赤霉素检测
- 格式:pdf
- 大小:1.98 MB
- 文档页数:10
植物赤霉素(GA)酶联免疫分析(ELISA)试剂盒使用说明书本试剂仅供研究使用目的:本试剂盒用于测定植物组织,细胞及其它相关样本中赤霉素(GA)含量。
实验原理:本试剂盒应用双抗体夹心法测定标本中植物赤霉素(GA)水平。
用纯化的植物赤霉素(GA)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入植物赤霉素(GA),再与HRP 标记的赤霉素(GA)抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物 TMB 显色。
TMB 在 HRP 酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。
颜色的深浅和样品中的赤霉素(GA)呈正相关。
用酶标仪在 450nm 波长下测定吸光度(OD 值),通过标准曲线计算样品中植物赤霉素(GA)浓度。
试剂盒组成:标本要求:1.标本采集后尽早进行提取,提取按相关文献进行,提取后应尽快进行实验。
若不能马上进行试验,可将标本放于-20℃保存,但应避免反复冻融2.不能检测含 NaN3 的样品,因 NaN3 抑制辣根过氧化物酶的(HRP)活性。
操作步骤:1.标准品的稀释与加样:在酶标包被板上设标准品孔 10 孔,在第一、第二孔中分别加标准品100µl,然后在第一、第二孔中加标准品稀释液50µl,混匀;然后从第一孔、第二孔中各取100µl 分别加到第三孔和第四孔,再在第三、第四孔分别加标准品稀释液50µl,混匀;然后在第三孔和第四孔中先各取50µl 弃掉,再各取50µl 分别加到第五、第六孔中,再在第五、第六孔中分别加标准品稀释液 50ul,混匀;混匀后从第五、第六孔中各1取50µl 分别加到第七、第八孔中,再在第七、第八孔中分别加标准品稀释液50µl,混匀后从第七、第八孔中分别取50µl 加到第九、第十孔中,再在第九第十孔分别加标准品稀释液50µl,混匀后从第九第十孔中各取50µl 弃掉。
植物类生长激素—赤霉素的发酵生产及分离纯化与各参数的测定实验一、赤霉素的分批发酵实验目的:1、学会发酵罐过程操作2、掌握发酵液中氨基酸、还原糖、总糖和赤霉素含量测定方法。
实验原理:赤霉素工艺流程图:菌种制备→→→一级培养→→→二级培养→→→发酵培养发酵液预处理→→→过滤→→→浓缩→→→萃取→→→脱脂重结晶→→→产品实验步骤:1、培养基的配制与灭菌种子培养基:察氏培养基(硝酸钠 3g 磷酸氢二钾 1g 硫酸镁(MgSO4·7H2O) 0.5g 氯化钾 0.5g 硫酸亚铁 0.01g 蔗糖 30g 琼脂20g 蒸馏水 1000mL 制法加热溶解,分装后121℃灭菌20min。
)发酵培养基:马铃薯培养基、大米斜面培养基和槐树枝斜面培养基。
2、种子活化与扩大培养3、发酵罐的灭菌与接种4、发酵工艺控制二、赤霉素含量标准曲线的测定实验目的:熟练掌握赤霉素含量标准曲线的测定方法实验原理:赤霉素在加热条件下能使Fe3+还原产生Fe2+,Fe2+与邻菲罗啉形成红色络合物,然后在分光光度计下测定吸光度。
实验器材:水浴锅、比色管、比色皿、pH=5的HAc-NaAc缓冲溶液、lNaF溶液、邻菲罗啉溶液、Fe3+溶液、分光光度计。
实验过程:每隔一段时间取一定量的发酵液于25ml比色管中,依次准确加入3.00mlFe3+溶液和4.00ml邻菲罗啉溶液,摇匀,在沸水中加热50min 后,取出,冷水冷却至室温,加入3mlNaF溶液和5ml pH=5的HAc-NaAc 缓冲溶液,用水定容至刻度线,摇匀,用2ml比色皿以相应试剂空白作参比,在波长510nm处测定溶液的吸光度A。
结果处理:以时间(T)为横坐标,以吸光度(A)为纵坐标,绘制赤霉素含量曲线图附:赤霉素浓度与吸光度标准曲线图三、发酵液中还原糖含量的测定实验目的:3,5-二硝基水杨酸(DNS)比色法测定Tr21发酵液中还原糖含量,利用糖含量这个参数,控制发酵过程.实验原理:在NaOH和丙三醇存在下,3,5-二硝基水杨酸(DNS)与还原糖共热后被还原生成氨基化合物。
毕业论文开题报告食品质量与安全橘子及其加工制品中的赤霉素检测一、选题的背景与意义赤霉素是一种广谱性植物生长调节剂,几乎在植物生长、发育的各个阶段都起着调节作用。
自1935年日本科学家从水稻赤霉菌中分离出一种活性制品,并得到结晶,定名为赤霉素(GA)以来,目前已从高等植物和微生物中分离出70余种赤霉素。
赤霉素是植物的四大类激素之一,广泛地存在于植物组织中。
橘子(Citrus),芸香科,柑橘属,原产地中国。
在我国栽培橘子已经有4000多年历史,而且分布十分广泛。
我国生产柑橘包括台湾省在内有19个省(市、自治区),种植的县(市、区)有985个。
柑橘果实营养丰富,胡萝卜素(维生素A原)含量仅次于杏,比其他水果都高。
除含多种维生素外,还含镁、硫、钠、氯和硅等元素。
同时,它色香味兼优,既可鲜食,又可加工成以果汁为主的各种加工制品,广受消费者的青睐。
世界有135个国家生产柑橘,年产量10282.2万吨,面积10730万亩,均居百果之首。
我国水果总产量5000万吨,位居世界首位,但出口量仅为16万吨,占世界水果出口总量的3%。
中国加入世界贸易组织后,我国对外贸易的国际环境得到较大改善。
然而,我国的农产品出口并没有因此而大幅度提高,直接原因是农残超标,检验检疫方面不过关。
根据日本肯定列表最终数据查询 (2006年5月29日起实施)暂定菠菜、菠萝、草菇、草莓、橙(包括脐橙)、葱(包括韭葱) 大白菜、大蒜、豆瓣菜、鳄梨、番木瓜、番茄、番石榴、繁殖洋葱等使用的最高限量MRL为0.2 ppm;美国(USA )允许苹果中的农药残留限量要求(1999年3月15日)联邦法律条款(40 CFR 120)赤霉素残留限量(Tolerance, ppm)为0.5。
然而据相关资料显示,我国现在对于赤霉素检测的标准只有两个:SN 0350-1995出口水果中赤霉素残留量检验方法(行业标准)和DB11/ T 379-2006 豆芽中4-氯苯氧乙酸钠6-苄基腺嘌呤、2,4-滴、赤霉素、福美双的测定(北京地方标准)。
GA植物赤霉素测定方法,GA代检测 ELISA KitPlant ga3 determination method, GA GA generation detection ELISA KitGA植物赤霉素测定方法,GA代检测 ELISA Kit的清洗操作注意事项:(1)试剂应按标签说明储存,使用前恢复到室温。
稀稀过后的标准品应丢弃。
(2)实验中不用的板条应立即放回包装袋中,密封保存。
(3)不用的其它试剂应包装好或盖好。
(4)使用一次性的吸头以免交叉污染(5)用干净的塑料容器配置洗涤液。
用前充分混匀试剂盒里的各种成份及样品。
(6)洗涤酶标板时应充分拍干,不要将吸水纸直接放入酶标反应孔中吸水。
(7)底物A应挥发避免长时间打开盖。
底物B对光敏感避免长时间暴露于光下。
GA植物赤霉素测定方法,GA代检测 ELISA Kit试验原理:TRAb试剂盒是间接法酶联免疫吸附实验(ELISA).已知TRAb浓度的标准品、未知浓度的样品加入微孔酶标板内进行检测。
先将TRAb和生物素标记的抗体同时温育。
洗涤后,加入亲和素标记过的HRP。
再经过温育和洗涤,去除未结合的酶结合物,然后加入底物A、B,和酶结合物同时作用。
产生颜色。
颜色的深浅和样品中TRAb 的浓度呈比例关系。
服务优势:全程提供ELISA实验技术指导和ELISA试剂盒免费代测样本储存:收集标本前必须清楚要检测的成份是否足够稳定。
对收集后当天进行检测的标本,储存在4℃备用,如有特殊原因需要周期收集标本,将标本及时分装后放在-20℃或-70℃条件下保存。
避免反复冻融。
标本2-8℃可保存48小时,-20℃可保存1个月。
-70℃可保存6个月。
部分激素类标本需添加抑肽酶。
特异性:本试剂盒可同时检测天然或重组的,且与其他相关蛋白无交叉反应。
有效期:6个月预期应用:ELISA法定量测定人血清、血浆、细胞培养上清或其它相关生物液体中的含量。
说明1.试剂盒保存:-20℃(较长时间不用时);2-8℃(频繁使用时)。
H H 《贵州省食品安全地方标准植物性农产品中赤霉素残留量的测定 液相色谱-质谱/质谱联用法》编制说明(征求意见稿)一、工作简况 1.1目的意义植物生长调节剂(Plant Growth Regulator )调节作物正常生理作用和代谢过程的一类农药。
近年来,在我国农产品生产加工中的应用日益广泛,已经成为增加蔬菜水果产量、改善品质、提高经济效益的重要手段之一。
然而随着研究的深入,有关植物生长调节剂安全性的报道也增多。
例如植物天然激素赤霉素,试验发现赤霉素可能影响动物的生长发育,甚至导致机体发生癌变。
植物生长调节剂在水果、蔬菜以及茶叶中的残留问题也逐渐受到关注,因此,欧盟、日本、韩国、澳大利亚等多个国家都制定了不同农产品(蔬菜水果)中的残留限量标准。
赤霉素是目前我国比较常用的植物生长调节剂,赤霉素也是天然植物激素,对水果、蔬菜和茶叶生长有促进作用。
此外,赤霉素还可以改善水果品质,延长贮藏期。
赤霉素的理化性质详见表1。
目前我国还未指定赤霉素的限量标准,目前澳大利亚、美国、韩国及日本等水果蔬菜进出口大国制定了农产品中赤霉素的限量标准涉及多达110多种农产品。
而在我国,目前在水果中赤霉酸残留量的测定已有食品安全国家标准(GB 23200.21-2016)外,北京市在豆芽产品中制定了检测方法标准(DB11/T 379-2006)外,目前还没有其他的方法标准。
表1 赤霉素的物理化学性质名称 化学文摘号CAS No. 分子量 水溶性(mg/L )logK ow pKa 结构式赤霉素 77-06-5 346.38 5×103 0.244.0据不完全统计,目前关于赤霉素检测方法文献方法多达70多种,主要包括液相色谱法(HPLC )、液相色谱法-质谱法(HPLC-MS )等,应用最广泛的是HPLC 。
赤霉素的方法标准主要采用高效液相色谱方法,如在水果中赤霉酸残留量的测定已有食品安全国家标准(GB 23200.21-2016),豆芽中赤霉酸残留量的测定已有北京市地方标准(DB11/T 379-2006)。
出口水果中赤霉素残留量检验方法1. 适用范围本方法适用于出口柑桔中赤霉素残留量的检验。
2. 原理概要以丙酮提取样品中赤霉素,然后用乙酸乙酯提取,再用缓冲溶液反提取后,在薄层层析板上除去干扰物质,最后用荧光分光光度法测定。
3. 主要试剂和仪器3.1. 主要试剂丙酮:分析纯;乙酸乙酯:分析纯;硫酸:优级纯;硫酸溶液:50%(V/ V);乙醇:分析纯;甲醇:分析纯;缓冲溶液(pH7):溶解6.7g 分析纯磷酸二氢钾和 1.2g 分析纯氢氧化钠在1OOOmL蒸馏水中;展开剂:氯仿-乙酸乙酯-冰乙酸(10+4+1.6);乙醇-硫酸溶液:(9+1);硫酸溶液:85%VV),将85mL硫酸缓慢加入15mL蒸馏水中;硅胶G:薄层层析用;赤霉素标准品:纯度》95%赤霉素标准溶液:准确称取适量的赤霉素标准品,用甲醇配成浓度1.00mg/mL 的标准储备溶液,根据需要再配成适当浓度的标准工作溶液。
3.2. 仪器荧光分光光度计:备有10mm石英池;锥形瓶:具磨口塞,500mL;组织捣碎机;布氏漏斗;振荡机;圆底烧瓶:1000mL;酸度计;旋转蒸发器;分液漏斗:250mL;涡旋混合器;离心管:具磨口塞,5mL、10mL;紫外灯:发射波长365nm;硅胶薄层板的涂布:在20cm X 20cm玻璃层析板上将硅胶G(硅胶-水=1 + 3)涂布成0.3mm 的薄层板,自然干燥30min。
于110°C烘箱中活化1h,冷却后放置干燥器中备用;微量注射器:25卩L。
4. 试样的抽取与制备4.1. 检验批以不超过1500 件为一检验批。
同一检验批的商品应具有相同的特征, 如包装、标记、产地、规格和等级等。
4.2. 抽样数量1〜2526 〜100101 〜 250251〜1500 4.3. 抽样方法按规定的抽样件数随机抽取,逐件开启。
每件至少取500g 。
作为原始样品, 原始样品总量不得少于2kg 。
加封后,标明标记,及时送实验室。
植物中的赤霉素测定原理赤霉素是一种重要的植物生长素,对植物的生长、发育和生理代谢有着重要的影响。
测定赤霉素含量对于了解植物的生长状态、深入研究其生理代谢机制以及引导植物的农艺栽培具有重要的意义。
赤霉素的测定原理主要包括提取赤霉素、分离纯化、测定浓度三个步骤。
首先是赤霉素的提取。
赤霉素的提取主要通过溶剂法和生化法两种方法来实现。
溶剂法主要是将植物样品研磨成粉末,然后使用有机溶剂(如乙酸乙酯、甲醇等)进行提取。
在提取过程中,还可以加入一些辅助提取剂,如氢氧化钠、二氯甲烷等。
生化法是将植物材料经过一系列的生物化学反应,如酶解、水解、酶抑制等,来提取植物中的赤霉素。
无论是溶剂法还是生化法,提取过程中需要控制一些条件,如温度、时间、溶剂比例等,以保证提取的赤霉素的纯度和稳定性。
接下来是赤霉素的分离纯化。
提取出的赤霉素在种子、叶片、茎等植物组织中的含量相对较低,需要进行分离纯化才能实现精确的测定。
常用的方法有液体色谱法、气相色谱法、薄层层析法等。
液体色谱法是最常用的方法,它可以通过改变移动相的组成、调整流速和温度等参数,来实现赤霉素分离的选择性。
气相色谱法则将提取出的赤霉素转化为易挥发的衍生物,通过气相色谱柱进行分离。
薄层层析法是一种简单经济的分离方法,通过在薄层板上进行层析,利用固定相和流动相的相互作用,实现赤霉素的分离。
最后是赤霉素浓度的测定。
常用的测定方法有免疫分析法、酶联免疫吸附测定法(ELISA)、高效液相色谱法(HPLC)等。
免疫分析法是一种通过抗体与赤霉素结合来进行测定的方法,可以通过比色、荧光强度等信号来得出赤霉素的含量。
ELISA是一种常用的免疫分析方法,它可以通过特异性的抗体与赤霉素结合,再通过酶的作用,来产生比色或荧光信号,从而间接测定赤霉素的含量。
HPLC是一种高效液相色谱方法,常用于对赤霉素进行定量分析,通过调节流动相、控制流速和检测器等参数,可以实现赤霉素的分离和定量。
总的来说,赤霉素的测定原理包括提取赤霉素、分离纯化和测定浓度三个步骤。
Journal of Chromatography A,1416(2015)64–73Contents lists available at ScienceDirectJournal of ChromatographyAj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c h r o maOne-pot preparation of a mixed-mode organic-silica hybridmonolithic capillary column and its application in determination of endogenous gibberellins in plant tissuesZheng Zhang,Yan-Hong Hao,Jun Ding,Sheng-Nan Xu,Bi-Feng Yuan,Yu-Qi Feng ∗Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education),Department of Chemistry,Wuhan University,Wuhan 430072,PR Chinaa r t i c l ei n f oArticle history:Received 4April 2015Received in revised form 12August 2015Accepted 30August 2015Available online 5September 2015Keywords:Organic-silica hybrid monolithic capillary columnPipette tip solid phase extractionCapillary liquid chromatography–mass spectrometry Derivatization Gibberellina b s t r a c tA newly improved one-pot method,based on “thiol-ene”click chemistry and sol–gel approach in microemulsion system,was developed for the preparation of C 8/PO(OH)2-silica hybrid monolithic cap-illary column.The prepared monolith possesses large specific surface area,narrow mesopore size distribution and high column efficiency.The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP)mixed-mode retention for analytes on nano-liquid chromatography (nano-LC).On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE)and derivatization process,we then realized simultaneous determination of 10gibberellins (GAs)with low limits of detection (LODs,0.003–0.025ng/mL).Furthermore,6endogenous GAs in only 5mg rice leaves (fresh weight)were successfully detected and quantified.The developed PT-SPE-nano-LC–MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix.©2015Elsevier B.V.All rights reserved.1.IntroductionOrganic-silica hybrid monolithic stationary phases have been widely applied in capillary liquid chromatography (c LC)and capil-lary electrochromatography (CEC)due to their unique properties,such as fast mass transfer,good permeability and high column efficiency [1].On the other hand,mixed-mode stationary phases have recently attracted extensive attention in HPLC analysis of small molecules.Nowadays,mixed-mode packed columns have been commercial available and widely used,and better separation can be achieved compared to single-mode packed columns [2–4].However,the reported methods for the preparation of mixed-mode organic-silica hybrid monolithic capillary column often need fussy multistep.Though some one-pot strategies were recently developed [1,5,6],the organic-silica hybrid monolithic capillary column with strong hydrophobicity could not be prepared through these reported methods due to the incompatibility of hydropho-bic monomer in sol–gel system.Recently,Lin et al.developed a one-pot method for preparing organic-silica hybrid mono-lithic capillary column with glutathione as functional group [7].∗Corresponding author.E-mail address:yqfeng@ (Y.-Q.Feng).However,the application is limited due to less monomer.There-fore,significant challenges remain in the development of facile and universal methods for preparation of mixed-mode organic-silica hybrid monolithic capillary column.Gibberellins (GAs),a class of plant growth hormones,play essen-tial roles in the regulation of plant growth and developmental processes,including stem elongation,germination,flowering and fruit development [8,9].Natural GAs are a group of diterpenoid acids and exist in almost all green plants [10].Determination of endogenous GAs is critical for the in-depth understanding of their biological functions in plants.However,effective detection of GAs is normally difficult due to the low abundance of endogenous GAs present in plants as well as the serious effect of plant matrix [11,12].Therefore,development of sensitive and selective analytical meth-ods for the determination of GAs is highly needed.Liquid chromatography–mass spectrometry (LC–MS)has been demonstrated to be a powerful platform for sensitive determina-tion of phytohormones [13–15].However,the MS-based methods are still restricted to achieve satisfactory MS response for nega-tively charged carboxylated phytohormones such as GAs,mainly due to their low ionization efficiency [16],matrix effect [17],and co-elution of analytes [18].In this respect,derivatization is an effec-tive strategy and frequently used to improve the MS detection sensitivity of target compounds through labeling the compounds/10.1016/j.chroma.2015.08.0710021-9673/©2015Elsevier B.V.All rights reserved.Z.Zhang et al./J.Chromatogr.A1416(2015)64–7365with easily ionized group[19–23].For example,to enhance the ionization efficiency,a derivatization reagent(mass probe)with quaternary amine group was employed to label GAs[24].How-ever,the separation efficiencies of some GA derivatives,such as GA4,GA51,GA1and GA3are very poor on C18column.Similarly, GA derivatives generated from other derivatization reagents with tertiary amine group also have the same problem[23,25].Thus, effective separation of these GA derivatives in suitable separation mode is favorable.In the meantime,although conventional particulate packed columns were widely employed for GAs analysis,a relatively large plant amount was normally required.Nano-LC was demon-strated to be an effective approach to reduce the sample amount and improve detection sensitivity[26].Recently our group devel-oped a nano-LC–MS platform by using porous polymer monolithic capillary column as the separation medium for the sensitive determination of phytohormones in plant tissues[24],and5-methylcytosine and5-hydroxymethylcytosine in genomic DNA [27].In this respect,monolithic stationary phases are promising alternative for nano-LC due to the good permeability and broad selectivity.Considering for the chemical properties of mass probe-derived GAs and the advantages of monolithic stationary phase, a hydrophobic/cation exchange monolithic capillary column may provide good separation resolution for the target analytes.In this current study,a newly improved one-pot method,based on“thiol-ene”click chemistry and sol–gel approach in microemul-sion system,was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column.The prepared monolith possesses large specific surface area,narrow mesopore size dis-tribution and high column efficiency.The monolithic column was demonstrated to have cation exchange/reversed-phase(CX/RP) mixed-mode retention for analytes on nano-LC.To develop a method for determination of endogenous GAs in plant tissues on the basis of nano-LC–MS with CX/RP monolithic capillary column, we also proposed a sample preparation strategy combining pipette tip solid phase extraction(PT-SPE)and derivatization process. Taken together,we achieved the simultaneous determination of10 GAs with low limits of detection(LODs,0.004–0.032ng/mL)using PT-SPE-nano-LC–MS system.Furthermore,the developed method was successfully applied to the determination of endogenous GAs in only5mg rice leaves(fresh weight).2.Materials and methods2.1.Chemicals2,2-Azobisisobutyronitrile(AIBN),urea(>95%,w/w),sodium dodecyl sulfonate(SDS,>95%,w/w),ammonia water(contain-ing25–28%NH3,w/w),and poly(ethylene glycol)with the molecular weight of10,000(PEG-10000)were all purchased from Shanghai Chemical Reagent Corporation(Shanghai,China). AIBN was purified by recrystallization from ethanol at40◦C. Tetramethoxysilane(TMOS,98%,w/w),n-octyltrimethoxysilane (C8-TMOS,98%,w/w),octadecyltrimethoxysilane(C18-TMOS,98%, w/w)and␥-mercaptopropyltrimethoxysilane(SH-TMOS,98%, w/w)were purchased from Wuhan University Silicone New Mate-rial(Wuhan,China).The fused-silica capillaries(75m i.d.,360m o.d.)were purchased from Yongnian Optic Fiber Plant(Hebei, China).Stable isotope-labeled compounds and standards,[2H2] GA1(internal tracers of GA1and GA3),[2H2]GA4(internal trac-ers of GA4and GA7),[2H2]GA9(internal tracers of GA9),[2H2]GA19 (internal tracers of GA19and GA44),[2H2]GA51(internal tracers of GA5and GA51),[2H2]GA53(internal tracers of GA53),GA1,GA3,GA4, GA5,GA7,GA9,GA19,GA44,GA51,GA53,Zeatin-9-glucoside(Z9G), zeatin-riboside(ZR),N6-isopentenyladenine-9-glucoside(iP9G),isopenteny-ladenine riboside(iPR),and zeatin(Z)were purchased from Olchemim Ltd.(Olomouc,Czech Republic).The structure of GAs can be seen in Fig.S1.Thiourea(>95%,w/w),toluene,ethyl-benzene(>95%,w/w),propylbenzene(>95%,w/w),ammonium formate(HCOONH4,98%,w/w),formic acid(FA,>88%,w/w),and triethylamine(TEA,98%,w/w)were purchased from Shanghai General Chemical Reagent Factory(Shanghai,China).2-Chloro-1-methyl-pyridinium iodide(CMPI,98%,w/w)and N,N-diethyl ethylenediamine(DEED)(98%,w/w)were purchased from Aladdin (Shanghai,China).HPLC-grade acetonitrile(ACN)were obtained from TEDIA Company Inc.(OH,USA).Milli-Q water(Millipore,Brad-ford,USA)was used in all experiments.HiCapt SAX SPE adsorbent, a strong anion exchanger containing quaternary ammonium group, was purchased from Weltech Company(Wuhan,China).The parti-cle size was labeled as200–300mesh.The pipette tips for PT-SPE were prepared by packing the SAX adsorbent into a200-L pipette tip,with a polyethylene frit for blocking the SAX sorbent.The frits(approximately1.0mm diameter,1.4mm thickness)were pur-chased from Biocomma(Shenzhen,China).All other reagents were of analytical reagent grade unless otherwise indicated.2.2.Preparation of the monolithic capillary columnsThe fused-silica capillaries were washed with1mol/L NaOH (2h),H2O(30min),1mol/L HCl(1h),H2O(30min),and methanol (30min)successively to activate the silanol groups.Then the capillaries were allowed to dry under nitrogenflow at160◦C for 5h.C8/PO(OH)2-silica hybrid monolithic capillary column was pre-pared using improved one-pot approach.Typically,H2O(500mg, 61.1%w/w total),PEG-10000(90mg,11.0%w/w total),ammo-nium hydroxide(7.5mg,0.9%w/w total)and vinylphosphonic acid (10mg,1.2%w/w total)were mixed to form solution A.TMOS (185mg,22.6%w/w total),SH-TMOS(10mg,1.2%w/w total),n-octyltrimethoxysilane(15mg,1.8%w/w total),SDS(1mg,0.1%w/w total)and AIBN(1mg,10%w/w SH-TMOS)was mixed to form solu-tion B.Subsequently,212mg of solution B was added to607mg of solution A and degassed by a10-min ultrasonication.The homoge-neous mixture was then manually introduced into the fused-silica capillary to an appropriate length by a syringe.After both ends of the capillary were sealed with two pieces of rubber,the mixture was incubated at40◦C for12h for simultaneous polycondensation and“thiol-ene”click reaction.The resulting monolith was com-pletelyflushed with water and ACN successively to remove the PEG and other residuals.For comparison,a PO(OH)2-silica hybrid monolithic capillary column(30cm-long,75m i.d.,360m o.d.)was also prepared. The preparation procedure is the same as that for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column but without the addition of C8-TMOS.C18-silica monolithic capillary column(30cm-long,75m i.d., 360m o.d.)used for control experiment was prepared accord-ing to previous report[28].Detail information can be seen in Supporting Information.2.3.Characterization of the monolithic capillary columnsThe surface area and pore size distribution were measured by a specific surface area and pore size distribution analyzer(Beijing JWGB Sci.&Tech.,Beijing,China).The microscopic morphology was examined by scanning electron microscope(SEM),using a Quanta 200scanning electron microscope(FEI Company,Holland).The ele-mental contents of the prepared monoliths were determined on Shimadzu EDX-720energy-dispersive X-ray analysis(EDX,Kyoto, Japan)by using Mg–Ka radiation as the excitation source.Per-meability measurements were performed by using a Shimadzu66Z.Zhang et al./J.Chromatogr.A1416(2015)64–73 LC-10AT pump(Kyoto,Japan)under the constantflow mode.ACNwas pumped through the prepared monolithic column(10-cm long,75m i.d.,360m o.d.)at aflow rate of2L min−1.The back pres-sure was recorded when the pressure stabilized.Permeability(K)was calculated according to Darcy’s Law by using Eq.(a),in whichu(ms−1)is the linear velocity of the mobile phase,Áis the viscosityof the mobile phase(0.38×10−3Pa s for ACN at20◦C in the currentstudy),L is the length of the monolithic column(m),and P is thepressure drop across the monolithic column(Pa).K=uÁLP(a)The nano-LC column evaluation experiments were performed on a Shimadzu nano-LC system containing one FVC valve of two positions with a splitter,a sample loop(5L),two Shimadzu LC-20A pumps(Tokyo,Japan)and one GL Sciences MU701UV–vis detector with a6nL detection cell(Tokyo,Japan).The actual flow rate in nano-LC system can be controlled by changing the splitting ratio and keeping the totalflow rate unchanged.The detection wavelength of UV detector was set at254nm for CKs and214nm for other analytes.Data acquisition and processing were performed using LabSolutions software(version5.53sp2, Shimadzu,Tokyo,Japan).After connecting to the nano-LC sys-tem,the organic-silica hybrid monolithic capillary columns were conditioned with the mobile phase for30min.For chromato-graphic separation,a30cm long monolithic column(75m i.d., 360m o.d.)was employed.Van-Deemter plots were obtained by plotting the height equivalent to a theoretical plate(HETP)of ace-tophenone,toluene and aniline,versus linear velocity of mobile phase.The effect of mobile phase on the retention of DEED-GAs was investigated on the nano-LC–MS system.Subsequently,the sepa-ration of DEED-GA standards,method validation and detection of endogenous GAs in rice leaves were performed on the same sys-tem,with an additional use of a C18on-line trapping column(5m, 5mm×0.3mm,Agilent Techologies,Inc.).Detailed nano-LC–MS conditions can be seen in Section2.7.2.4.Preparation of plant samplesPlant sample(rice)was grown in growth chambers in a16h light/8h dark photoperiod with80%humidity under28◦C.Light intensity wasfixed to120lx/m2/s.After approximate7days grow-ing,rice leaves were collected,weighted,immediately frozen in liquid nitrogen,and then stored at−80◦C.To extract phytohor-mones,plant samples(5mg)were frozen in liquid nitrogen and finely grounded followed by extraction with50L ACN at4◦C for12h.[2H2]GA1(2.00ng/g),[2H2]GA4(2.00ng/g),[2H2]GA9 (2.00ng/g),[2H2]GA19(2.00ng/g),[2H2]GA51(2.00ng/g),and[2H2] GA53(2.00ng/g)were added to plant samples as internal standards(I.S.)prior to grinding.2.5.Purification of GAs by PT-SPEAfter extraction of plant samples,the supernatants(50L) were collected by centrifugation at10,000rpm for5min.Then the supernatants were alkalized with0.5L ammonia water(25–28%, NH3,w/w),and pipetted up and down20times to allow analytes adsorbed on the SAX adsorbents.(The PT-SPE was pre-conditioned with50L1%FA in ACN,50L H2O,and50L ACN for three times before use).After sample loading,the PT-SPE was rinsed with50L ACN,50L ACN/H2O(v/v,9/1),50L ACN/H2O(v/v,1/9)and50L ACN for three times.After that,200L ACN with1%FA(v/v)was applied to elute the adsorbed GAs.2.6.Derivatization of GAsThe eluted GAs solution from PT-SPE was dried under nitrogen gas and reconstituted in100L ACN.To the resultant solution,2L triethylamine(TEA)(20mol/mL)and2L CMPI(20mol/mL) were added and vortexed for5min.DEED(2L,40mol/mL)was subsequently added and the reaction solution was vortexed for1h at35◦C.The reaction mixture was then evaporated under nitrogen stream followed by re-dissolving in20L H2O/ACN/FA(950/49/1, v/v/v)for further analysis.2.7.Nano-LC–MS conditionsAnalysis of samples was performed on the nano-LC–MS sys-tem consisting of an AB4500QTRAP mass spectrometer(Applied Biosystems,Foster City,CA,USA)with an electrospray ionization source(Turbo Ionspray),an Eksgent nano-flow liquid chromatog-raphy system including a binary solvent manager and sample manager.Data acquisition and processing were performed using AB SCIEX Analyst1.5Software(Applied Biosystems,Foster City,CA, USA).H2O/ACN/FA(950/49/1,v/v/v,solvent A)and H2O/ACN/FA (49/950/1,v/v/v,solvent B)were employed as mobile phase for the separation of DEED-GAs.To enhance the capacity of the analytical system,a C18column(5m,5mm×0.3mm,Agilent Techologies, Inc.)was employed for online trapping.Five microliter of sample solution was automatically injected into the trapping column at a flow rate of5L min−1for10min with mobile phase A.The trapped DEED-GAs were then separated on the C8/PO(OH)2-silica hybrid monolithic capillary column with a gradient elution at aflow rate of500nL/min.The gradient condition was set as0–15min5–40% B,15–40min40–55%B,40–50min55–95%B and50–60min95%B.The MS analysis was performed under MRM mode(positive mode),and the parameters were set as follows:sheath gas(nitro-gen)flow rate,50arb;aux/sweep gas(nitrogen)flow rate,10arb; spray voltage,1.8kV;capillary temperature,150◦C;capillary volt-age,−4V;tube lens offset,−5V.Helium was used as the collision gas in the ion trap.Optimal parameters for analytes are listed in Table S1in Supporting Information.3.Results and discussion3.1.Preparation of the C8/PO(OH)2-silica hybrid monolithic capillary columnThe schematic procedure for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column is shown in Fig.1As the hydrophobic C8-TMOS could not dissolve or disperse uniformly in polymerization mixture,SDS was adopted to form a homogeneous microemulsion environment.Two major processes were involved in the preparation of C8/PO(OH)2-silica hybrid monolithic capil-lary column:(1)hydrolysis and condensation of TMOS,C8-TMOS and SH-TMOS;(2)“thiol-ene”click reaction between vinylphos-phonic acid and SH-end silica monolithic matrix.In the one-pot approach,a mixed-mode capillary monolithic column with homo-geneous structure can be achieved.The morphology of monolithic columns can befine-tuned by changing conditions such as the composition of the polymeriza-tion mixture.Herein,several parameters affecting the formation of C8/PO(OH)2-silica hybrid monolithic capillary column were evalu-ated(Table1).The content of PEG will affect the rate of phase separation,thus resulting in a significant change on the porosity of silica monoliths [28].As shown in Table1,decreased values of permeability were observed as the content of PEG increased(Column A,B and C),Z.Zhang et al./J.Chromatogr.A1416(2015)64–7367Fig.1.The scheme for the one-pot preparation of C8/PO(OH)2-silica hybrid monolithic capillary column.indicating decreased skeleton and pore sizes of monoliths.The effects of C8-TMOS and SH-TMOS content on the hybrid mono-liths were also investigated.Although the condensation rate may be affected by the content of C8-TMOS,no apparent changes of col-umn permeability(RSD13.7%)and optical microscope image were observed as the content change of C8-TMOS(Column B,D and E).As shown in Table1,the permeability of the as-prepared hybrid mono-liths was dependent on the content of SH-TMOS.With decreasing the content of SH-TMOS,no apparent change in the permeability of Column G and B was observed;while the permeability of Col-umn F greatly decreased with the decrease of SH-TMOS.We reason that pH of the polymerization mixture will increase due to the click reaction between SH-TMOS and vinylphosphonic acid(the p K a of phosphate groups will increase from1.5to2.7after coupling to SH-TMOS),resulting in the change of condensation rate.Therefore, when the content of SH-TMOS was reduced to some degree,the pH of reaction system may become relatively low,thus resulting to a relatively fast condensation rate and more compact structure. Considering an appropriate permeability and homogeneous mor-phology,Column B was employed for further experiments.3.2.Characterization of the C8/PO(OH)2-silica hybrid monolithic capillary columnTo account for the effective incorporation of C8groups into the C8/PO(OH)2-silica hybrid monolithic capillary column,a com-parison of C8/PO(OH)2-silica hybrid monolithic capillary column and PO(OH)2-silica hybrid monolithic capillary column for the separation of alkylbenzenes was performed(Fig.2A).It can be seen that alkylbenzenes exhibited stronger retention on the C8/PO(OH)2-silica hybrid monolithic capillary column than on the PO(OH)2-silica hybrid monolithic capillary column,indicating that C8/PO(OH)2-silica hybrid monolithic capillary column had higher hydrophobility due to the introduction of C8group.The percentage of O,Si,S,and P(w/w)of the C8/PO(OH)2-silica hybrid mono-lithic capillary column were determined by EDX to be28.7%, 63.45%,4.08%,and3.77%,respectively(Fig.2B),indicating that phosphate and mercapto groups were successfully incorporated into the monolith.The atom ratio of P to S was1.12(the calculated value was1),suggesting a complete consume of mercapto group.The porous structure of the C8/PO(OH)2-silica hybrid monolithic capillary column was measured by nitrogen adsorption–desorption measurement,and SEM.The specific surface area of the monolith was found to be230m2/g with a narrow mesopore distribution (Fig.2C).The adsorption/desorption isotherm indicated a meso-porous skeleton of prepared monolith(Fig.2D).Continuous silica monolithic network was observed on the C8/PO(OH)2-silica hybrid monolith and no shrink was found in the capillary(Fig.2E and F),indicating a stable and homogeneous network structure.Taken together,the results demonstrated the C8/PO(OH)2-silica hybrid monolithic capillary column had homogeneous porous structure and large specific surface area.3.3.Chromatographic evaluation of the C8/PO(OH)2-silica hybrid monolithic capillary columnThe lowest plate heights of approximate7.6m (∼132,000plates/m),7.1m(∼141,000plates/m)and10.8mTable1Optimization of the preparation conditions of C8/PO(OH)2-silica hybrid monolithic capillary columns.Column SH-TMOS(mg)C8-TMOS(mg)PEG-10000(mg)Permeability(×10−14m2)Optical microscope imageA13158015.3B1315905.4C1315100Hard topumpD1310906.3E1320904.8F81590Hard topumpG1815906.3The amount of H2O,ammonium hydroxide,vinylphosphonic acid,TMOS,SDS and AIBN wasfixed and can be seen in Section2.2.68Z.Zhang et al./J.Chromatogr.A 1416(2015)64–73Fig.2.(A)Comparison of the separation of alkylbenzenes on C 8/PO(OH)2-silica hybrid monolithic capillary column and PO(OH)2-silica hybrid monolithic capillary column (15cm-long,75m i.d.,360m o.d.).(B)EDX patterns of C 8/PO(OH)2-silica hybrid monolithic capillary column.(C)Specific surface area and pore distribution of C 8/PO(OH)2-silica hybrid monolithic capillary column.(D)The N 2adsorption/desorption isotherm of C 8/PO(OH)2-silica hybrid monolithic capillary column.(E,F)SEM images of the cross section of the C 8/PO(OH)2-silica hybrid monolithic capillary column.Scale bars,(E)50m;(F)5m.Experimental condition for (A):flow rate,400nL/min;mobile phase,H 2O/ACN,70/30(v/v);detection wavelength,214nm;temperature,25◦C.Analytes:1,thiourea;2,toluene;3,ethylbenezene;4,propylbenezene.All of analytes were dissolved with mobile phase and the concentrations of them were 10mg/L.The injection volume was 5L with splitting.(∼93,000plates/m)were obtained on the C 8/PO(OH)2-silica hybrid monolithic capillary column,using acetophenone,toluene,and aniline as probes,respectively (Fig.3).The high column efficiency indicated a uniform structure of the prepared monolith.To explore the retention mechanism of the C 8/PO(OH)2-silica hybrid monolithic capillary column,alkylbenzenes and cytokinins were chosen as probes.As shown in Fig.4A,a linear relationship of ln k versus ACN content can be observed for alkylbenzenes,indicating the RP retention character of the monolithic column.On the other hand,a linear relationship of k versus 1/[HCOONH 4]can be observed (Fig.4B),indicating the ion-exchange retention mechanism.According to the two-site models of mixed-mode retention mechanisms,we can confirm the contribution of reversed phase mechanism to separation of CKs,for the inter-cepts of fitting equation in Fig.4B were positive.Subsequently,the C 8/PO(OH)2-silica hybrid monolithic capillary column wasZ.Zhang et al./J.Chromatogr.A1416(2015)64–7369Fig.3.Van Deemter plot of the height equivalent to a theoretical plate as a func-tion of linear velocity.Experimental condition:analytical column,C8/PO(OH)2-silica hybrid monolithic capillary column(15cm-long,75m i.d.,360m o.d.).Mobile phase,H2O/ACN,75/25(v/v).Detection wavelength,214nm;temperature,25◦C. All of analytes were dissolved with mobile phase and the concentrations of them were10mg/L.The injection volume was5L with splitting.employed to explore the retention behavior toward DEED-GAs.As shown in Fig.5A,the retention time decreased dramatically with the increase of ACN content.In addition,a dramatic decrease in the retention as the increase of salt concentration from10to25mM was observed(Fig.5B).Taken together,the results demonstrated the cation exchange/hydrophobic retention mechanism of the C8/PO(OH)2-silica hybrid monolithic capillary column.In order to confirm that CX/RP stationary phase can improve the separation for DEED-GAs,we made a comparison for separa-tion of them on the C8/PO(OH)2-silica hybrid monolithic capillary column and C18-silica monolithic capillary column.As shown in Fig.S2,co-elutions for GA1and GA3and much lower resolution could be observed on C18-silica monolithic capillary column The CX/RP monolithic column exhibited better separation selectivity and stronger retention for DEED-GAs.Therefore,the C8/PO(OH)2-silica hybrid monolithic capillary column monolithic column will be further investigated.To investigate the reproducibility of the C8/PO(OH)2-silica hybrid monolithic capillary column,two additional batches were prepared.The reproducibility of three batches was chromato-graphically evaluated on the nano-LC–MS platform,using3GA derivatives(DEED-GA3,DEED-GA9and DEED-GA51)as probes.As shown in Fig.S3,the batch-to-batch reproducibility of the retention factor k values was obtained with RSD being1.5%,2.3%and1.4%,for GA9,GA3,GA51,respectively,indicating an excellent reproducibility of the preparation strategy for the monoliths.3.4.Development of PT-SPE method and derivatizationGA analysis is commonly hampered by the complicated sam-ple matrix,low endogenous content,and poor MS responses.To improve the MS response of GAs,chemical derivatization of GAs was performed according to our previous work[25],through label-ing with a tertiary amine group.The derivatization was completed through a reaction between the amino group of DEED and the car-boxyl group of GAs,with the help of catalysts(TEA and CMPI).After derivatization,the detection mode was changed into positivemode, Fig.4.(A)The plot of log k versus ACN content(%)for the separation of alkylbenzenes.(B)The plot of k versus1/[HCOONH4mM]for the separation of CKs.Experimental conditions:analytical column,C8/PO(OH)2-silica hybrid monolithic capillary column(30cm-long,75m i.d.,360m o.d.).Flow rate,500nL/min.Mobile phase:H2O/ACN (v/v)for A,HCOONH4(pH4.5)/ACN,(80/20,v/v)for B.Detection wavelength,214nm for A and254nm for B;temperature,25◦C.All of analytes were dissolved with mobile phase and the concentrations of them were10mg/L.The injection volume was5L withsplitting.Fig.5.(A)The effect of ACN content on the retention of DEED-GAs.(B)The effect of HCOONH4content on the retention of DEED-GAs.Experimental conditions:analytical column,C8/PO(OH)2-silica hybrid monolithic capillary column(30cm-long,75m i.d.,360m o.d.).Flow rate,500nL/min.Mobile phase:10mM HCOONH4(pH4)/ACN for A and HCOONH4(pH4)/ACN(70/30,v/v).Temperature,25◦C.The analytes were dissolved with mobile phase and the concentrations of them were10ng/mL.The injection volume was100nL.。