影响其工作性能。
3.电流放大系数:在场效应管工作状态下,栅极电流与漏极电流之比。
电流放大系数越大,场效应管的放大能力越强。
4.输入电阻:在场效应管的输入端,栅极与源极之间的电阻。
输入电阻越高,电路中的噪声和功耗越小。
5.输出电阻:在场效应管的输出端,漏极与源极之间的电阻。
输出电阻越低,电路的带宽越宽。
三、场效应管的分类与应用1.金属氧化物半导体场效应管(MOSFET):是目前应用最广泛的场效应管,以其低功耗、高频率和小型化等优点在集成电路中占据重要地位。
2.增强型:在场效应管的栅极与源极之间存在一层绝缘层,增强了栅极对漏极的控制能力。
3.耗尽型:与增强型相反,栅极与源极之间的绝缘层较薄,栅极电压对漏极电流的控制能力较弱。
4.绝缘栅双极型晶体管(IGBT):是一种混合型场效应管,兼具场效应管的高输入电阻和双极型晶体管的电流放大能力,适用于中大功率应用。
IGBT的主要应用领域_IGBT国内外市场规模IGBT(绝缘栅双极型晶体管),是由BJT(双极结型晶体三极管) 和MOS(绝缘栅型场效应管) 组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。
简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
IGBT融合了BJT和MOSFET的两种器件的优点,如驱动功率小和饱和压降低等。
IGBT模块是由IGBT与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品,具有节能、安装维修方便、散热稳定等特点。
▲IGBT模块简图IGBT是能源转换与传输的核心器件,是电力电子装置的“CPU”。
采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺问题和降低碳排放的关键支撑技术。
IGBT是以GTR为主导元件,MOSFET为驱动元件的达林顿结构的复合器件。
其外部有三个电极,分别为G-栅极,C-集电极,E-发射极。
在IGBT使用过程中,可以通过控制其集-射极电压UCE和栅-射极电压UGE的大小,从而实现对IGBT导通/关断/阻断状态的控制。
1)当IGBT栅-射极加上加0或负电压时,MOSFET内沟道消失,IGBT呈关断状态。
2)当集-射极电压UCE<0时,J3的PN结处于反偏,IGBT呈反向阻断状态。
3)当集-射极电压UCE>0时,分两种情况:②若栅-射极电压UGE<Uth,沟道不能形成,IGBT呈正向阻断状态。
②若栅-射极电压UGE>Uth ,栅极沟道形成,IGBT呈导通状态(正常工作)。
此时,空穴从P+区注入到N基区进行电导调制,减少N基区电阻RN的值,使IGBT通态压降降。
IGBT的特点、应⽤及未来的研究⽅向近年来,IGBT被⼴泛关注,随着技术的发展,其应⽤前景被⼴泛看好,作为国家战略性新兴产业IGBT,在很多领域应⽤⼴泛。
什么是IGBT?IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的⾼输⼊阻抗和GTR的低导通压降两⽅⾯的优点。
GTR饱和压降低,载流密度⼤,但驱动电流较⼤;MOSFET驱动功率很⼩,开关速度快,但导通压降⼤,载流密度⼩。
IGBT综合了以上两种器件的优点,驱动功率⼩⽽饱和压降低。
⾮常适合应⽤于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
IGBT的原理IGBT是将强电流、⾼压应⽤和快速终端设备⽤垂直功率MOSFET的⾃然进化。
由于实现⼀个较⾼的击穿电压BVDSS需要⼀个源漏通道,⽽这个通道却具有很⾼的电阻率,因⽽造成功率MOSFET具有RDS(on)数值⾼的特征,IGBT消除了现有功率MOSFET的这些主要缺点。
虽然最新⼀代功率MOSFET 器件⼤幅度改进了RDS(on)特性,但是在⾼电平时,功率导通损耗仍然要⽐IGBT 技术⾼出很多。
较低的压降,转换成⼀个低VCE(sat)的能⼒,以及IGBT的结构,同⼀个标准双极器件相⽐,可⽀持更⾼电流密度,并简化IGBT驱动器的原理图。
IGBT模块的特点与应⽤IGBT模块是由IGBT(绝缘栅双极型晶体管芯⽚)与FWD(续流⼆极管芯⽚)通过特定的电路桥接封装⽽成的模块化半导体产品,封装后的IGBT模块直接应⽤于变频器、UPS不间断电源等设备上。
IGBT模块具有节能、安装维修⽅便、散热稳定等特点,当前市场上销售的多为此类模块化产品,⼀般所说的IGBT也指IGBT模块。
随着节能环保等理念的推进,此类产品在市场上将越来越多见。
电焊机用场效应管还是用IGBT好,常用型号有哪些?场效应管属于上世纪90年代的技术,场效应管具有多管并联耐压低、线路板简单、故障率高、性能不稳定等特点,且成本价格相对较高。
而近年来发展起来的IGBT技术,相较于场效应管,IGBT管的故障率低,单管大电流耐压高、线路保护措施多,同时成本更低,技术比场效应管成熟,使用IGBT的电焊机性能更加稳定,因此本文主要着重介绍IGBT在电焊机的应用以及IGBT电焊机的特点。
场效应管逆变焊机的特点由于场效应管的突出优点,用场效应管作逆变器的开关器件时,可以把开关频率设计得很高,以提高转换效率和节省成本,使用高频率变压器以减小焊机的体积,使焊机向小型化,微型化方便使用。
但一个场效应管并不能满足电焊机对电流的需求,因此一般采用多只并联的形式来提高焊机电源的输出电流。
这样既增加了成本,又降低了电路的稳定性和可靠性。
IGBT电焊机的特点及工作原理I GBT电焊机指的是使用IGBT作为逆变器开关器件的电焊机。
由于IGBT的开关频率较低,电流大,焊机使用的主变压器、滤波、储能电容、电抗器等电子器件都较场效应管焊机有很大不同,不但体积增大,各类技术参数也改变了。
半桥逆变电路示意图工作原理①电源供给:和场效应管作逆变开关的焊机一样,焊机电源由市电供给,经整流、滤波后供给逆变器。
②逆变:由于IGBT的工作电流大,可采用半桥逆变的形式,以IGBT作为开关,其开通与关闭由驱动信号控制。
③驱动信号的产生:驱动信号仍然采用处理脉宽调制器输出信号的形式。
使得两路驱动信号的相位错开(有死区),以防止两个开关管同时导通而产生过大电流损坏开关管。
驱动信号的中点同样下沉一定幅度,以防干扰使开关管误导通④保护电路:IGBT焊机也设置了过流、过压、过热保护等,有些机型也有截流,以保证焊机及人身安全,其工作原理与场效应管焊机相似。
场效应管与IGBT应用区别1、场效应管的应用,在中小功率中比较占优势,用于小功率的民用系列焊机,特别是高的开关频率。
2021年全球及中国IGBT行业发展现状分析一、概述1、定义及分类IGBT(绝缘栅双极型晶体管)是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
IGBT是能源变换与传输的核心器件,俗称电力电子装置的“CPU”,作为国家战略性新兴产业,在轨道交通、智能电网、航空航天、电动汽车与新能源装备等领域应用极广。
IGBT根据其电压等级的不同,可分为低压、中压和高压三大类。
2、参数情况IGBT模块重视散热及可靠性,封装环节附加值高。
IGBT模块在实际应用中高度重视散热性能及产品可靠性,对模块封装提出了更高要求。
此外,不同下游应用对封装技术要求存在差异,其中车规级由于工作温度高同时还需考虑强振动条件,其封装要求高于工业级和消费级。
二、行业发展背景1、政策近年来,中国功率半导体器件行业受到各级政府的高度重视和国家产业政策的重点支持。
国家陆续出台了多项政策,鼓励功率半导体器件行业发展与创新,为新型功率半导体器件行业的发展提供了明确、广阔的市场前景,为企业提供了良好的生产经营环境。
2、经济凭借巨大的市场需求,下游应用行业快速发展,在稳定的经济增长以及有利的政策等背景下,我国半导体产业规模迅速发展,从2015年的986亿美元增长至2021年的1925亿美元,年均复合增速为11.8%。
3、技术IGBT产品及其技术发展至如今,大致可以分为7代IGBT。
其中IGBT7作为最新一代技术,其沟道密度更高,元胞间距也经过精心设计,并且优化了寄生电容参数,从而实现5kv/us下的最佳开关性能。
目前,IGBT7尚未得到广泛应用,但发展前景广阔。
三、产业链分析1、产业链IGBT模块产业链主要包括IGBT芯片设计、制造、模块封测三大部分,而根据产业链覆盖程度,可以行业分为IDM、Fabless和Foundry 三种运作模式。
其中IDM模式覆盖了芯片设计、制造、封测三个部分;Fabless模式仅覆盖了芯片的设计部分;Foundry模式则只覆盖了制造、封测部分,不参与芯片设计环节。
IGBT模块是什么?主要应用在那些领域?以及IGBT市场规模和发展方向IGBT(绝缘栅双极型晶体管),是由BJT(双极结型晶体三极管) 和MOS(绝缘栅型场效应管) 组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。
简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
IGBT融合了BJT和MOSFET的两种器件的优点,如驱动功率小和饱和压降低等。
IGBT模块是由IGBT与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品,具有节能、安装维修方便、散热稳定等特点。
IGBT是能源转换与传输的核心器件,是电力电子装置的“CPU”。
采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺问题和降低碳排放的关键支撑技术。
IGBT是以GTR为主导元件,MOSFET为驱动元件的达林顿结构的复合器件。
其外部有三个电极,分别为G-栅极,C-集电极,E-发射极。
在IGBT使用过程中,可以通过控制其集-射极电压UCE和栅-射极电压UGE的大小,从而实现对IGBT导通/关断/阻断状态的控制。
1)当IGBT栅-射极加上加0或负电压时,MOSFET内沟道消失,IGBT呈关断状态。
2)当集-射极电压UCE<0时,J3的PN结处于反偏,IGBT呈反向阻断状态。
3)当集-射极电压UCE>0时,分两种情况:②若栅-射极电压UGE<Uth,沟道不能形成,IGBT呈正向阻断状态。
②若栅-射极电压UGE>Uth ,栅极沟道形成,IGBT呈导通状态(正常工作)。
此时,空穴从P+区注入到N基区进行电导调制,减少N基区电阻RN的值,使IGBT通态压降降。