北师大版数学九年级下册期中测试
- 格式:doc
- 大小:251.00 KB
- 文档页数:6
期中检测卷时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.抛物线y =-(x +2)2-3的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.已知α为锐角,sin(α-20°)=32,则α的度数为( ) A .20° B .40° C .60° D .80° 3.已知抛物线y =x 2-x -1与x 轴的一个交点为(m ,0),则代数m 2-m +100的值为( ) A .98 B .109 C .99 D .1014.如图,生活经验表明靠墙摆放的梯子当α=70°时(α为梯子与地面所成的角)能够使人安全攀爬.现在有一长为5.8米的梯子AB ,确保在能够使人安全攀爬的情况下,梯子的顶端能达到的高度AC 约为(结果精确到0.1米.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)( )A .2.0米B .5.5米C .2.1米D .5.6米第4题图 第5题图5.如图,已知二次函数y =x 2+bx +c 图象的对称轴是直线x =1,过抛物线上两点的直线AB 平行于x 轴.若点A 的坐标为⎝⎛⎭⎫0,32,则点B 的坐标为( ) A.⎝⎛⎭⎫3,32 B.⎝⎛⎭⎫32,32 C.⎝⎛⎭⎫2,32 D.⎝⎛⎭⎫32,2 6.已知抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连接AC ,则tan ∠CAB 的值为( )A.12B.55C.255D .2 二、填空题(本大题共6小题,每小题3分,共18分) 7.二次函数y =2(x -3)2-4的最小值为________.8.在Rt △ABC 中,∠C =90°,若AB =6,cos A =23,则AC =________.9.已知点A (-3,m )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.10.将45°的∠AOB 按如图所示的方式放置在一把刻度尺上,顶点O 与刻度尺下边沿的端点重合,OA 与刻度尺下边沿重合,OB 与刻度尺上边沿的交点B 在刻度尺上的读数恰为2cm.若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC 与刻度尺上边沿的交点C 在刻度尺上的读数约为________cm(结果精确到0.1cm ,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).第10题图 第11题图 第12题图11.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB BC =23,那么tan ∠DCF 的值是________.12.我们把一边和该边上的高相等的三角形称为“和谐三角形”.如图,已知抛物线y =ax 2经过A (-1,1),P 是y 轴正半轴上的动点,射线AP 与抛物线交于另一点B ,当△AOP 是“和谐三角形”时,点B 的坐标为______________.三、(本大题共5小题,每小题6分,共30分)13.计算:cos60°-2-1+(-2)2-(π-3)0.14.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线.若AC =3,求线段BD 的长.15.如图是一个专用车位的指示牌,其侧面示意图可看成由一个半圆和一个等腰梯形ABCD 组成.已知等腰梯形ABCD 的上底AD =18cm ,腰AB =50cm ,∠B =70°,求这个指示牌的高(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).16.已知二次函数y =ax 2+bx +c (a ≠0)的图象上部分点的横坐标x 与纵坐标y 的对应值如下表所示:(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标及上表中m 的值.17.如图,已知锐角△ABC .(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、(本大题共3小题,每小题8分,共24分) 18.已知抛物线y =x 2-4x +m -1.(1)若抛物线与x 轴只有一个交点,求m 的值;(2)若抛物线与直线y =2x -m 只有一个交点,求m 的值.19.如图,在△ABC 中,∠ABC =45°,AD 是BC 边的中线,过点D 作DE ⊥AB 于点E ,且sin ∠DAB =35,DB =3 2.求:(1)AB 的长;(2)∠CAB 的正切值.20.如图,已知二次函数y=a(x-h)2+3的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?五、(本大题共2小题,每小题9分,共18分)21.某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图①,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.(1)如图②,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图③,当∠BAC=12°时,求AD的长(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45,sin12°≈0.21,cos12°≈0.98,310≈17.6).22.我们常见的炒菜锅和锅盖都是抛物线面(如图①),经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”.某锅的锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图②所示,如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C 1和C 2的解析式;(2)如果炒菜锅时的水位高度是1dm ,求此时水面的直径;(3)如果将一个底面直径为3dm ,高度为3dm 的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.六、(本大题共12分)23.若抛物线L :y =ax 2+bx +c (a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系,此时,直线l 叫作抛物线L 的“带线”,抛物线L 叫作直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式.参考答案与解析1.D 2.D 3.D 4.B 5.C 6.D 解析:令y =0,则-x 2-2x +3=0,解得x =-3或1,则A (-3,0),B (1,0).∵y =-x 2-2x +3=-(x +1)2+4,∴顶点C 的坐标为(-1,4).如图所示,过点C 作CD ⊥AB于点D .在Rt △ACD 中,tan ∠CAD =CD AD =42=2.故选D.7.-4 8.4 9.(-1,7) 10.2.7 11.5212.(2,4)或(1,1) 解析:把A (-1,1)代入y =ax 2得a =1,∴抛物线的解析式为y =x 2.∵A (-1,1),∴∠AOP =45°,OA = 2.∵△AOP 是“和谐三角形”,∴当点A 到OP 的距离等于OP 时,即OP =1,此时AP ⊥y 轴,点A 与点B 关于y 轴对称,则点B 的坐标为(1,1).当点P 到OA 的距离等于OA 时,即点P 到OA 的距离等于2,则OP =2,此时直线AP 的解析式为y =x +2.解方程x 2=x +2得x 1=-1,x 2=2,则点B 的坐标为(2,4).同理当点O 到AP 的距离等于AP 时,得到OP =1或OP =2.综上所述,点B 的坐标为(2,4)或(1,1).13.解:原式=12-12+2-1=1.(6分)14.解:∵△ABC 中,∠C =90°∠B =30°,∴∠BAC =60°.(1分)∵AD 是△ABC 的角平分线,∴∠CAD =∠BAD =30°,∴∠BAD =∠B ,∴AD =BD .(3分)在Rt △ADC 中,∵AD =AC cos30°=332=2,∴BD =2.(6分) 15.解:作AE ⊥BC 于点E ,∴∠AEB =90°.(1分)在Rt △ABE 中,AE =AB ·sin B ≈50×0.94=47(cm),(4分)47+182=56(cm).答:这个指示牌的高约是56cm.(6分)16.解:(1)将(-1,-5),(0,1),(2,1)代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧a -b +c =-5,c =1,4a +2b +c =1,解得⎩⎪⎨⎪⎧a =-2,b =4,c =1.∴这个二次函数的解析式为y =-2x 2+4x +1.(3分) (2)由y =-2x 2+4x +1=-2(x -1)2+3,故其顶点坐标为(1,3).(4分)当x =4时,m =-2×16+16+1=-15.(6分)17.解:(1)如图所示.(3分)(2)∵AD ⊥BC ,∴∠ADB =∠ADC =90°.(4分)在Rt △ABD 中,∵tan ∠BAD =BD AD =34,∴BD =34×4=3,∴CD =BC -BD =5-3=2.(6分)18.解:(1)∵抛物线y =x 2-4x +m -1与x 轴只有一个交点,∴Δ=b 2-4ac =(-4)2-4×1×(m -1)=20-4m =0,(2分)解得m =5.(4分)(2)联立抛物线与直线解析式消掉y ,得x 2-4x +m -1=2x -m ,整理得x 2-6x +2m -1=0.(6分)∵抛物线与直线只有一个交点,∴Δ=b 2-4ac =(-6)2-4×1×(2m -1)=0,解得m =5.(8分)19.解:(1)在Rt △BDE 中,∵DE ⊥AB ,BD =32,∠ABC =45°,∴BE =DE =3.在Rt △ADE 中,∵sin ∠DAB =35,DE =3,∴AD =DE sin ∠DAB =335=5,(2分)由勾股定理得AE=AD 2-DE 2=4,∴AB =AE +BE =4+3=7.(4分)(2)作CH ⊥AB 于点H .∵AD 是BC 边的中线,BD =32,∴BC =6 2.(6分)∵∠ABC =45°,∴BH =CH =6,∴AH =7-6=1.在Rt △CHA 中,tan ∠CAB =CHAH=6.(8分)20.解:(1)将O (0,0),A (2,0)代入二次函数的解析式y =a (x -h )2+3中得h =1,a =-3,∴抛物线的对称轴为直线x =1.(2分)(2)点A ′是该函数图象的顶点.(3分)理由如下:如图,作A ′B ⊥x 轴于点B ,∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠A ′OA =60°.(5分)在Rt △A ′OB 中,∵OB =OA ′·cos ∠A ′OA =12OA ′=1,A ′B =OA ′·sin ∠A ′OA =3,∴点A ′的坐标为(1,3),由(1)知该抛物线的解析式为y =-3(x -1)2+ 3.∴点A ′为抛物线y =-3(x -1)2+3的顶点.(8分)21.解:(1)∵∠BAC =24°,CD ⊥AB ,∴sin24°=CDAC,(2分)∴CD =AC ·sin24°≈30×0.41=12.3(cm),∴支撑臂CD 的长约为12.3cm.(4分)(2)如图,当∠BAC =12°时,支撑杆CD 的位置有两种情况.过点C 作CE ⊥AB 于点E .∵∠BAC =12°,∴sin12°=EC AC =EC 30, cos12°=AEAC,∴CE ≈30×0.21=6.3(cm),∴AE =30×0.98=29.4(cm).(7分)∵CD =12.3cm ,∴DE =CD 2-CE 2≈10.56(cm),∴AD =AE -DE ≈29.4-10.56=18.84(cm),AD ′=AE +D ′E ≈39.96(cm),AD 的长约为18.84cm 或39.96cm.(9分)22.解:(1)由于抛物线C 1,C 2都过点A (-3,0),B (3,0),可设它们的解析式为y =a (x -3)(x +3).∵抛物线C 1还经过D (0,-3),∴-3=a (0-3)(0+3),解得a =13,即抛物线C 1的解析式为y =13x 2-3(-3≤x ≤3).(2分)∵抛物线C 2还经过C (0,1),∴1=a (0-3)(0+3),解得a =-19,即抛物线C 2的解析式为y =-19x 2+1(-3≤x ≤3).(4分)(2)当炒菜锅里的水位高度为1dm 时,y =-2,即13x 2-3=-2,解得x =±3,∴此时水面的直径为23dm.(6分)(3)锅盖能正常盖上,理由如下:当x =32时,抛物线C 1为y =13×⎝⎛⎭⎫322-3=-94,抛物线C 2为y =-19×⎝⎛⎭⎫322+1=34,而34-⎝⎛⎭⎫-94=3,∴锅盖能正常盖上.(9分) 23.解:(1)令直线y =mx +1中x =0,则y =1,即该直线与y 轴的交点坐标为(0,1).(1分)将(0,1)代入抛物线y =x 2-2x +n 中,得n =1,(3分)∴抛物线的解析式为y =x 2-2x +1=(x -1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y =mx +1中,得0=m +1,解得m =-1.(5分)(2)联立方程组⎩⎪⎨⎪⎧y =2x -4,y =6x ,解得⎩⎪⎨⎪⎧x 1=-1,y 2=-6,⎩⎪⎨⎪⎧x 2=3,y 2=2.∴该“路线”L 的顶点坐标为(-1,-6)或(3,2).(8分)令“带线”l :y =2x -4中x =0,则y =-4,∴“路线”L 的图象过点(0,-4).(9分)设该“路线”L 的解析式为y =m (x +1)2-6或y =n (x -3)2+2,将点(0,-4)代入得-4=m (0+1)2-6,-4=n (0-3)2+2,解得m =2,n =-23.∴此“路线”L 的解析式为y =2(x +1)2-6或y =-23(x -3)2+2.(12分)。
一、选择题1.关于二次函数22y x x =-+的最值,下列叙述正确的是( )A .当2x =时,y 有最小值0.B .当2x =时,y 有最大值0.C .当1x =时,y 有最小值1D .当1x =时,y 有最大值12.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax bc =+的图象大致是( )A .B .C .D .3.已知二次函数y=(m+2)23mx -,当x<0时,y 随x 的增大而增大,则m 的值为( ) A .5B 5C .5D .2 4.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--5.已知二次函数2y ax bx c =++的部分图象如图所示,下列关于此函数图象的描述中,正确的个数是( )①对称轴是直线1x =;②当0x <时,函数值y 随x 的增大而增大;③方程20ax bx c ++=的解为11x =-,23x =;④当1x <-或3x >时,20ax bx c ++<.A .1B .2C .3D .46.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<< 7.如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥,4tan 3B =,若10BC =,则AD 的长为( )A .6B .323C .7.5D .108.如图,边长为23的等边三角形AOB 的顶点B 在x 轴的正半轴上,点C 为AOB 的中心,将AOB 绕点O 以每秒60︒的速度逆时针旋转,则第2021秒,AOB 的中心C 的对应点2021C 的坐标为( )A .()0,2-B .)3,1-C .(3D .(3- 9.△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,且22440c ac a -+=,则sinA+cosA 的值为( ) A 13+ B .122 C 23+ D 210.如图,直线123////l l l ,ABC 的三个顶点分别落在123,,l l l 上,AC 交2l 于点D ,设1l 与2l 的距离为12,h l 与3l 的距离为2h .若12,:1:2AB BC h h ==,则下列说法正确的是( )A .:2:3ABD ABC S S =B .:1:2ABD ABC S S =△△C .sin :sin 2:3ABD DBC ∠∠=D .sin :sin 1:2ABD DBC ∠∠= 11.如图,在等腰Rt △ABC 中,∠ACB=90°,AC=14,点E 在边CB 上,CE=2EB ,点D 在边AB 上,CD 垂直AE ,垂足为F ,则AD 的长为( )A .92B .4225C .35D .1512.如图,推动个小球沿倾斜角为α的斜坡向上行驶,若5sin 13α=,小球移动的水平距离12AC =米,那么小球上升的高度BC 是( )A .5米B .6米C .6.5米D .7米二、填空题13.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.14.已知:二次函数y =ax 2+bx +c (a≠0)中的x 和y 满足如表:x … 0 1 2 3 4 5 …y … 3 0 -1 0 m 8 …(1)可求得m 的值为_____;(2)求出这个二次函数的解析式_____;(3)当0<x <3时,则y 的取值范围为_____.15.二次函数y=ax 2+c 的图象与y=3x 2的图象形状相同,开口方向相反,且经过点(1,1),则该二次函数的解析式为________________ .16.将抛物线243y x x =-+沿x 轴向左平移2个单位,则平移后抛物线的解析式是__. 17.如图,有一个三角形的钢架ABC ,∠A=30°,∠C=45°,AC=2(3+1)m .工人师傅搬运此钢架_______(填“能”或“不能”)通过一个直径为2.1m 的圆形门?18.在ABC 中,若213sin tan 023A B ⎛⎫-+-= ⎪ ⎪⎝⎭,则C ∠的度数为__________. 19.如图,在△ABC 中,∠BAC =90°,AB =AC =5,将△ABC 折叠,使点B 落在AC 边上的点D 处,EF 为折痕,若sin ∠CFD 的值为23,则BE =_____.20.如图,已知90ACB ∠=︒,90BAD ∠=︒,AB AD =,若5CD =,1tan 4BAC ∠=,则四边形ABCD 的面积为______.三、解答题21.平安路上,多“盔”有你.在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价1元,平均每周可多售出20顶.(1)若该商店希望平均每周获利4000元,则每顶头盔应降价多少?(2)商店降价销售后,决定每销售1顶头盔,就向某慈善机构捐赠m元(m为整数,且15m <),帮助做“交通安全”宣传.捐赠后发现,该商店每周销售这种商品的利润仍随售价的增大而增大,求m的值.22.如图,在直角坐标系中,已知直线142y x=-+与y轴交于A点,与x轴交于B点,C点的坐标为()2,0-.(1)求经过A,B,C三点的抛物线的表达式;(2)如果M为抛物线的顶点,连接AM,BM,求ABM∆的面积.(3)抛物线上是否存在一点P,使12OBP ACOS S∆∆=?若存在,请求出点P的坐标;若不存在,请说明理由.23.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x天的售价为y元/千克,y关于x的函数解析式为()()76120,2030,mx m x xyn x x⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W元(利润=销售收入-成本).(1)m=______,n=______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?24.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)求证:△CDE∽△CBD;(3)若AB=6,BE=8,求CD的长.25.计算:02sin 45(︒-26.先化简,再求值:21111a a a ⎛⎫ ⎪⎝--+⎭÷,其中45260a tan =︒+︒.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先将二次函数配方成()211y x =--+,即可求解.【详解】解:()()2221221y x x x x x =-+=----+=, 二次函数的图象开口向下,当1x =时,y 有最大值1,故选:D .【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键. 2.B解析:B【分析】根据二次函数的图像,确定a ,b ,c 的符号,后根据一次函数k,b 的符号性质确定图像的分布即可.【详解】∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半轴,∴c >0,∵抛物线的对称轴在原点的左边, ∴2b a-<0,且a <0, ∴b <0,∴bc <0;∴y ax bc =+的图像分布在第二,第三,第四象限, 故选B .【点睛】本题考查了二次函数的图像,一次函数的图像,熟练掌握二次函数的图像与各系数之间的关系,一次函数中k,b与图像分布之间的关系是解题的关键.3.A解析:A【分析】根据次数为2可列方程,再根据函数增减性确定m值.【详解】m-=,解:根据题意可知,232解得,m=∵二次函数y=(m+2)23mx-,当x<0时,y随x的增大而增大,∴m+2<0,解得m<-2,综上,m=故选:A.【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号.4.B解析:B【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x元时,获得的利润为y元,根据题意可得:[]=---即y=(x-35)(400-5x),(35)2005(40)y x x故选:B.【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.5.D解析:D【分析】利用拋物线的顶点的横坐标为1可对①进行判断;根据二次函数的性质对②进行判断;利用对称性得到拋物线与x轴的另一个交点坐标为(3、0),则可对③进行判断;观察函数图象,当抛物线在x轴下方时,得出其x的取值范围,则可对④进行判断.【详解】x=,故①的说法正确;根据函数图像可知,抛物线的对称轴为直线1x<时,函数y随x的增大而增大,故②的说法正确;当1点(1-、0)关于1x =的对称点为(3、0),则抛物线与x 轴的另一个交点坐标为(3、0),所以方程20ax bx c ++=的解为121,3x x =-=,故③说法正确; 由函数图像可知,当1x <-或3x >时,抛物线在x 的下方,即20ax bx c ++<,所以④的说法正确综上所述①②③④的说法都正确故选:D .【点睛】本题考查了拋物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质. 6.A解析:A【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 7.B解析:B【分析】设DC=4x ,BD=3x ,根据勾股定理求CD ,再根据∠ACD=∠B ,用三角函数求AD .【详解】解:∵CD AB ⊥,4tan 3DB B DC==,设DC=4x ,BD=3x , (3x )2+(4x )2=102,∵x>0,解得x=2,∴BD=6,CD=8 ∵∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B , ∴4tan 3ACD ∠=, ∴43AD CD =,CD=8, ∴323AD =, 故选:B .【点睛】 本题考查了三角函数,勾股定理等知识,解题关键是根据已知的正切值求出线段长. 8.B解析:B【分析】通过计算画出第2021秒,AOB 的位置,过C′作C′D ⊥x 轴于点D ,连接OC′,BC′,求出DC′的长,即可求解.【详解】∵360°÷60°=6,∴AOB 的位置6秒一循环,而2021=6×336+5,∴第2021秒,AOB 的位置如图所示, 设点C 的对应点C′,过C′作C′D ⊥x 轴于点D ,连接OC′,BC′,则∠DOC′=30°,,∴DC′=OD∙tan ∠,∴C′)1-. 故选B .【点睛】本题主要考查图形于=与坐标,等边三角形的性质,锐角三角函数,找到图形的变化规律,画出图形,是解题的关键.9.A解析:A【分析】由22440c ac a -+=得2c a =,则1sin 2a A c ==,即可得到30A ∠=︒,利用特殊角的三角函数值就可以求出结果.【详解】解:∵22440c ac a -+=,∴()220c a -=,即2c a =, ∵90C ∠=︒, ∴1sin 2a A c ==, ∴30A ∠=︒, ∴3cos A =, ∴31sin cos 2A A +=. 故选:A .【点睛】 本题考查锐角三角函数,解题的关键是掌握特殊角的三角函数值.10.D解析:D【分析】作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,利用三角形面积公式可得到12::1:2ABD BCD S S h h ∆∆==,则可对A 、B 进行判断;利用正弦的定义得到1sin h ABD AB ∠=,2sin h DBC BC ∠=,利用AB CB =可对C 、D 进行判断.【详解】解:作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,11122ABD S BD AE BD h ∆==,21122BCE S BD CF BD h ∆==, 12::1:2ABD BCD S S h h ∆∆∴==,:1:3ABD ABC S S ∆∆∴=,所以A 、B 选项错误;在Rt ABE ∆中,1sin h AE ABD AB AB ∠==, 在Rt BCF ∆中,2sin h CF DBC BC BC∠==, 而AB CB =,12sin :sin :1:2ABD DBC h h ∴∠∠==,所以C 选项错误,D 选项正确. 故选:D .【点睛】本题考查了考查了解直角三角形,也考查了平行线之间的距离和等腰直角三角形的性质,难度一般.11.B解析:B【分析】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC=BC=14,∠CAD=45°,求得AH=DH ,得到14CH DH =-,再证明△ACE ∽△DHC ,可得AC CE DH CH=,再列方程,解方程即可得到答案.【详解】解:过D 作DH ⊥AC 于H ,∵在等腰Rt △ABC 中,∠C=90°,AC=14,∴AC=BC=14, ∠CAD=45°,∴AH=DH ,∴14CH DH =-,∵CF ⊥AE ,∴∠DHA=∠DFA=90°,90,DCH HDC DCH CAF ∴∠+∠=︒=∠+∠∴∠HAF=∠HDF ,∴△ACE ∽△DHC ,∴ AC CE DH CH =, ∵CE=2EB , ∴283CE =, ∴ 28143,14DH DH =- ∴425DH = 经检验:425DH =符合题意, ∴42422sin 45552DH AD ==⨯=︒, 故选.B【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键. 12.A解析:A【分析】在Rt △ABC 中,先根据三角函数求出5tan 12α=,再通过解直角三角形求出BC 即可. 【详解】解:如图,在Rt △ABC 中,∵5sin 13α=, ∴5tan 12α=, ∴5tan 12BC AC α==,∵12AC =米, ∴55×12=51212BC AC ==米. 故选:A .【点睛】 此题主要考查解直角三角形,锐角三角函数等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.二、填空题13.【分析】设出E 的坐标表示出M 坐标进而表示出EM 化成顶点式即可求得EM 的最大值【详解】解:∵点E 是直线BC 上方抛物线上的一动点∴点E 的坐标是(m )点M 的坐标是(m )∴EM =﹣()==(m2﹣4m )=( 解析:32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值.【详解】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+), ∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32, 故答案为32. 【点睛】 本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.14.【分析】(1)先求得对称轴然后根据抛物线的对称性即可求得;(2)把点(03)(10)(30)代入设抛物线解析式利用待定系数法求函数解析式;(3)利用图表和抛物线的性质即可得出答案【详解】解:(1)∵解析:243y xx =-+13y -≤<【分析】(1)先求得对称轴,然后根据抛物线的对称性即可求得;(2)把点(0,3)、(1,0)、(3,0)代入设抛物线解析式,利用待定系数法求函数解析式;(3)利用图表和抛物线的性质即可得出答案.【详解】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)过点(1,0),(3,0),∴抛物线对称轴为直线x 132+==2, ∴点(0,3)关于对称轴的对称点是(4,3),∴m =3,故答案为3;(2)把点(0,3)、(1,0)、(3,0)代入设抛物线解析式y =ax 2+bx +c 得30930c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得413a c b =⎧==-⎪⎨⎪⎩,∴抛物线的解析式为y =x 2﹣4x +3,故答案为y =x 2﹣4x +3;(3)由抛物线的性质得当x=2时,y 有最小值-1,由图表可知抛物线y =ax 2+bx +c 过点(0,3),(3,0),因此当0<x <3时,则y 的取值范围为是﹣1≤y <3.【点睛】此题考查待定系数法求函数解析式,二次函数的性质,掌握待定系数法求函数解析式的方法与步骤是解决问题的关键.15.y=-3x2+4【分析】根据二次函数的性质利用待定系数法求解【详解】解:由题意可设所求函数为:∵所求函数经过点(11)∴∴c=4∴所求函数为:故答案为【点睛】本题考查二次函数的应用熟练掌握利用待定系解析:y=-3x 2+4【分析】根据二次函数的性质,利用待定系数法求解.【详解】解:由题意可设所求函数为:23y x c =-+,∵所求函数经过点(1,1),∴2131c =-⨯+,∴c=4,∴所求函数为:234y x =-+,故答案为234y x =-+.【点睛】本题考查二次函数的应用,熟练掌握利用待定系数法求二次函数解析式是解题关键. 16.y=x2-1【分析】先把抛物线写成顶点式再写出平移后的顶点根据顶点式可求平移后抛物线的解析式【详解】解:∴原抛物线顶点坐标为(2-1)向左平移2个单位平移后抛物线顶点坐标为(0-1)∴平移后抛物线解解析:y=x 2-1【分析】先把抛物线写成顶点式,再写出平移后的顶点,根据顶点式可求平移后抛物线的解析式.【详解】解:()22-4+3-2-1y x x x ==,∴原抛物线顶点坐标为(2,-1),向左平移2个单位,平移后抛物线顶点坐标为(0,-1), ∴平移后抛物线解析式为:21y x =-,故答案为:21y x =-.【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移,运用顶点式求抛物线的解析式. 17.能【分析】过B 作BD ⊥AC 于D 解直角三角形求出AD=xmCD=BD=xm 得出方程求出方程的解即可【详解】解:工人师傅搬运此钢架能通过一个直径为21m 的圆形门理由是:过B 作BD ⊥AC 于D ∵AB >BDB解析:能【分析】过B 作BD ⊥AC 于D ,解直角三角形求出AD=3xm ,CD=BD=xm ,得出方程,求出方程的解即可.【详解】解:工人师傅搬运此钢架能通过一个直径为2.1m 的圆形门,理由是:过B 作BD ⊥AC 于D ,∵AB >BD ,BC >BD ,AC >AB ,∴求出DB 长和2.1m 比较即可,设BD=xm ,∵∠A=30°,∠C=45°,∴DC=BD=xm ,33,∵AC=23)m ,∴),∴x=2,即BD=2m <2.1m ,∴工人师傅搬运此钢架能通过一个直径为2.1m 的圆形门.【点睛】本题考查了解直角三角形的应用,解一元一次方程等知识点,能正确求出BD 的长是解此题的关键.18.120º【分析】根据绝对值和平方的非负数性质可得sinA=tanB=根据特殊角的三角函数值可得出∠A ∠B 的度数根据三角形内角和定理即可得答案【详解】∵∴sinA-=0-tanB=0∴sinA=tan解析:120º【分析】根据绝对值和平方的非负数性质可得sinA=12,出∠A 、∠B 的度数,根据三角形内角和定理即可得答案.【详解】∵21sin tan 02A B ⎫-+=⎪⎪⎝⎭,∴sinA-12=0,3-tanB=0,∴sinA=12,tanB=3, ∴∠A=30°,∠B=30°,∠C=180°-30°-30°=120°,故答案为:120°【点睛】本题考查了特殊角的三角函数值、非负数的性质及三角形内角和定理,根据非负数性质得出sinA=12,tanB=3,并熟记特殊角的三角函数值是解题关键. 19.3【分析】由题意得△BEF ≌△DEF 故∠EDF=∠B ;由三角形的外角性质即可解决【详解】解:∵在△ABC 中∠BAC=90°AB=AC=5∴∠B=∠C 设BE=x ∵AB=5∴AE=AB-BE=5-x ∵将解析:3【分析】由题意得△BEF ≌△DEF ,故∠EDF=∠B ;由三角形的外角性质,即可解决.【详解】解:∵在△ABC 中,∠BAC=90°,AB=AC=5,∴∠B=∠C ,设BE=x ,∵AB=5∴AE=AB-BE=5-x ,∵将△ABC 折叠,使点B 落在AC 边上的点D 处,∴△BEF ≌△DEF∴BE=DE=5-x ,∠B=∠EDF=∠C∵∠ADE+∠EDF=∠C+∠DFC∴∠ADE=∠DFC∴sin ∠CFD=sin ∠ADE=523AE x DE x -==, 解得,x=3,即,BE=3故答案为:3【点睛】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形外角性质等知识来解决问题. 20.10【分析】过点D 作DE ⊥AC 于E 利用AAS 证出ABC ≌DAE 从而得出BC=AEAC=DE ∠BAC=∠ADE 根据锐角三角函数可得设BC=AE=x 则AC=DE=4x 从而求出CE 利用勾股定理列出方程即可解析:10【分析】过点D 作DE ⊥AC 于E ,利用AAS 证出ABC ≌DAE ,从而得出BC=AE ,AC=DE ,∠BAC=∠ADE ,根据锐角三角函数可得14BC AE AC DE ==,设BC=AE=x ,则AC=DE=4x ,从而求出CE ,利用勾股定理列出方程即可求出x 的值,从而求出BC 、AC 和DE ,再根据四边形ABCD 的面积=ABC ACD SS +即可求出结论.【详解】 解:过点D 作DE ⊥AC 于E∴∠EAD +∠ADE=90°∵90BAD ∠=︒∴∠BAC +∠EAD=90°∴∠BAC=∠ADE∵∠BCA=∠AED=90°,AB AD =∴ABC ≌DAE∴BC=AE ,AC=DE ,∠BAC=∠ADE ∴1tan tan 4BAC ADE ∠=∠=∴14BC AE AC DE == 设BC=AE=x ,则AC=DE=4x∴EC=AC -AE=3x在Rt CDE 中,CE 2+DE 2=CD 2即(3x )2+(4x )2=52解得:x=1或-1(不符合题意舍去)∴BC=1,AC=DE=4∴四边形ABCD 的面积=ABC ACD SS + =12BC·AC +12AC·DE =12×1×4+12×4×4 =10故答案为:10.【点睛】此题考查的是全等三角形的判定及性质、锐角三角函数和勾股定理,掌握全等三角形的判定及性质、锐角三角函数和勾股定理是解题关键.三、解答题21.(1)20元;(2)3或4【分析】(1)设每顶头盔应降价x 元,根据题意列出方程求解即可;(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意列出函数求解即可;【详解】解:(1)设每顶头盔应降价x 元.根据题意,得(10020)(6840)4000x x +--=.解得123,20x x ==.当3x =时,68365-=;当20x 时,682048-=;每顶售价不高于58元,∴每顶头盔应降价20元.(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意,得 [10020(68)](40)w a a m =+---220(202260)1460(40)a m a m =-++-+ 抛物线对称轴为直线1132m a +=,开口向下, 当58a 时,利润仍随售价的增大而增大,113582m +∴,解得3m . 15,35m m <∴<. m 为整数,3m ∴=或4. 【点睛】本题主要考查了二次函数的应用,结合一元二次方程的求解是解题的关键.22.(1)213442y x x =-++;(2)5;(3)存在,点P 的坐标为:()1或()1或()1或()1 【分析】(1)先利用一次函数解析式确定A (0,4),B (8,0),再设交点式y=a (x+2)(x-8),然后把A 点坐标代入求出a 即可得到抛物线解析式;(2)作MD ⊥x 轴于D ,交AB 于E ,再根据ABM ∆的面积=AEM ∆的面积+BEM ∆的面积得出结论;(3)根据12OBP ACO S S ∆∆=得出2∆=OBP S ,再根据点P 在抛物线上,得出y 1=±P ,从而得出点P 的坐标;【详解】解:(1)当x=0时,142y x =-+=4,则A (0,4), 当y=0时,142x -+=0,解得x=8,则B (8,0), 设抛物线解析式为y=a (x+2)(x-8),把A (0,4)代入得a•2•(-8)=4,解得14a =-, ∴抛物线解析式为1(2)(8)4=-+-y x x ∴213442y x x =-++ (2)∵213442y x x =-++ ∴2125(3)44y x =--+∴25(3,)4M 作MD ⊥x 轴于D ,交AB 于E ,如图,把x=3代入142y x =-+得出52y =; ∴25515424EM =-=, ∴ABM ∆的面积=AEM ∆的面积+BEM ∆的面积=1115815224EM OB ⨯⨯=⨯⨯=; (3)存在理由如下:∵1142422∆=⨯⨯=⨯⨯=ACO S OA OC , ∵12OBP ACO S S ∆∆=, ∴11y 8y 422P P OB ⨯⨯=⨯⨯=, ∴y 1=P ;∴y 1=±P ;∵点P 在抛物线上,∴2134=142-++x x 或2134=-142-++x x 解得:121x ,2=3-21x 3=3+29x 4=3+29x ∴点P 的坐标为:()3+21,1或()3-21,1或()3+29,1或()3-29,1 【点睛】本题考查了二次函数综合题,涉及待定系数法求二次函数的解析式,三角形的面积公式等知识,根据题意作出图形,利用数形结合求解是解答此题的关键.23.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值.【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得321276m m =-,解得12m =-, 当地26天的售价为25元/千克时,代入y n =,则25n =, 故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +.当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭, ∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+,∵280>,∴W 随x 的增大而增大,∴当30x =时,952W =最大.∵968952>,∴当18x =时,968W =最大.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.24.(1)见解析;(2)见解析;(3)CD =【分析】(1)直接利用两角对应相等两三角形相似进而得出答案;(2)直接利用相似三角形的性质结合互余两角的关系得出∠DBE=∠EDC ,即可得出答案; (3)利用锐角三角函数关系得出∠ABD=∠DBE=30°,进而得出答案.【详解】解:(1)证明:∵BD 平分∠ABC ,∴∠BAD =∠DBE ,又∵∠A =∠BDE ,∴△BAD ∽△BDE , ∴BA BD =BD BE, ∴BD 2=BA •BE ; (2)证明:∵△BAD ∽△BDE ,∴∠ADB =∠DEB ,∵∠BDE =90°,∴∠DBE+∠BED=90°,∠ADB+∠EDC=90°,∴∠DBE=∠EDC,又∵∠C=∠C,∴△CDE∽△CBD;(3)解:由(1)得:BD2=BA•BE,∵AB=6,BE=8,∴BD2=6×8=48,∴BD=43,∴cos∠ABD=ABBD=43=3,∴∠ABD=30°,∴∠ABD=∠DBC=30°,∴∠C=30°,∴∠C=∠DBE,∴BD=CD=43.【点睛】此题主要考查了相似三角形的判定与性质以及锐角三角函数关系,正确应用相似三角形的判定与性质是解题关键.25.2【分析】根据特殊角三角函数,二次根式化简,0指数幂知识化简,再计算即可求解.【详解】解:原式223(21)21 =--+-2323221=+-2=.【点睛】本题考查了特殊角的三角函数、二次根式运算、0指数幂等知识,熟知相关知识点是解题关键.26.11a-3【分析】直接将括号里面的进行通分运算进而利用分式的加减法则进行运算,再结合分式的除法法则进行计算即可,然后根据特殊的三角函数值求出a 的值带入计算即可;【详解】原式()()11111aa a a a +-=÷+-+ ()()111a a a a a+=⨯+- 11a =-45+2tan6012a =︒︒+=+,原式6; 【点睛】本题主要考查了分式的化简求值以及特殊的三角函数值,正确掌握分式的混合运算和三角函数是解题的关键;。
北师大版九年级下册数学期中测试卷(一)一、填空题1.在等腰三角形ABC中,底边上的高是,这条高与一腰的夹角为60°,则这个三角形的面积是()A.B.C.2 D.32.如图所示,下列说法:①B在A的东北方向,A在B的西南方向;②C在A 的北偏东75°方向;③C在B的南偏东30°方向;④B在C的北偏西30°方向,其中正确的有()A.1个 B.2个 C.3个 D.4个3.如图所示,在△ABC中,已知c=,∠A=45°,∠B=60°,则a的值是()A.3﹣B.3﹣3 C.﹣1 D.5﹣4.二次函数y=x2+2x﹣5有()A.最大值﹣5 B.最小值﹣5 C.最大值﹣6 D.最小值﹣65.若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是()A.b=2,c=4 B.b=﹣2,c=﹣4 C.b=2,c=﹣4 D.b=﹣2,c=46.下列函数中,图象开口最大的是()A.y=5x2B.y=﹣3x2C.y=﹣x2D.y=x27.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.8.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y2二、填空题9.在△ABC中,∠C=90°,a=9,c=15,则sinB=,b=.10.在锐角三角形ABC中,∠B=60°,AD⊥BC于D,AD=3,AC=5,则AB=.11.已知a<﹣1,点(a﹣1,y1),(a,y2),(a+1,y3)都在函数y=x2的图象上,则y1,y2,y3的大小关系是.12.(1)若cosα=,α为锐角,则sinα=;(2)若tanα=2,则= .13.如图所示,某水库大坝的横断面是梯形ABCD,坝顶宽CD=3m,斜坡AD=8m,斜坡BC的坡度i=1:3,B,C间的水平距离为12m,则斜坡AD的坡角∠A=,坝底宽AB=m.14.已知抛物线甲:y=﹣2x2﹣1和抛物线乙的形状相同,且两条抛物线的对称轴均为y轴,两点距离5个单位长度,它们的图象如图所示,则抛物线乙的解析式为.15.已知二次函数y=x2﹣6x+n的最小值为1,那么n的值是.16.将抛物线y=x2﹣2向右平移一个单位后,得到一条新抛物线,则新的抛物线的顶点坐标是.三、解答题17.如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=,求∠B的度数及边BC、AB的长.18.如图所示,已知两山脚B,C相距1 500m,在距山脚B 500m的A处测得山BD,CE的山顶D,E的仰角分别为45°,30°,求两山的高.(精确到1m)19.如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)20.已知,二次函数y=ax2﹣5x+c的图象如图.(1)求这个二次函数的解析式和它的图象的顶点坐标;(2)观察图象,回答:何时y随x的增大而增大;何时y随x的增大而减小.21.已知抛物线的顶点坐标是(﹣3,﹣2),它与直线y=2x+m的交点是(1,6),求抛物线和直线所对应的函数关系式.22.已知一个二次函数的图象经过点A(﹣1,0)、B(3,0)和C(0,﹣3)三点;(1)求此二次函数的解析式;(2)对于实数m,点M(m,﹣5)是否在这个二次函数的图象上?说明理由.23.某工艺厂为迎接建厂60周年,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,其中工艺品的销售单价x(元/件)与每天销售量y(件)之间满足关系式y=﹣10x+800,若物价部门规定,该工艺品销售单价最高不能超过45元/件,那么,销售单价定为多少元时,工艺厂试销该工艺品获得的利润最大?最大利润是多少?24.改革开放后,不少农村用上了自动喷灌设备.如图所示,AB表示水管,在B处有一个自动旋转的喷水头,一瞬间喷出的水是抛物线状,建立如图所示的直角坐标系后,抛物线的表达式为y=﹣x2+2x+.(1)当x=1时,喷出的水离地面多高?(2)你能求出水的落地点距水管底部A的最远距离吗?(3)水管有多高?25.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)参考答案与试题解析1.在等腰三角形ABC中,底边上的高是,这条高与一腰的夹角为60°,则这个三角形的面积是()A.B.C.2 D.3【考点】T7:解直角三角形;KH:等腰三角形的性质.【专题】选择题【分析】画出图形,求出∠B=30°,求出AB、BD,根据等腰三角形性质或同理求出CD,得出BC的长,根据三角形面积求出即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠BAD=60°,∴∠B=30°,∴AB=2AD=2,在Rt△BDA中,由勾股定理得:BD=3,同理可求CD=3,∴BC=6,∴△ABC的面积是×BC×AD=×6×=3,故选D.【点评】本题考查了等腰三角形性质,直角三角形性质,三角形的面积的应用,关键是求出BC的长.2.如图所示,下列说法:①B在A的东北方向,A在B的西南方向;②C在A 的北偏东75°方向;③C在B的南偏东30°方向;④B在C的北偏西30°方向,其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】IH:方向角.【专题】选择题【分析】根据方向角的定义对每一个选项进行逐一的判断,找出正确的选项即可.【解答】解:①B在A的东北方向,A在B的西南方向,此说法正确;②C在A的北偏东75°方向,此说法正确;③C在B的南偏东30°方向,此说法正确;④B在C的北偏西30°方向,此说法正确;正确的有①②③④,故选D.【点评】本题主要考查方向角的知识点,熟知方向角的描述方法是解答此题的关键,此题基础题,比较简单.3.如图所示,在△ABC中,已知c=,∠A=45°,∠B=60°,则a的值是()A.3﹣B.3﹣3 C.﹣1 D.5﹣【考点】T7:解直角三角形【专题】选择题.【分析】过C作CD⊥AB于D,求出∠BCD=30°,AD=DC,设BD=x,则AD=DC=x,BC=2x,得出方程x+x=,求出即可.【解答】解:过C作CD⊥AB于D,∵∠A=45°,∴∠ACD=∠A=45°,∴CD=AD,设BD=x,∵∠CDB=90°,∠B=60°,∴∠BCD=30°,∴BC=a=2x,由勾股定理得:CD=x=AD,∵AB=c=,∴BD=,即x+x=,x=∴a=2x=3﹣,故选A.【点评】本题考查了解直角三角形,含30度角的直角三角形性质,等腰三角形的性质和判定,勾股定理的应用,解此题的关键是得出关于x的方程.4.二次函数y=x2+2x﹣5有()A.最大值﹣5 B.最小值﹣5 C.最大值﹣6 D.最小值﹣6【考点】H7:二次函数的最值.【专题】选择题【分析】先根据二次函数的解析式判断出函数的开口方向,再由其顶点式求出其最值即可.【解答】解:∵二次函数y=x2+2x﹣5中a=1>0,∴此函数有最小值,∴y===﹣6.最小故选:D.【点评】本题考查的是二次函数的最值问题,即二次函数y=ax2+bx+c(a≠0)中,当a>0时,函数有最小值最低点,所以函数有最小值,当x=时,y=.5.若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是()A.b=2,c=4 B.b=﹣2,c=﹣4 C.b=2,c=﹣4 D.b=﹣2,c=4【考点】H7:二次函数的最值.【专题】选择题【分析】根据二次函数y=﹣x2+bx+c的二次项系数﹣1来确定该函数的图象的开口方向,由二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3)确定该函数的顶点坐标,然后根据顶点坐标公式解答b、c的值.【解答】解:∵二次函数y=﹣x2+bx+c的二次项系数﹣1<0,∴该函数的图象的开口方向向下,∴二次函数y=﹣x2+bx+c的图象的最高点坐标(﹣1,﹣3)就是该函数的顶点坐标,∴﹣1=﹣,即b=﹣2;①﹣3=,即b2+4c﹣12=0;②由①②解得,b=﹣2,c=﹣4;故选B.【点评】本题考查了二次函数的最值.解答此题时,弄清楚“二次函数y=﹣x2+bx+c 的图象的最高点坐标(﹣1,﹣3)就是该函数的顶点坐标”是解题的关键.6.下列函数中,图象开口最大的是()A.y=5x2B.y=﹣3x2C.y=﹣x2D.y=x2【考点】H3:二次函数的性质.【专题】选择题【分析】根据二次函数中二次项系数的绝对值越小,开口越大可以得到答案.【解答】解:四个选项中C选项中的二次函数的二次项系数的绝对值最小,其开口最大,故选C.【点评】本题考查了二次函数的性质,解题的关键是记住二次项系数的绝对值越小,开口越大.7.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【专题】选择题【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,排除B、C;当a>0时,二次函数开口向上,一次函数经过一、三象限,排除D;当a<0时,二次函数开口向下,一次函数经过二、四象限,A正确;故选A.【点评】考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.8.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y2【考点】H5:二次函数图象上点的坐标特征.【专题】选择题【分析】由当x=1时,函数y有最大值,根据抛物线的性质得a<0,抛物线的对称轴为直线x=1,当x>1时,y随x的增大而减小,所以由1<x1<x2得到y1>y2.【解答】解:∵当x=1时,函数y有最大值,∴a<0,抛物线的对称轴为直线x=1,∵1<x1<x2,∴y1>y2.故选C.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式.也考查了二次函数的性质.9.在△ABC中,∠C=90°,a=9,c=15,则sinB=,b=12.【考点】T1:锐角三角函数的定义;KQ:勾股定理.【专题】填空题【分析】根据题意作出图形,利用勾股定理求出b的值,然后根据锐角三角函数的定义求出sinB即可.【解答】解:根据题意作出图形,在Rt△ABC中,b==12,∴sinB===.故答案为:,12.【点评】本题考查了锐角三角函数的定义,关键是利用勾股定理求出b的长度,难度一般.10.在锐角三角形ABC中,∠B=60°,AD⊥BC于D,AD=3,AC=5,则AB=2.【考点】T7:解直角三角形;KQ:勾股定理.【专题】填空题【分析】求出∠ADB=90°,通过解直角三角形得出sin∠ABD=,推出AB=,代入求出即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵sin∠ABD=,AD=3,∴AB==2,故答案为:2.【点评】本题考查了解直角三角形的应用,注意:在△ADB中,Rtsin∠ABD=.11.已知a<﹣1,点(a﹣1,y1),(a,y2),(a+1,y3)都在函数y=x2的图象上,则y1,y2,y3的大小关系是y1>y2>y3.【考点】H5:二次函数图象上点的坐标特征.【专题】填空题【分析】抛物线y=x2的对称轴为y轴,即直线x=0,图象开口向上,当a<﹣1时,a﹣1<a<a+1<0,在对称轴左边,y随x的增大而减小,由此可判断y1,y2,y3的大小关系.【解答】解:∵当a<﹣1时,a﹣1<a<a+1<0,而抛物线y=x2的对称轴为直线x=0,开口向上,∴三点都在对称轴的左边,y随x的增大而减小,∴y1>y2>y3.故本题答案为:y1>y2>y3.【点评】本题考查了二次函数的增减性.当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小.12.(1)若cosα=,α为锐角,则sinα=;(2)若tanα=2,则=.【考点】T3:同角三角函数的关系.【专题】填空题【分析】(1)根据sin2α+cos2α=1,可求出cosα的值.(2)化简可得=,代入即可得出答案.【解答】解:(1)∵sin2α+cos2α=1,cosα=,∴sin2α=,又∵α为锐角,∴sinα=.(2)==()2=.故答案为:、.【点评】本题考查了同角三角函数的关系,注意掌握据sin2α+cos2α=1,tanα=.13.如图所示,某水库大坝的横断面是梯形ABCD,坝顶宽CD=3m,斜坡AD=8m,斜坡BC的坡度i=1:3,B,C间的水平距离为12m,则斜坡AD的坡角∠A=30°,坝底宽AB=15+4m.【考点】T9:解直角三角形的应用﹣坡度坡角问题.【专题】填空题【分析】过D点作DE⊥AB于点E,过C点作CF⊥AB于点F,得到两个直角三角形和一个矩形,在Rt△BCF、Rt△AED中已知坡度和一边,或两边的比,满足解直角三角形的条件,可求出CF的长度和,继而根据AD=8m,可求得∠A的度数,然后解直角三角形可求得AE的长,继而也可求得AB的长度.【解答】解:过D点作DE⊥AB于点E,过C点作CF⊥AB于点F,则四边形CDEF是矩形,∴CD=FE=3m,DE=CF,∵斜坡BC的坡度i=1:3,BF=12m,∴CF:BF=1:3,则CF=×12=4m,∵AD=8m,∴sinA=DE:AD=4:8=1:2,∴∠A=30°,AE=ADcos30°=4(m),∴AB=AE+EF+FB=4+3+12=15+4.故答案为:30°、(15+4).【点评】本题考查坡度、坡角的知识,解答本题的关键是理解掌握坡度、坡角的定义,能正确解直角三角形.14.已知抛物线甲:y=﹣2x2﹣1和抛物线乙的形状相同,且两条抛物线的对称轴均为y轴,两点距离5个单位长度,它们的图象如图所示,则抛物线乙的解析式为y=﹣2x2+4.【考点】H6:二次函数图象与几何变换.【专题】填空题【分析】设抛物线乙的解析式为y=ax2+bx+c,先抛物线甲:y=﹣2x2﹣1和抛物线乙的形状相同,且两条抛物线的对称轴均为y轴,得出a=﹣2,b=0,再由两点距离5个单位长度,结合图形得出c﹣(﹣1)=5,求出c=4.从而确定抛物线乙的解析式.【解答】解:设抛物线乙的解析式为y=ax2+bx+c.∵抛物线甲:y=﹣2x2﹣1和抛物线乙的形状相同,且两条抛物线的对称轴均为y 轴,∴a=﹣2,b=0,又∵两点距离5个单位长度,∴c﹣(﹣1)=5,∴c=4.即y=﹣2x2+4.故答案为y=﹣2x2+4.【点评】本题考查二次函数图象与几何变换,难度中等.用到的知识点:两条抛物线的形状相同,则|a|相同,当a>0时,开口向上;a<0时,开口向下;抛物线y=ax2+bx+c的对称轴为直线x=﹣.15.已知二次函数y=x2﹣6x+n的最小值为1,那么n的值是10.【考点】H7:二次函数的最值.【专题】填空题【分析】将二次函数化为顶点式,即可建立关于m的等式,解方程求出m的值即可.【解答】解:原式可化为:y=(x﹣3)2﹣9+n,∵函数的最小值是1,∴﹣9+n=1,n=10.故答案为:10.【点评】本题考查了二次函数的最值,会用配方法将原式化为顶点式是解题的关键.16.将抛物线y=x2﹣2向右平移一个单位后,得到一条新抛物线,则新的抛物线的顶点坐标是(1,﹣2).【考点】H6:二次函数图象与几何变换.【专题】填空题【分析】先得到原抛物线的顶点坐标,让横坐标加1,纵坐标不变即为新抛物线的顶点坐标.【解答】解:∵抛物线y=x2﹣2的顶点坐标为(0,﹣2),向右平移1个单位得到新抛物线的解析式,∴所得抛物线的顶点坐标是(1,﹣2).故答案为:(1,﹣2).【点评】本题考查二次函数图象与几何变换的知识,讨论两个二次函数的图象的平移问题,只需看顶点坐标的平移即可.17.如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=,求∠B的度数及边BC、AB的长.【考点】T7:解直角三角形.【专题】解答题【分析】在三角形ACD中,斜边以及直角边已告知,根据锐角三角函数的概念解直角三角形即可得∠CAD以及∠B,从而解直角三角形求出其余结果.【解答】解:在Rt△ACD中∵cos∠CAD===,∠CAD为锐角.∴∠CAD=30°,∠BAD=∠CAD=30°,即∠CAB=60°.∴∠B=90°﹣∠CAB=30°.∵sinB=,∴AB===16.又∵cosB=,∴BC=AB•cosB=16•=8.【点评】考查综合应用解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.18.如图所示,已知两山脚B,C相距1 500m,在距山脚B 500m的A处测得山BD,CE的山顶D,E的仰角分别为45°,30°,求两山的高.(精确到1m)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】解答题【分析】由在Rt△ABD中,BD=AB•tan45°,即可求得BD的长,继而求得AC的长,然后由在Rt△ACE中,EC=AC•tan30°,求得两山的高.【解答】解:∵在Rt△ABD中,BD=AB•tan45°=500×1=500(m),∴AC=BC﹣AB=1500﹣500=1000(m),∴在Rt△ACE中,EC=AC•tan30°=1000×≈577(m).答:两山的高为:577m.【点评】此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.19.如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)【考点】TB:解直角三角形的应用﹣方向角问题.【专题】解答题【分析】易得∠A的度数为60°,利用60°正切值可得BC的值.【解答】解:∵CE∥AB,∴∠ECB=90°∴∠A=∠ECA=60°,∴BC=AB×tan60°=500×=500m.答:该军舰行驶的路程为500m.【点评】考查解直角三角形的应用;用∠A的正切值表示出所求线段长是解决本题的关键.20.已知,二次函数y=ax2﹣5x+c的图象如图.(1)求这个二次函数的解析式和它的图象的顶点坐标;(2)观察图象,回答:何时y随x的增大而增大;何时y随x的增大而减小.【考点】H8:待定系数法求二次函数解析式;H2:二次函数的图象;H3:二次函数的性质.【专题】解答题【分析】(1)由图知,该二次函数经过(1,0)、(4,0),可将这两点坐标代入抛物线的解析式中,即可求出待定系数的值;然后将所得函数解析式化为顶点式,从而求出其顶点坐标;(2)根据(1)得出的抛物线的对称轴及开口方向,分段讨论抛物线的增减性.【解答】解:(1)根据二次函数y=ax2﹣5x+c的图象可得(2分)解得a=1,c=4;(4分)所以这个二次函数的解析式是y=x2﹣5x+4;(5分)y=x2﹣5x+4=﹣=,(7分)它的图象的顶点坐标();(8分)(2)当x>,y随x的增大而增大;(10分)当x<,y随x的增大而减小.(12分)注:①顶点坐标如用公式得出同样给分;②对第(2)小题,如回答,函数y=x2﹣5x+4的图象在对称轴右侧部分,y随x 的增大而增大;在对称轴的左侧部分,y随x的增大而减小;也视为正确,同样给分.【点评】此题考查了用待定系数法确定二次函数解析式的方法及二次函数的图象与性质;在讨论二次函数的增减性时要考虑到两点:①抛物线的开口方向,②抛物线的对称轴.21.已知抛物线的顶点坐标是(﹣3,﹣2),它与直线y=2x+m的交点是(1,6),求抛物线和直线所对应的函数关系式.【考点】H8:待定系数法求二次函数解析式;FA:待定系数法求一次函数解析式.【专题】解答题【分析】根据题意可设二次函数的解析式为y=a(x+3)2﹣2,将点(1,6)代入得a=,求得抛物线的解析式;将点(1,6)代入直线y=2x+m得m=4,求得直线所对应的函数关系式.【解答】解:设二次函数的解析式为y=a(x+3)2﹣2将点(1,6)代入得a=∴抛物线的解析式为y=(x+3)2﹣2将点(1,6)代入直线y=2x+m得m=4∴直线所对应的函数关系式为y=2x+4.【点评】本题考查了用待定系数法求函数解析式的方法,注意当二次函数的顶点坐标已知时,可设顶点式.22.已知一个二次函数的图象经过点A(﹣1,0)、B(3,0)和C(0,﹣3)三点;(1)求此二次函数的解析式;(2)对于实数m,点M(m,﹣5)是否在这个二次函数的图象上?说明理由.【考点】H8:待定系数法求二次函数解析式;H5:二次函数图象上点的坐标特征.【专题】解答题【分析】(1)本题可直接用待定系数法求出二次函数的解析式;(2)根据(1)得出的二次函数解析式,可将M点坐标代入抛物线的解析式中,即可判断出M是否在二次函数的图象上.(由于本题中,M点的纵坐标小于抛物线的最小值,可据此判断M点不在二次函数的图象上).【解答】解:(1)设二次函数的解析式为y=a(x+1)(x﹣3),由于抛物线的图象经过C(0,﹣3),则有:﹣3=a(0+1)(0﹣3),解得a=1.∴二次函数的解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3;(2)由(1)可知:y=x2﹣2x﹣3=(x﹣1)2﹣4.因此抛物线的最小值为﹣4>﹣5.因此无论m取何值,点M都不在这个二次函数的图象上.【点评】本题主要考查了用待定系数法求二次函数解析式的方法以及二次函数图象上点的坐标特征等知识点.23.某工艺厂为迎接建厂60周年,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,其中工艺品的销售单价x(元/件)与每天销售量y(件)之间满足关系式y=﹣10x+800,若物价部门规定,该工艺品销售单价最高不能超过45元/件,那么,销售单价定为多少元时,工艺厂试销该工艺品获得的利润最大?最大利润是多少?【考点】HE:二次函数的应用.【专题】解答题【分析】设销售单价定为x,则此时的销量为:﹣1Ox+800,根据利润=销量×单件利润,即可得出利润表达式,利用配方法求最值即可.【解答】解:设工艺厂试销该工艺品每天获得的利润是W元,由题意得:W=(x﹣2)•y=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为x=50,又∵20<x≤45,在对称轴的左侧,W的值随着x值的增大而增大,∴当x=45时,W取最大值,W max=﹣10(45﹣50)2+9000=8750.答:销售单价定为45元时,工艺厂试销该工艺品获得的利润最大为8750元.【点评】本题考查了二次函数的应用,解答本题的关键是仔细审题,得出利润表达式,同学们注意配方法求二次函数最值的应用.24.改革开放后,不少农村用上了自动喷灌设备.如图所示,AB表示水管,在B处有一个自动旋转的喷水头,一瞬间喷出的水是抛物线状,建立如图所示的直角坐标系后,抛物线的表达式为y=﹣x2+2x+.(1)当x=1时,喷出的水离地面多高?(2)你能求出水的落地点距水管底部A的最远距离吗?(3)水管有多高?【考点】HE:二次函数的应用.【专题】解答题【分析】(1)把x=1代入解析式求得y的值即可;(2)当y=0时,水的落地点距水管底部A的最远距离,求出此时x的值即可;(3)当x=0时,求出y的值即是水管的高度.【解答】解:(1)当x=1时,y=﹣×12+2×1+=3,故当x=1时,喷出的水离地面的高度为3;(2)当y=0时,﹣x2+2x+=0,解得x1=2+,x2=2﹣<0(舍去),因此水的落地点距A的最远距离为2+;(3)当x=0时,y=1.5,因此水管的高度为1.5.【点评】本题考查了二次函数的应用,解答本题的关键是读懂题意,理解点的横、纵坐标代表的实际含义.25.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)【考点】TB:解直角三角形的应用﹣方向角问题.【专题】解答题【分析】(1)首先由已知求出∠PBQ和∠BPQ的度数进行比较得出线段BQ与PQ 是否相等;(2)先由已知求出∠PQA,再由直角三角形PQA求出AQ,由(1)得出BQ=PQ=1200,又由已知得∠AQB=90°,所以根据勾股定理求出A,B间的距离.【解答】解:(1)线段BQ与PQ相等.证明:∵∠PQB=90°﹣41°=49°,∠BPQ=90°﹣24.5°=65.5°,∴∠PBQ=180°﹣49°﹣65.5°=65.5°,∴∠BPQ=∠PBQ,∴BQ=PQ;(2)∠AQB=180°﹣49°﹣41°=90°,∠PQA=90°﹣49°=41°,∴AQ===1600,BQ=PQ=1200,∴AB2=AQ2+BQ2=16002+12002,∴AB=2000,答:A、B的距离为2000m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是通过角的计算得出BQ=PQ,再由直角三角形先求出AQ,根据勾股定理求出AB.。
北师大版九年级数学下册期中测试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.已知,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.因式分解2-+=_______.242x x3.已知直角三角形的两边长分别为3、4.则第三边长为________.4.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为__________.5.如图,C为半圆内一点,O为圆心,直径AB长为2 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm2.6.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x =+--2.先化简代数式1﹣1x x-÷2212x x x -+,并从﹣1,0,1,3中选取一个合适的代入求值.3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、B6、B7、D8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、22(1)x -.3、54、5、4π6、12三、解答题(本大题共6小题,共72分)1、3x =2、-11x +,-14. 3、详略.4、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.。
北师大版九年级下册数学《期中》测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<2.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x+4)2+7C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣253.已知m=4+3,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<64.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2106.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.下面四个手机应用图标中是轴对称图形的是()A .B .C .D .8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.因式分解:a 3-a =_____________.3.函数132y x x =--+中自变量x 的取值范围是__________. 4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分) 1.解分式方程:2311x x x x +=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、C5、B6、B7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、a (a -1)(a + 1)3、23x -<≤4、125、x=26、 1三、解答题(本大题共6小题,共72分)1、x=32、22m m-+ 1. 3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为2π﹣2. 5、(1)50、30%.(2)补图见解析;(3)35.。
北师大版九年级数学下册期中测试卷(及答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( ) A .2-B .2C .12D .12-2.若分式211x x -+的值为0,则x 的值为( )A .0B .1C .﹣1D .±13.下列结论成立的是( ) A .若|a|=a ,则a >0 B .若|a|=|b|,则a =±b C .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( ) A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( ) A .12B .9C .13D .12或97.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .B .C .D .8.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .409.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D ,若⊙P 的半径为5,点A 的坐标是(0,8),则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A.485B.325C.245D.125二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.分解因式:2x3﹣6x2+4x=__________.3.若a,b都是实数,b=12a-+21a-﹣2,则a b的值为__________.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的__________.5.如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B 1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为__________.6.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m =2+1.3.如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=若存在,求点Q 的坐标;若不存在,请说明理由.4.如图,在△ABC 中,∠C=90°,∠BAC 的平分线交BC 于点D ,点O 在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C :羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、A6、A7、C8、B9、A 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、2x (x ﹣1)(x ﹣2).3、44、a ,b ,d 或a ,c ,d5、2n ﹣1,06、23π 三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)抛物线的解析式21722y x x =-++;(2)PD PA +;(3)点Q 的坐标:1(0,2Q 、2(0,2Q .4、(1)直线BC 与⊙O 相切,略;(2)23π5、解:(1)200. (2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.。
一、选择题1.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB ADAC AB= D .AB BCAC BD= 2.如图,在直角坐标系中,矩形OABC 的顶点O 在原点,边OA 在x 轴上,OC 在y 轴上,如果OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,则点B '的坐标为( )A .3,12⎛⎫⎪⎝⎭B .3,12⎛⎫⎪⎝⎭或3,12⎛⎫-- ⎪⎝⎭C .()3,2D .()3,2或()3,2--3.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A 51+ B 51- C .1D .24.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:55.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=5:2,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .5:7B .10:4C .25:4D .25:496.如图,在△ABC 中,DE ∥BC ,12AD BD =,则AEEC=( )A .13B .12C .23D .327.下列函数中,y 总随x 的增大而减小的是( ) A .4y x =-B .4y x =-C .4y x=D .4y x=-8.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5y x=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123y y y <<B .312y y y <<C .132y y y <<D .231y y y <<9.如图,正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式kax x<的解集为( )A .2x <-或2x >B .2x <-或02x <<C .20x -<<或02x <<D .20x -<<或2x >10.如图,函数ky x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( )A .B .C .D .11.若点()()()1231,,1,,3,A y B y C y -在反比例函数6y x=的图像上,则123,,y y y 的大小关系是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .213y y y <<12.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数ky x=在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23二、填空题13.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.14.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点A 落在BC 边上的点D 处,已知AEF 的面积为7,则图中阴影部分的面积为______.15.如图4,我国现代数学著作《九章算术》中有“井深几何”问题如下:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?它的题意可以由如图所示获得,井深BC 为_________尺.16.若2a c eb d f===,且4b d f ++=,则a c e ++=_______. 17.如图,已知双曲线()0ky x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.18.下列y 关于x 的函数中,y 随x 的增大而增大的有_____.(填序号) ①y =﹣2x+1,②y 1x=,③y =(x+2)2+1(x >0),④y =﹣2(x ﹣3)2﹣1(x <0) 19.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y=3x经过点D ,则正方形ABCD 的面积是_____.20.点A(a ,b)是一次函数y=2x-3与反比例函数9y x=的交点,则2a 2b-ab 2=_____. 三、解答题21.如图,在平面直角坐标系中,一次函数122y x =-的图象分别交x 、y 轴于点A 、B ,抛物线2y x bx c =++经过点A 、B ,点P 为第四象限内抛物线上的一个动点.(1)求此抛物线的函数解析式.(2)过点P 作//PM y 轴,分别交直线AB 、x 轴于点C 、D ,若以点P 、B 、C 为顶点的三角形与以点A 、C 、D 为顶点的三角形相似,求点P 的坐标. (3)当2PBA OAB ∠=∠时,求点P 的坐标.22.如图1,ABC 与ADE 中,90ACB AED ∠=∠=︒,连接BD 、CE ,EAC DAB ∠=∠.(1)求证:BAD CAE ∽; (2)已知4BC =,3AC =,32AE =.将AED 绕点A 旋转,当C 、E 、D 三点共线时,如图2,求BD 的长.23.如图,在ABC 中,AB AC =,点D 在BC 上,点E 在AB 上,连结AD ,DE ,12∠=∠.(1)求证:ACD DBE ∽△△;(2)若6BD =,2CD =,5AC =,求AE 的长.24.在平面直角坐标系xOy 中,函数()20=>y x x 的图象与直线11:(0)2l y x k k =+>交于点A ,与直线2:l x k =交于点B ,直线1l 与2l 交于点C .说明:直线x k =是指经过点(),0k 且平行于y 轴的直线,如直线2x =是指经过点()2,0且平行于y 轴的直线.(1)当点A 的横坐标为1时,求此时k 的值;(2)横、纵坐标都是整数的点叫做整点.记函数()20=>y x x的图象在点A 、B 之间的部分与线段AC ,线段BC 围成的区域(不含边界)为W . ①当3k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内只有2个整点,直接写出k 的取值范围.25.已知12y y y =-,1y 与x 成正比例,2y 与()2x -成反比例,当2x =-时,7y =-;3x =时,13y =.求:y 关于x 的函数解析式26.如图,在平面直角坐标系xOy 中,反比例函数y =mx的图象与一次函数y =k (x -2)的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据三角形相似的判定方法一一判断即可. 【详解】解:A 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ; B 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ; C 、根据两边成比例夹角相等两三角形相似即可判定△ABC ∽△ADB ; D 、无法判断三角形相似. 故选:D . 【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.2.D解析:D 【分析】由OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,利用相似三角形的面积比等于相似比的平方,即可求得OA B ''△与OAB 的位似比为1:2,又由点B 的坐标为(6,4),即可求得答案. 【详解】解:∵OA B ''△与OAB 关于点O 位似, ∴OA B ''△∽OAB ,∵OA B ''△的面积等于OAB 面积的14, ∴位似比为1:2, ∵点B 的坐标为(6,4),∴点B′的坐标是:(3,2)或(-3,-2). 故选D . 【点睛】此题考查了位似图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握相似三角形的面积比等于相似比的平方定理的应用,注意数形结合思想的应用.3.A解析:A 【分析】证明△ABC ∽△DAC 得AB BCDA AC=,然后列方程求解即可. 【详解】解:∵AB AC a ==, ∴∠B=∠C又∵1AD DC ==, ∴∠C=∠DAC ∴△ABC ∽△DAC∴AB BCDA AC = ∴11a a a+=解得,12a +=或152a (舍去)故选:A 【点睛】本题考查了相似三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题.4.A解析:A 【分析】根据DE ∥AC 可得到△DOE ∽△COA 和△DBE ∽△ABC ,再根据相似三角形的性质即可得出12BE EC =,再根据同高三角形的面积比等于底之比即可求出. 【详解】 ∵DE ∥AC∴△DOE ∽△COA ,△DBE ∽△ABC ∵S △DOE :S △COA =1:9∴13DE AC = ∴13DE BE AC BC == ∴12BE EC = ∴S △BDE :S △CDE =1:2 故答案选A . 【点睛】本题主要考察了相似三角形的性质,准确记住面积比等于相似比平方是解题关键.5.D解析:D 【分析】根据题意证明DEF BAF ,再利用相似比得到面积比.【详解】解:∵四边形ABCD 是平行四边形, ∴//CD AB ,CD AB =, ∵:5:2DE EC =, ∴:5:7DE DC =, ∴:5:7DE AB =, ∵DEFBAF ,∴22::25:49DEFBAFSSDE AB ==.故选:D . 【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形相似比和面积比的关系.6.B解析:B 【分析】直接利用平行线分线段成比例定理得出答案即可. 【详解】 解:∵DE ∥BC ,∴AE EC =12AD BD =. 故选:B . 【点睛】本题考查了平行线分线段成比例定理,了解定理的内容是解答此题的关键.7.A解析:A 【分析】根据正比例函数的性质,可判断A ;根据一次函数的性质,可判断B ;根据反比例函数的性质,可判断C 、D . 【详解】A 选项:y 随x 的增大而减小,符合题意,故A 正确;B 选项:y 随x 的增大而增大,不符合题意,故B 错误;C 选项:在每个象限内y 随x 的增大而减小,不符合题意,故C 错误;D 选项:在每个象限内y 随x 的增大而增大,不符合题意,故D 错误. 故选:A . 【点睛】本题主要考查了反比例函数的增减性,关键是要注意反比例函数在叙述增减性时必须强调在每个象限内.8.C解析:C 【分析】根据反比例函数图象的性质可得双曲线5y x=在一、三象限,且在每个象限内,y 随x 的增大而减小,即可求解. 【详解】 解:双曲线5y x=在一三象限,且在每个象限内,y 随x 的增大而减小, ∵1230x x x <<<, ∴132y y y <<, 故选:C . 【点睛】本题考查反比例函数图象与性质,掌握反比例函数图象与性质是解题的关键.9.B解析:B【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象可得k ax x <,求出x 的取值范围即可.【详解】∵正比例函数y ax =的图象与反比例函数k y x =的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称,∵点A 的横坐标为2,∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数k y x=的图象的下方, ∴2x <-或02x <<,故选:B .【点睛】 本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.10.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 11.B解析:B【分析】根据反比例函数的解析式分别代入求解,把123,,y y y 的值求解出来,再进行比较,即可得到答案.【详解】解:∵点()()()1231,,1,,3,A y B y C y -在反比例函数6y x =的图像上, ∴1166y -==-,2166y ==,3362y ==, 即:132y y y <<,故选B .【点睛】本题主要考查了与反比例函数有关的知识点,能根据已知条件求出未知量是解题的关键,再比较大小的时候注意符号.12.B解析:B【分析】设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a 根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.二、填空题13.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定解析:6或285【分析】 (1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案. 【详解】 解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC == ∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒∵3==CD DB ∴132DF BD ==∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则3BH x =,233DH x = ∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD = ∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH = ∴23233=-x∴65x =∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285.故答案是:6或28 5【点睛】本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.14.14【分析】根据三角形的中位线定理结合相似三角形的性质可以求得△ABC的面积再根据折叠的性质得到△DEF的面积从而求解【详解】∵EF是△ABC的中位线∴EF∥BCEF=BC∴△AEF∽△ACB∴∵△解析:14【分析】根据三角形的中位线定理,结合相似三角形的性质可以求得△ABC的面积,再根据折叠的性质得到△DEF的面积,从而求解.【详解】∵EF是△ABC的中位线,∴EF∥BC,EF=12BC,∴△AEF∽△ACB,∴22AEFACB1124 S EFS BC⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,∵△AEF的面积为7,∴△ABC的面积=28,由折叠的性质得△DEF的面积为7,∴图中阴影部分的面积为28-7-7=14.故答案为:14.【点睛】本题综合考查了折叠问题,三角形的中位线定理和相似三角形的判定和性质.关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.15.575【分析】由题意可得△AFB∽△ADC根据相似三角形的性质和已知条件即可得到井深尺寸【详解】解:由题意可知:△AFB∽△ADC∴可设BC=x则有解之可得:BC=575(尺)故答案为575【点睛】解析:57.5【分析】由题意可得△AFB∽△ADC,根据相似三角形的性质和已知条件即可得到井深尺寸.【详解】解:由题意可知:△AFB∽△ADC,∴AB FB AC DC=,可设BC=x ,则有50.455x =+,解之可得:BC=57.5(尺), 故答案为57.5.【点睛】 本题考查相似三角形的应用,熟练掌握三角形相似的判定和性质是解题关键 .16.8【分析】根据等比性质可得答案【详解】由等比性质得所以故答案为:8【点睛】本题考查了比例的性质利用了等比性质解析:8【分析】根据等比性质,可得答案.【详解】2a c e b d f===, 由等比性质,得24a c e a c eb d f ++++==++, 所以8ac e ++=.故答案为:8.【点睛】本题考查了比例的性质,利用了等比性质.17.3【分析】设表示点B 坐标再根据四边形OEBF 的面积为3列出方程从而求出k 的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E 的坐标得到其他点的坐标准确掌握反比例函数k 值的 解析:3【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值.【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k k k ∴=--,解得3k =, 故答案为:3.【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.18.③④【分析】根据一次函数二次函数反比例函数的性质即可一一判断【详解】解:y 随x 的增大而增大的函数有③④故答案为③④【点睛】本题主要考查一次函数二次函数反比例函数的性质解决本题的关键是熟练掌握一次函数解析:③④【分析】根据一次函数、二次函数、反比例函数的性质即可一一判断.【详解】解:y 随x 的增大而增大的函数有③④,故答案为③④.【点睛】本题主要考查一次函数、二次函数、反比例函数的性质,解决本题的关键是熟练掌握一次函数,二次函数,反比例函数图像性质.19.12【解析】设D (aa )∵双曲线y=经过点D ∴a2=3解得a=∴AD=2∴正方形ABCD 的面积=AD2=(2)2=12故答案为12解析:12【解析】设D (a ,a ),∵双曲线y=3x经过点D , ∴a2=3,解得,∴∴正方形ABCD 的面积=AD2=(2=12.故答案为12.20.27【分析】根据点A(ab)是一次函数y=2x-3与反比例函数的交点将点代入函数解析式得出等量关系再将因式分解即可求算答案【详解】∵点A(ab)是一次函数y=2x-3与反比例函数的交点将点代入解析式解析:27【分析】根据点A(a ,b)是一次函数y=2x-3与反比例函数9y x=的交点,将点代入函数解析式得出等量关系,再将222a b ab -因式分解即可求算答案.【详解】∵点A(a ,b)是一次函数y=2x-3与反比例函数9y x=的交点,将点代入解析式得: 23,9b a ab =-=又∵()222=2a b ab ab a b -- ∴()2=93=27ab a b -故答案为:27【点睛】本题考查函数交点的意义,将所求式子因式分解再利用整体思想求算是解题关键.三、解答题21.(1)2722y x x =--;(2)3,52⎛⎫- ⎪⎝⎭或7,22⎛⎫- ⎪⎝⎭;(3)73,2⎛⎫- ⎪⎝⎭. 【分析】(1)本题所求二次函数的解析式含有两个待定字母,一般需要两个点的坐标建立方程组,现在可求A 、B 点坐标,代入列方程组可解答;(2)根据∠ADC=90°,∠ACD=∠BCP ,可知相似存在两种情况:①当∠CBP=90°时,如图1,过P 作PN ⊥y 轴于N ,证明△AOB ∽△BNP ,列比例式可得结论;②当∠CPB=90°时,如图2,则B 和P 是对称点,可得P 的纵坐标为-2,代入抛物线的解析式可得结论;(3)设点A 关于y 轴的对称点为A′,求出直线A′B 的解析式,再联立抛物线的解析式解答即可.【详解】解:(1)令0x =,得1222y x =-=-,则()0,2B -, 令0y =,得1022x =-,解得4x =, 则()4,0A ,把()4,0A ,()0,2B -代入()20y ax bx c a =++≠中, 得16402b c c ++=⎧⎨=-⎩, 解得722b c ⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为:2722y x x =--. (2)∵//PM y 轴,∴90ADC ∠=︒,∵ACD BCP ∠=∠,∴以点P 、B 、C 为顶点的三角形与以点A 、C 、D 为顶点的三角形相似,存在两种情况:①当90CBP ∠=︒时,如图,过P 作PN y ⊥轴于N ,∵90ABO PBN ABO OAB ∠+∠=∠+∠=︒,∴PBN OAB ∠=∠,∵90AOB BNP ∠=∠=︒,∴Rt PBNRt BAO △△, ∴PN BN BO AO =. 设27,22P x x x ⎛⎫-- ⎪⎝⎭. ∴2722224x x x ⎛⎫---- ⎪⎝⎭=,化简得2302x x -=. 解得0x =(舍去)或32x =. 当32x =时,2273732252222y x x ⎛⎫=--=-⨯-=- ⎪⎝⎭. ∴3,52P ⎛⎫- ⎪⎝⎭;②当90CPB ∠=︒时,如下图,则//PB x 轴,所以B 和P 是对称点,所以当2y =-时,27222x x --=-,解得0x =(舍去)或72x =. ∴7,22P ⎛⎫- ⎪⎝⎭. 综上,点P 的坐标是3,52⎛⎫- ⎪⎝⎭或7,22⎛⎫- ⎪⎝⎭.(3)设点A 关于y 轴的对称点为'A ,则'A B AB =.∴'BAO B AO ∠=∠.直线'A B 交抛物线于P .∴'2PBA BAO BA O BAO ∠=∠+∠=∠.∵()4,0A ,∴()'4,0A -.设直线'A B 的解析式为()0y kx b k =+≠.∵()0,2B -.∴4002k b k b -+=⎧⎨⋅+=-⎩. 解得122k b ⎧=-⎪⎨⎪=-⎩.∴直线'A B 的解析式为122y x =--, 由方程组2122722y x y x x ⎧=--⎪⎪⎨⎪=--⎪⎩,得230x x -=. 解得0x =(舍去)或3x =.当3x =时,117232222y x =--=-⨯-=-. 所以点P 的坐标是73,2⎛⎫-⎪⎝⎭. 【点睛】 此题是二次函数的综合题,是中考的压轴题,难度较大,计算量也大,主要考查了待定系数法求解析式,还考查了三角形的面积,相似三角形的性质与判定,并学会构造相似三角形解决问题.22.(1)见解析;(2)BD =【分析】 (1)由已知可得CAB EAD ∠=∠,则A ABC DE ∽△△,可得AC AE AB AD =,结合EAC BAD ∠=∠,则结论得证;(2)由A ABC DE ∽△△,求出AB 、AD 的长,再结合BAD CAE ∽可得90AEC ADB ∠=∠=︒,则BD 可求.【详解】(1)证明:∵EAC DAB ∠=∠,∴CAB EAD ∠=∠.∵90ACB AED ∠=∠=︒,∴A ABC DE ∽△△. ∴AC AE AB AD=. ∵EAC BAD ∠=∠, ∴BAD CAE ∽. (2)∵90ACB ∠=︒,4BC =,3AC =, ∴5AB ===.∵A ABC DE ∽△△, ∴AC AB AE AD=. ∴52AB AE AD AC ⋅==. 将AED 绕点A 旋转,当C 、E 、D 三点共线时,90AEC ∠=︒,∵BAD CAE ∽,∴90AEC ADB ∠=∠=︒.∴BD === 【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定方法及相似性质是解题的关键.23.(1)见解析;(2)135AE =【分析】(1)利用等腰三角形的性质证明∠C=∠B ,即可证明ACD DBE ∽△△;(2)利用相似三角形的性质求得BE 的长,再利用等腰三角形的定义求解即可.【详解】(1)∵AB AC =,∴∠C=∠B ,∵12∠=∠,∴ACD DBE ∽△△;(2)∵ACD DBE ∽△△, ∴AC CD BD BE=, ∵6BD =,2CD =,5AC =, ∴526BE=, ∴125BE =, ∵5AB AC ==, ∴1213555AE AB BE =-=-=. 【点睛】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.(1)32k;(2)①3,②522k << 【分析】(1)由反比例函数解析式求出A 点的坐标,再把A 点坐标代入一次函数12y x k =+中求得k ;(2)①根据题意作出函数图象便可直接观察得答案;②找出临界点作两直线,进行比较便可得k 的取值范围.【详解】(1)当1x =时,22y x ==, ∴A (1,2),把A (1,2)代入12y x k =+中,得122k =+, 解得:32k =; (2)①当3k =时,则直线1l :132y x =+,直线2l :3x =, 当3x =时,19322y x =+=, ∴C (3,92),作出图象如图:∴区域W 内的整点个数为3;②如图,当直线1l :12y x k =+过(1,3)点,区域W 内只有2个整点,此时,132k =+,解得52k =, 当直线1l :12y x k =+过(2,3)点,区域W 内只有1个整点, 此时,1322k =⨯+,解得2k =, ∴当522k <<时,区域W 内只有2个整点, 【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法,正确画出函数图象,数形结合,是解答本题的关键.25.432y x x =+- 【分析】 设1y kx =,()22m y x =-,得到()2m y kx x =--,将x 与y 的两组对应值代入得到二元一次方程组722213332m k m k ⎧-=--⎪⎪--⎨⎪=-⎪-⎩,求出解集即可得到答案. 【详解】解:设1y kx =,()22m y x =-, 则()2my kx x =--, 根据题意得:722213332m k m k ⎧-=--⎪⎪--⎨⎪=-⎪-⎩, 解得:34k m =⎧⎨=-⎩, 则函数解析式是:432y x x =+-. 【点睛】此题考查正比例函数的定义,反比例函数的定义,求出二元一次方程组的解,正确理解正比例函数与反比例函数的定义并正确计算是解题的关键.26.(1)y =6x ,y =2x -4;(2)C 点的坐标为()0,1或()0,9-. 【分析】(1)将点()3,2A 分别代入反比例函数和一次函数解析式中,求得参数m 和k 的值,即可得到两个函数的解析式;(2)联立反比例函数和一次函数的解析式,求得B 的坐标,再利用一次函数的解析式求得一次函数与y 轴交点的坐标点M 的坐标为()0,4-,设C 点的坐标为(0,y c ),根据12×3×|y c -(-4)|+12×1×|y c -(-4)|=10解得y c 的值,即可得到点C 的坐标. 【详解】(1)∵点()3,2A 在反比例函数y =m x 和一次函数y =k (x -2)的图象上, ∴2=3m ,2=k (3-2),解得m =6,k =2, ∴反比例函数的解析式为y =6x,一次函数的解析式为y =2x -4. (2)∵点B 是一次函数与反比例函数的另一个交点,∴6x =2x -4,解得x 1=3,x 2=-1, ∴B 点的坐标为()1,6--.设点M 是一次函数y =2x -4的图象与y 轴的交点,则点M 的坐标为()0,4-. 设C 点的坐标为(0,y c ),由题意知12×3×|y c -(-4)|+12×1×|y c -(-4)|=10, ∴|y c +4|=5.当y c +4≥0时,y c +4=5,解得y c =1;当y c +4<0时,y c +4=-5,解得y c =-9,∴C 点的坐标为()0,1或()0,9-.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出两个函数的解析式以及直线AB 与y 轴的交点坐标.。
2022-2023学年初中九年级下数学期中考试学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:130 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如果(m −1)x 2+2x −3=0是一元二次方程,则( )A.m ≠±1B.m ≠1C.m ≠−1D.m =12. 如图,把一个长方形纸片对折两次,然后剪下一个角再展开,要使展开所得的四边形是正方形,那么剪口(图中虚线)应与折痕成多少度的角( )A.30∘B.45∘C.60∘D.90∘3. 商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b(b >a)以及实数x(0<x <1)确定实际销售价格c =a +x(b −a),这里x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得b −ac −a =c −ab −c ,据此可得,最佳乐观系数x 的值等于( )A.12B.√54C.√5+12D.√5−12(m −1)+2x −3=0x 2()m ≠±1m ≠1m ≠−1m =130∘45∘60∘90∘a b(b >a)x(0<x <1)c a +x(b −a)x x =b −a c −a c −a b −c x 125–√4+15–√2−15–√4. 如图,菱形OABC 的边OC 在y 轴上,A 点的坐标为(4,3),则B 点的坐标为( )A.(4,7)B.(4,8)C.(5,7)D.(5,8)5. 如图,已知直线a//b//c ,直线m 分别交直线a 、b 、c 于点A 、B 、C ,直线n 分别交直线a 、b 、c 于点D 、E 、F ,若AB =2,AD =BC =4,则BECF 的值应该( )A.等于13B.大于13C.小于13D.不能确定6. 如图,在平行四边形ABCD 中,E 是CD 的中点,AC 、BE 相交于点O ,则S △EOC :S 四边形AOED 为( )A.1:5B.1:4C.1:3D.1:27. 现有四张正面分别标有数字−2,0,1,3的不透明卡片(形状与材质相同),将它们正面朝下洗均匀,随机抽取一张,记下数字后放回(设数字为a ),再次正面朝下洗均匀,再随机抽取一张记下数字(设数字为b ),则关于x 的不等式{x >ab,x ≤0有解的概率是( )A.1214OABC OCy A (4,3)B(4,7)(4,8)(5,7)(5,8)a //b//c m a b c A B C n a b c D E F AB =2AD =BC =4BE CF131313ABCD E CD AC BE O :S △EOC S 四边形AOEDC.716D.11168. 某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程( )A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=175卷II(非选择题)二、填空题(本题共计 8 小题,每题 5 分,共计40分)9. 方程(x−1)(x+2)=4的解是________.10. A,B两地的实际距离为36km,用比例尺为1:100000画在地图上的距离为________厘米.11. 将边长相等的一个正方形与一个正三角形按如图所示方式重叠放置,则∠1的度数为________.12. 若t为实数,x2−4x+t−2=0的两个非负实数根为a,b,则代数式(a2−1)(b2−1)的最小值________13. 如图,Rt△ABC中,AC=1,将△ABC绕点C顺时针旋转,得到△DEC,点D落在AB上,且恰好为AB的中点,则阴影部分的面积为________.14. 对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:抽取只数50100150500100020001000050000(只)合格频率0.820.830.820.830.840.840.840.8415. 小明发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a 2+b −1,例如把(3,−2)放入其中,就会得到32+(−2)−1=6.现将实数对(m,−2m)放入其中,得到实数2,则m =________.16. 如图,矩形ABCD 中, AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点F 处.当△CEF 为直角三角形时,CF 长为________.三、 解答题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )17. 用适当的方法解方程:x 2−6x =7.18. 定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“同伴方程”.例如x 2=4和(x −2)(x +3)=0有且只有一个相同的实数根x =2,所以这两个方程为“同伴方程”.(1)根据所学定义,下列方程属于“同伴方程”的是________;(只填写序号即可)①; ②; ③;(2)若关于x 的一元二次方程x 2−2x =0与x 2+3x +m −1=0为“同伴方程”,求m 的值. 19.如图,在网格图中(小正方形的边长1),△ABC 的三个顶点都在格点上.如图,在网格图中(小正方形的边长1),△ABC 的三个顶点都在格点上.(1)直接写出点C(________,________)的坐标,并把△ABC 沿y 轴对称得△A 1B 1C 1,再把△A 1B 1C 1沿x 轴对称得△A 2B 2C 2,请分别作出对称后的图形△A 1B 1C 1与△A 2B 2C 2;(2)在方格纸中画出与△ABC 位似比为2:1的格点三角形. 20. 已知,如图,AC ⊥BC ,BD ⊥BC ,AC >BC >BD .(1)请你添加一个条件,使△ABC 相似于△CDB ,你添加的条件是________;(2)若DB =3,BC =4,在(1)的条件下,求AC 的长度.21. 如图,△ABC中,∠ACB=90∘,AC=6,BC=8,点D是AB的中点,点E从点B出发,沿边BC→CA以每秒2个单位长度的速度向终点A运动,连接DE,以AD,DE为邻边作▱ABCD,设点E的运动时间为t(秒),▱ADEF与△ABC重合部分面积为S.(1)当点F在AC边上时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.22. 有4张印有“青”“山”“绿”“水”字样的卡片(卡片的形状、大小、质地都相同),放在一个不透明的盒子中,将卡片洗匀.(1)从盒子中任意取出一张卡片,求恰好取出印有“青”字的卡片的概率;(2)先从盒子中任意取出一张卡片,记录后放回并搅匀,再从其中任意取出一张卡片,求取出的两张卡片中,至少有1张印有“青”字的卡片的概率(请画树状图或列表等方法求解).23. 如图,在△ABC中,∠ABC=80∘,∠BAC=40∘,AB的垂直平分线分别与AC、AB交于点D、E.(1)尺规作图作出AB的垂直平分线DE,并连结BD;(保留作图痕迹,不写作法)(2)证明:△ABC∽△BDC.24. 因国际马拉松赛事即将在某市举行,某商场预计销售一种印有该市设计的马拉松图标的T恤,定价为60元,每天大约可卖出300件,经市场调查,每降价1元,每天可多卖出20件,已知这种T恤的进价为40元一件,在鼓励大量销售的前提下,商场还想获得每天6080元的利润,应将销售单价定位在多少元?25. 如图1,在矩形ABCD中, AB=6cm,BC=8cm,点P从点B出发,沿BA边向终点A以每秒1cm的速度运动,同时点Q从点C出发沿C→B→A向终点A以每秒3cm的速度运动,P、Q其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.解答下列问题:(1)当t为几秒时, PQ⊥BD?(2)当点Q在AB上且Q在P左侧时,用含t的代数式表示PQ的长;(3)如图2,以P为圆心,PQ长为半径作⊙P,当Q未超过P时,是否存在这样的t值,使⊙P正好与△ABD的一边(或边所在的直线)相切?若存在,直接写出t值;若不存在,请说明理由.26. 综合与实践问题情境:如图1,在△ABC中,AB=6,AC=5,点D,E分别在边AB,AC上,且DE//BC数学思考:(1)在图1中,BDCE的值为________.(2)图1中△ABC保持不动,将△ADE绕点A按逆时针方向旋转到图2的位置,其它条件不变,连接BD,CE,则(1)中的结论是否仍然成立?并说明理由;拓展探究:(3)在图2中,延长BD,分别交AC,CE于点F,P,连接AP,得到图3,探究∠APE与∠ABC之间有何数量关系,并说明理由;(4)若将△ADE绕点A按逆时针方向旋转到图4的位置,连接BD,CE,延长BD交CE的延长线于点P,BP交AC于点F,则(3)中的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠APE与∠ABC之间的数量关系.C图1 图2 图3 图4参考答案与试题解析2022-2023学年初中九年级下数学期中考试一、选择题(本题共计 8 小题,每题 5 分,共计40分)1.【答案】B【考点】一元二次方程的定义【解析】认真审题,首先需要了解一元二次方程的定义(只有一个未知数,并且未知数的项的最高系数为2的方程为一元二次方程).【解答】解:∵(m−1)x 2+2x−3=0是一元二次方程,∴m−1≠0,∴m≠1.故选B.2.【答案】B【考点】矩形的性质正方形的判定【解析】此题暂无解析【解答】解:一张长方形纸片对折两次后,剪下一个角,是菱形,而出现的四边形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕成45∘角,菱形就变成了正方形.故选B.3.【答案】D【考点】黄金分割根据题设条件,由b −ac −a =c −ab −c ,知[x(b −a)]2=(b −a)2−x(b −a)2,由此能求出最佳乐观系数x 的值.【解答】∵c −a =x(b −a),b −c =(b −a)−x(b −a),b −ac −a =c −ab −c ,∴[x(b −a)]2=(b −a)2−x(b −a)2,∴x 2+x −1=0,解得x =−1±√52,∵0<x <1,∴x =−1+√52.4.【答案】B【考点】菱形的性质勾股定理【解析】利用菱形的性质及勾股定理得解.【解答】解:由勾股定理得|OA|=√42+32=5,由菱形的定义得|OA|=|AB|,AB//OC ,得B(4,8).故选B.5.【答案】B【考点】平行线分线段成比例【解析】作AH//n 分别交b 、c 于G 、H ,如图,易得HF =GE =AD =4,利用平行线分线段成比例得到ABAC =BGCH =13,所以BECF =BG +4CH +4=13+83CH +4,于是可判断BECF >13.【解答】作AH//n 分别交b 、c 于G 、H ,如图,易得四边形AGED 、四边形AHFD 为平行四边形,∴HF =GE =AD =4,∵直线a//b//c ,∴ABAC =BGCH ,即BGCH =22+4=13,∴BECF =BG +4CH +4=13CH +4CH +4=13(CH +4)+83CH +4=13+83CH +4,∴BECF >13.6.A【考点】相似三角形的判定与性质平行四边形的性质【解析】本题考查了相似三角形的判定和性质和平行四边形的性质,解决本题的关键是等高的三角形面积的比是底与底的比.【解答】解:连接AE,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD.∵E是CD的中点,EC=12CD,AB//CD,∴△COE∼△AOB,∴COAO=CEAB=12.∵△COE与△AOE等高,∴S△COE S△AOE=OCOA=12.设S△COE=x,∴S△AOE=2x,则S△ACE=3x,∴S四边形AOED=S△AOE+S△AED=5x,∴S△EOC S四边形AOED=x5x=15.故选A.7.【答案】B【考点】列表法与树状图法概率公式【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与关于x的不等式组{x>abx≤0有解的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图知,共有16种等可能结果,其中使关于x的不等式组{x>ab,x≤0有解的有4种结果,所以关于x的不等式组{x>abx≤0有解的概率为14.故选B.8.【答案】D【考点】由实际问题抽象出一元二次方程【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【解答】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故第一季度总产值为:50+50(1+x)+50(1+x)2=175.故选D.二、填空题(本题共计 8 小题,每题 5 分,共计40分)9.【答案】x1=2,x2=−3【考点】解一元二次方程-因式分解法【解析】此题暂无解析【解答】解:去括号,得:x 2+x−2=4,移项,得:x 2+x−6=0,分解因式,得:(x+3)(x−2)=0,解得x1=2,x2=−3.故答案为:x1=2,x2=−3. 10.【答案】36【考点】比例的性质【解析】首先设该地图上A ,B 两地的距离是xcm ,由若某地图的比例尺为1:100000,A ,B 两地的实际距离为36km ,即可得方程1:100000=x:3600000,解此方程即可求得答案,注意统一单位.【解答】解:设该地图上A ,B 两地的距离是xcm ,36km =3600000cm ,根据题意得:1:100000=x: 3600000,解得:x =36,故该地图上A ,B 两地的距离是36cm .故答案为:36.11.【答案】30∘【考点】等边三角形的性质角的计算【解析】此题暂无解析【解答】解:∵正方形的一个角的度数为90∘,正三角形的一个角的度数为60∘,∴∠1=90∘−60∘=30∘.故答案为:30∘.12.【答案】−15【考点】根与系数的关系【解析】先根据根与系数的关系可得a +b =4,ab =t −2,将所求代数式化简代入可得结论.【解答】∵x 2−4x +t −2=0的两个非负实数根为a ,b ,∴a +b =4,ab =t −2,△=16−4(t −2)≥0.则{t −2≥016−4(t −2)≥0 ,解得:2≤t ≤6,∴a 2+b 2=(a +b)2−2ab =42−2(t −2)=−2t +20,∴(a 2−1)(b 2−1)=a 2b 2−(a 2+b 2)+1=(t −2)2+2t −20+1=t 2−2t −15=(t −1)2−16,∵2≤t ≤6,∴当t =2时,代数式(a 2−1)(b 2−1)有最小值,∴代数式(a 2−1)(b2−1)的最小值是1−16=−15,13.【答案】π2−√34【考点】勾股定理旋转的性质三角形的面积求阴影部分的面积等边三角形的性质与判定【解析】此题暂无解析【解答】解:在Rt△ABC中,D是AB的中点,∴CD=AD=BD,∵AC= CD,∴△ACD是等边三角形.在Rt△ABC中, AC=1,∴AB=2,BC=√AB2−AC2=√3.根据旋转的性质可知,∠BCE=∠ACD=60∘,∴S阴影=S△BCD+S扇形BCE−S△DCE=12S△ABC+S扇形BCE−S△ABC=S扇形BCE−12S△ABC=60360×π×(√3)2−12×12×1×√3=π2−√34.故答案为:π2−√34.14.【答案】0.84【考点】利用频率估计概率【解析】观察表格合格的频率趋近于0.84,从而由此得到口罩合格的概率即可.【解答】解:∵随着抽样的增大,合格的频率趋近于0.84,∴估计从该批次口罩中任抽一只口罩是合格品的概率为0.84.故答案为:0.84.15.【答案】3或−1.【考点】一元二次方程的应用——其他问题【解析】【解317把实数对(m,−2m).代入a 2+b−|=2中得m2−2m−1=2移项得|m2−2m−3=0,因式分解得(m−3)(m+1)=0解得m=3或−1,故答案为3或−1.【解答】此题暂无解答16.【答案】2或√13【考点】勾股定理矩形的性质翻折变换(折叠问题)【解析】当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,连结AC,在Rt△ABC中,求出AC=5,当△CEF为直角三角形时,只能得到∠EFC=90∘,则点A、 F 、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,即可得解CF=2;当点F落在AD边上时,可知∠AFE=∠B=90∘,此时ABEF为正方形,可得EC=BC−BE=2,∠CEF=90∘,在Rt△CEF中,根据CF=√CE2+EF2即可得解.【解答】解:当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如图1所示,连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=√AB2+BC2=√32+42=5.∵∠B沿AE折叠,使点B落在点F处,∴∠AFE=∠B=90∘.当△CEF为直角三角形时,∠EFC=90∘,∴点A、 F 、C三点共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,∴EB=EF,AB=AF=3,∴CF=5−3=2;②当点F落在AD边上时,如图2所示.∵∠B沿AE折叠,使点B落在点F处,∴∠AFE=∠B=90∘,此时四边形ABEF为正方形,∴BE=EF=AF=AB=3,∴EC=BC−BE=5−3=2.当△CEF为直角三角形时,∠CEF=90∘.在Rt△CEF中,CE=2,EF=3,∴CF=√CE2+EF2=√22+32=√13,综上所述,CF的长为2或√13.故答案为:2或√13.三、解答题(本题共计 10 小题,每题 5 分,共计50分)17.【答案】2−6x=7解:xx2−6x−7=0(x−7)(x+1)=0即 x−7=0或x+1=0x1=7,x2=−1.【考点】解一元二次方程-因式分解法【解析】本题考查利用因式分解解一元二次方程.【解答】2−6x=7解:xx2−6x−7=0(x−7)(x+1)=0即 x−7=0或x+1=0x1=7,x2=−1.18.【答案】(1)①②;(2)1或—9【考点】解一元二次方程-因式分解法【解析】(1)结合题意,通过求解一元二次方程,即可得到答案;(2)首先求解x 2−2x=0,得x1=0x2=2;结合题意,将x1=0x2=2分别代入x2+3x+m−4=0,从而计算得m的值;再经检验符合m的值是否符合题意,从而完成求解.【解答】(1)O(x−1)2=9的解为:x1=4x2=−2②x 2+4x+4=0的解为:x=−2③(x+4)(x−2)=0的解为:x1=−4x2=2…属于“同伴方程”的是①②故答案为:①②;(2)x 2−2x=0的解为:x1=0x2=2当相同的实数根是x=0时,则m−1=0m=将m=代入原方程,得:x 2+3x=0x1=0x2=−3…两个方程有且仅有一个相同的实数根,符合题意;当相同的实数根是x=2时,贝14+6+m−1=0m=−9将m=−9代入原方程,得:x 2+3x−10=0x1=−5x2=2…两个方程有且仅有一个相同的实数根,符合题意;..m的值为1或−9.19.【答案】3,4【考点】作图-位似变换作图-轴对称变换【解析】由于三角形的外心三边中线的交点,可作AC任意两边垂直平线,它们点即为外接圆的心O,确定了即可画⊙O及直径A.圆周角定理可:∠C∠E,∠ABE=∠ADC=0由此可证得D∽△BE,根据所得比例段即可求得直径A的长.【解答】解:如图:证明:作图可知AE为⊙的径,∴ACAE=ADAB,即6AE=58,∴∠ADC0∘,∵AD⊥B,∴∠ABE=∠D,∴∠AB=90,直径所对圆周角是直角)△ABE△ADC,∴A=9.6.20.【答案】∠A=∠DCB(2)∵△ABC∼△CDB,DB=3,BC=4,∴ACBC=BCDB,即AC4=43,解得AC=163.【考点】相似三角形的判定【解析】(1)根据相似三角形的判定定理即可得出结论;(2)根据相似三角形的性质即可得出结论.【解答】解:(1)∵AC⊥BC,BD⊥BC,∴∠ACB=∠CBD,又∠A=∠DCB,∴△ABC∼△CDB.∴可以添加的条件是∠A=∠DCB.故答案为:∠A=∠DCB.(2)∵△ABC∼△CDB,DB=3,BC=4,∴ACBC=BCDB,即AC4=43,解得AC=163.21.【答案】解:(1)如图,∵点D是AB的中点,∴BD=12BA,∵四边形ADEF是平行四边形,∴AF//DE,∴△BDE∽△BAC,∴BDAB=BEBC=12,∴BE=12BC=4,∴2t=4,t=2.(2)当0<t≤2时,过点E作EH⊥AB于点H,△ABC 中,∠ACB =90∘,AC =6,BC =8,∴AB =√62+82=10,sinB =ACAB =610=35,tanB =ACBC =68=34,sin ∠BAC =BCAB =810=45,在△BEH 中,BE =2t ,sinB =EHBE =35,∴EH =35BE =65t ,S =AD ×EH =5×65t =6t.当2<t ≤4时,在Rt △CEG 中,CE =8−2t ,tan ∠GEC =tanB =34,∴CG =34CE ,S △CEG =12CE ×CG =12×(8−2t)2×34=38×(4t 2−32t +64)=32t 2−12t +24,S △BDE =12BD ×EH =12×5×65t =3t ,S =S △ABC −S △CEG −S △BDE=12×6×8−32t 2+12t −24−3t =−32t 2+9t.当4<t ≤7时,AE =14−2t ,在Rt △AEH 中,sin ∠BAC =EHAE =45,∴EH =45AE ,S =12AD ×EH =12×5×45(14−2t)=−4t +28.综上所述,S ={6t(0<t ≤2),−32t 2+9t(2<t ≤4),−4t +28(4<t ≤7).【考点】动点问题平行四边形的性质相似三角形的性质与判定勾股定理锐角三角函数的定义三角形的面积【解析】此题暂无解析【解答】解:(1)如图,∵点D是AB的中点,∴BD=12BA,∵四边形ADEF是平行四边形,∴AF//DE,∴△BDE∽△BAC,∴BDAB=BEBC=12,∴BE=12BC=4,∴2t=4,t=2.(2)当0<t≤2时,过点E作EH⊥AB于点H,△ABC中,∠ACB=90∘,AC=6,BC=8,∴AB=√62+82=10,sinB=ACAB=610=35,tanB=ACBC=68=34,sin∠BAC=BCAB=810=45,在△BEH中,BE=2t,sinB=EHBE=35,∴EH=35BE=65t,S=AD×EH=5×65t=6t.当2<t≤4时,在Rt△CEG中,CE=8−2t,tan∠GEC=tanB=34,∴CG =34CE ,S △CEG =12CE ×CG =12×(8−2t)2×34=38×(4t 2−32t +64)=32t 2−12t +24,S △BDE =12BD ×EH =12×5×65t =3t ,S =S △ABC −S △CEG −S △BDE=12×6×8−32t 2+12t −24−3t =−32t 2+9t.当4<t ≤7时,AE =14−2t ,在Rt △AEH 中,sin ∠BAC =EHAE =45,∴EH =45AE ,S =12AD ×EH =12×5×45(14−2t)=−4t +28.综上所述,S ={6t(0<t ≤2),−32t 2+9t(2<t ≤4),−4t +28(4<t ≤7).22.【答案】解:(1)P(恰好取出印有“青”字)=14.(2)列表如下:青山绿水青青青 青山青绿青水山山青山山山绿山水绿绿青绿山绿绿绿水水水青水山水绿水水由表可知,所有等可能的结果有16种,符合题意的有7种,∴P =716.【考点】概率公式列表法与树状图法【解析】..【解答】解:(1)P(恰好取出印有“青”字)=14.(2)列表如下:青山绿水青青青 青山青绿青水山山青山山山绿山水绿绿青绿山绿绿绿水水水青水山水绿水水由表可知,所有等可能的结果有16种,符合题意的有7种,∴P=716.23.【答案】如图,DE为所求;证明:∵DE是AB的垂直平分线,∴BD=AD,∴∠ABD=∠A=40∘,∴∠DBC=∠ABC−∠ABD=80∘−40∘=40∘,∴∠DBC=∠BAC,∵∠C=∠C∴△ABC∽△BDC.【考点】线段垂直平分线的性质作图—基本作图相似三角形的判定【解析】(1)利用基本作图作线段AB的垂直平分线;(2)先根据线段垂直平分线的性质得到BD=AD,则∠ABD=∠A=40∘,再通过计算得到∠DBC=∠BAC,然后根据相似三角形的判定方法得到△ABC∽△BDC.【解答】如图,DE为所求;证明:∵DE是AB的垂直平分线,∴BD=AD,∴∠ABD=∠A=40∘,∴∠DBC=∠ABC−∠ABD=80∘−40∘=40∘,∴∠DBC=∠BAC,∵∠C=∠C∴△ABC∽△BDC.24.【答案】解:设降低了x元,则每天销售(300+20x)件,根据题意得:(60−40−x)(300+20x)=6080,化简得:x 2−5x +4=0,解得:x 1=1,x 2=4.∵要求销售量大,∴x =4,∴60−x =56.答:应将销售单价定位在56元/件.【考点】一元二次方程的应用——利润问题【解析】此题暂无解析【解答】解:设降低了x 元,则每天销售(300+20x)件,根据题意得:(60−40−x)(300+20x)=6080,化简得:x 2−5x +4=0,解得:x 1=1,x 2=4.∵要求销售量大,∴x =4,∴60−x =56.答:应将销售单价定位在56元/件.25.【答案】解:(1)如图,由题意得: BP =t ,CQ =3t ,则BQ =BC −CQ =8−3t ,设PQ ⊥BD 于点E ,∠QEB =∠C =90∘,∠QBE =∠DBC ,∴∠EQB =∠BDC ,又∵∠QBP =∠C =90∘,△QBP ∼△DCB ,∴BPCB =BQDC ,∴t8=8−3t6,解得t =3215.(2)当点Q 在AB 上时, 83≤t ≤143,BP =t ,CB +QB =3t ,则BQ =3t −8,当Q 在P 左侧时,如图,BQ >BP ,即3t −8>t ,得t >4,∴当4<t ≤143时, PQ =BQ −BP =(3t −8)−t =2t −8.(3)①当0<t <83时,只有与AD 相切一种情况, PQ =PA ,如图所示,则PQ=PA=6−t,在Rt△PBQ中,由勾股定理得:t 2+(8−3t)2=(6−t)2,解得: t=6−2√23或t=6+2√23(不合题意舍去),∴t=6−2√23.②当83≤t≤4时,PQ=8−2t,若与BD相切,过P作PK⊥BD于K,如图所示,则∠PKB=90∘,PK=PQ=8−2t,∵四边形ABCD是矩形,∴∠BAD=90∘=∠PKB,AD=BC=8,∴BD=√AB2+AD2=√62+82=10,∵∠PBK=∠DBA,∴△PBK∼△DBA,∴PKAD=PBBD,即8−2t8=t10,解得:t=207.若与AD相切,如图所示,则PA=PQ,∴6−t=8−2t,解得: t=2,∵83≤t≤4,故舍去;综上所述,t的值为6−2√23秒或207秒.【考点】相似三角形的性质与判定动点问题勾股定理【解析】此题暂无解析【解答】解:(1)如图,由题意得: BP=t,CQ=3t,则BQ=BC−CQ=8−3t,设PQ⊥BD于点E,∠QEB=∠C=90∘,∠QBE=∠DBC,∴∠EQB=∠BDC,又∵∠QBP=∠C=90∘,△QBP∼△DCB,∴BPCB=BQDC,∴t8=8−3t6,解得t=3215.(2)当点Q在AB上时,83≤t≤143,BP=t,CB+QB=3t,则BQ=3t−8,当Q在P左侧时,如图,BQ>BP,即3t−8>t,得t>4,∴当4<t≤143时, PQ=BQ−BP=(3t−8)−t=2t−8.(3)①当0<t<83时,只有与AD相切一种情况,PQ=PA,如图所示,则PQ=PA=6−t,在Rt△PBQ中,由勾股定理得:t 2+(8−3t)2=(6−t)2,解得: t=6−2√23或t=6+2√23(不合题意舍去),∴t=6−2√23.②当83≤t≤4时,PQ=8−2t,若与BD相切,过P作PK⊥BD于K,如图所示,则∠PKB=90∘,PK=PQ=8−2t,∵四边形ABCD是矩形,∴∠BAD=90∘=∠PKB,AD=BC=8,∴BD=√AB2+AD2=√62+82=10,∵∠PBK=∠DBA,∴△PBK∼△DBA,∴PKAD=PBBD,即8−2t8=t10,解得:t=207.若与AD 相切,如图所示,则PA =PQ ,∴6−t =8−2t ,解得: t =2,∵83≤t ≤4,故舍去;综上所述,t 的值为6−2√23秒或207秒.26.【答案】1111【考点】旋转的性质勾股定理全等三角形的性质与判定平行线的性质平行线的判定与性质【解析】1111【解答】1111。
一、选择题1.如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作//EF BC ,交AD 于点F ,过点E 作//EG AB ,交BC 于G ,则下列式子一定正确的是( )A .AE EF EC CD =B .BF EG CD AB =C .AF BC FD GC = D .CG AF BC AD = 2.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=2CE ,AB=12,则AD 的长为( )A .4B .6C .5D .83.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .64.如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1,2A ,()1,1B ,()3,1C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .25B .2C .4D .55.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .25 6.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( )A .72︒B .63︒C .45︒D .不能确定 7.下列函数是y 关于x 的反比例函数的是( )A .y =11x +B .y =21xC .y =﹣12xD .y =﹣2x 8.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =-B .2y x =+C .2y x =D .22y x x =- 9.如图,函数k y x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .10.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1- B .()1,3-- C .()1,3 D .()3,111.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③12.如图,点A 、C 为反比例函数y=(0)k x x<图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为32时,k 的值为( )A .4B .6C .﹣4D .﹣6二、填空题13.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)14.如图,在ABC 纸片中,13AB AC ==,24BC =,D 是BC 边上任意一点,将ABD △沿AD 折叠得到AED ,AE 交BC 于点F ,当DEF 是直角三角形时,则BD 的长为________.15.目前,某市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a=3米和b=4米,现要将此绿地扩充改造为等腰三角形,且扩充部分为含以b为直角边的直角三角形,则扩充后等腰三角形的周长为____________米16.如图,ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是ABC的面积的______.17.如图,一次函数y1=ax+b与反比例函数2kyx=的图像交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是___________.18.如图,在平面直角坐标系中,菱形OABC的面积为20,点B在y轴上,点C在反比函数kyx=的图像上,则k的值为________.19.如图,已知双曲线(0)k y x x=>经过矩形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k =_______.20.如图,已知反比例函数y =k x (x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.三、解答题 21.如图,在ABC 中,点D 、E 分别在AB 、AC 上,//DE BC ,若4AE =,2DB =,2AD CE =,求AD 的长.22.如图,已知O 的半径长为1,AB 、AC 是O 的两条弦,且=AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:OAD ABD ∽△△.(2)当OCD 是直角三角形时,求B 、C 两点的距离.(3)记AOB 、AOD △、COD △的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.23.如图, ABC 中,中线AD ,BE 交于点F ,//EG BC 交AD 于点G .(1)求AG GF 的值. (2)如果43BD =,4DF =,请找出与BDA 相似的三角形,并挑出一个进行证明. 24.如图,直线y =12x 与双曲线y =k x (k >0)交于A 、B 两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线y =k x(k >0)上一点C 的纵坐标为8,求△AOC 的面积.25.如图,直线y=k 1x+b 与双曲线y=2k x相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式;(3)观察图象,请直接写出不等式k 1x+b >2k x的解集. 26.如图,Rt △ABO 的顶点A 是反比例函数k y x=的图象与一次函数(1)y x k =--+的图象在第二象限的交点,AB ⊥x 轴于点B ,且S △ABO =32.(1)求反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)当x为何值时,一次函数的值大于反比例函数的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线分线段成比例性质进行解答便可.【详解】解:∵EF∥BC,∴AF AEFD EC=,∵EG∥AB,∴AE BGEC GC=,∴AF BCFD GC=,故选:C.【点睛】本题考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.2.D解析:D【分析】先根据平行线分线段成比例定理得出比例式,代入后得出AD=23AB,代入求出即可.【详解】解:∵DE∥BC,∴AD AE AB AC=, ∵AE=2CE , ∴2223AE CE AC EC EC ==+ 又AB=12, ∴AD=23AB=8, 故选:D .【点睛】 本题考查了平行线分线段成比例定理,能根据定理得出正确的比例式是解此题的关键. 3.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC , ∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】 本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 4.A解析:A【分析】根据位似图形的性质可得DF =2AC ,然后根据两点间的距离公式求出AC 即可解决问题.【详解】解:∵DEF 与ABC 是位似图形,且相似比为2:1,∴DF =2AC ,∵AC ==∴DF =故选:A .【点睛】本题考查了位似图形的性质和两点间的距离,熟练掌握位似图形的性质是解题的关键. 5.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 6.C解析:C【分析】根据相似三角形的性质、三角形的内角和定理可得出另一个三角形的三个内角度数,由此即可得.【详解】由相似三角形的性质得:另一个三角形的两个内角分别为72,63︒︒,则另一个三角形的第三个内角为180726345︒-︒-︒=︒,因此,另一个三角形的最小内角为45︒,故选:C .【点睛】本题考查了相似三角形的性质、三角形的内角和定理,熟练掌握相似三角形的性质是解题关键.7.C解析:C【分析】直接利用反比例函数的定义分别判断得出答案.【详解】解:A 、y =11x +是y 与x+1成反比例,故此选项不合题意; B 、y =21x,是y 与x 2成反比例,不符合反比例函数的定义,故此选项不合题意; C 、y =﹣12x ,符合反比例函数的定义,故此选项符合题意; D 、y =﹣2x 是正比例函数,故此选项不合题意. 故选:C .【点睛】本题考查了反比例函数的定义,正确把握定义是解题的关键.8.B解析:B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”.【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x ,A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合;B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.9.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 10.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x =上,∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.11.B解析:B【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 12.C解析:C【分析】设点C 的坐标为,k m m ⎛⎫ ⎪⎝⎭,则点E 1,22k m m ⎛⎫ ⎪⎝⎭,A 12,2k m m ⎛⎫ ⎪⎝⎭,根据三角形的面积公式求出k 即可.【详解】解:设点C 的坐标为,k m m ⎛⎫ ⎪⎝⎭,则点E 1,22k m m ⎛⎫ ⎪⎝⎭,A 12,2k m m ⎛⎫ ⎪⎝⎭, ∵S △AEC =111233222282k k BD AE m m k m m ⎛⎫⎛⎫⋅=-⋅-=-= ⎪ ⎪⎝⎭⎝⎭, 解得:k=-4,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C 的坐标,利用点C 的横坐标表示出A 、E 点的坐标.二、填空题13.①③④【分析】根据矩形的性质和折叠的性质可知DF 的长度利用勾股定理可求出AGGFGHHF 的长度结合题意逐个判断即可【详解】①:根据题意可知∴即故①正确;②:∴∴∴∵∴设AG=x 则GH=xGF=8-x解析:①③④【分析】根据矩形的性质和折叠的性质,可知45EBF GBH ∠+∠=︒,DF 的长度.利用勾股定理可求出AG 、GF 、GH 、HF 的长度,结合题意逐个判断即可.【详解】①:根据题意可知EBC EBF ∠=∠,GBA GBH ∠=∠,90EBC EBF GBA GBH ∠+∠+∠+∠=︒,∴45EBF GBH ∠+∠=︒,即45EBG ∠=︒.故①正确;②:90EFD AFB ∠+∠=︒,90ABF AFB ∠+∠=︒,∴EFD ABF ∠=∠,∴ABF DFE , ∴AB AF DF DE=,∵8AF ===, ∴8463DE AF DF AB ===. 设AG =x ,则GH =x ,GF =8-x ,HF =BF -BH =10-6=4.又∵在Rt GHF 中,222GH HF GF +=,∴2224(8)x x +=-解得x =3,即AG =3, ∴623AB AG ==. ∴AB DE AG DF≠ 故DEF 和△ABG 不相似.故②错误;③:由②得GH =3,1163922ABG S AB AG ==⨯⨯=,1134622GFH S GH HF ==⨯⨯=. ∴:9:6 1.5ABG GFH S S ==.故③正确.④:DF =10-8=2,由②可知AG +DF =3+2=5,GF =8-3=5.∴AG +DF =GF .故④正确.故答案为①③④.【点睛】本题考查折叠的性质、矩形的性质、三角形相似的判定和性质结合勾股定理来解题.本题利用勾股定理计算出AG 的长度是解题的关键.14.或7【分析】是直角三角形时有两种情况:∠EDF=90°或∠EFD=90°通过找相似三角形然后利用对应边成比例即可得到结果【详解】解:如图当∠EDF=90°时过A 作AG ⊥BC 于G 则DE ∥AG ∵AG ⊥B 解析:263或7. 【分析】 DEF 是直角三角形时,有两种情况:∠EDF=90°或∠EFD=90°,通过找相似三角形,然后利用对应边成比例即可得到结果. 【详解】解:如图,当∠EDF=90°时,过A 作AG ⊥BC 于G ,则DE ∥AG ,∵13AB AC ==,24BC =,AG ⊥BC ,∴1122BG BC ==, 在直角三角形ABG 中,2213125AG -=,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,∵DE ∥AG ,∴∠FAG=∠E=∠B ,∴Rt △AFG ∽Rt △BAG ,∴AB BG AF AG =,即13125AF =, ∴6512AF = ∴6591131212EF =-=, 由∠B=∠E ,∠EDF=∠ABG=90°,可知△ABG ∽△FED ,∴AB BG EF DE =,即13129112DE =, ∴7DE =,即7BD =;如图,当∠EFD=90°时,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,由于∠EFD=90°,因此AF ⊥BC ,在直角三角形ABF 中,2213125AF =-=,∴1358EF =-=,∵∠B=∠E ,∠AFB=∠EFD=90°, ∴△ABF ∽△DEF , ∴AB BF DE EF =,即13128DE =, ∴263DE =,即263BD =; 综上,263BD =或7BD =, 故答案为:263或7. 【点睛】 本题考查了相似三角形的性质和判定以及折叠问题,找到相似三角形是解题的关键,要注意分类讨论. 15.16或10+2或【分析】分三种情形讨论即可①AB=BE1②AB=AE3③E2A=E2B 分别计算即可【详解】解:如图在Rt △ABC 中∵∠ACB=BC=3AC=4∴①当BA=BE1=5时CE1=2∴∴△解析:16或5或403【分析】分三种情形讨论即可,①AB=BE 1,②AB=AE 3,③E 2A=E 2B ,分别计算即可.【详解】解:如图在Rt △ABC 中,∵∠ACB=90,BC=3,AC=4 ∴225AB BC AC =+=①当BA=BE 1=5时,CE 1=2, ∴221125AE AC CE =+=∴△ABE 1周长为(5②当AB=AE 3=5时,CE 3=BC=3,BE 3=6,∴△ABE 3周长为16米.③当E 2A=E 2B 时,作E 2H ⊥AB ,则BH=AH=2.5,∵∠B=∠B ,∠ACB=∠BHE 2=90∘,∴△BAC ∽△BE 2H , ∴2BE BH BC AB= ∴BE 2=256, ∴△ABE 2周长为25402563⨯+=米. 综上所述扩充后等腰三角形的周长为16或5403米 故答案为:16或5403【点睛】 本题考查等腰三角形的定义、勾股定理、相似三角形的性质与判定、三角形周长等知识,正确理解题意是解题的关键,运用了分类讨论的数学思想,注意漏解.16.【分析】根据题意易证△AEH ∽△AFG ∽△ABC 利用相似三角形的性质解决问题即可【详解】解:∵AB 被截成三等分∴△AEH ∽△AFG ∽△ABC ∴∴S △AFG :S △ABC=4:9S △AEH :S △ABC= 解析:13【分析】根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似三角形的性质解决问题即可.【详解】解:∵AB 被截成三等分,∴△AEH ∽△AFG ∽△ABC , ∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9,S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.17.x <0或1<x <4【分析】根据图形找出一次函数图象在反比例函数图象上方的x 的取值范围即可【详解】解:根据图形当x <0或1<x <4时一次函数图象在反比例函数图象上方y1>y2故答案为:x <0或1<x <解析:x <0或1<x <4【分析】根据图形,找出一次函数图象在反比例函数图象上方的x 的取值范围即可.【详解】解:根据图形,当x <0或1<x <4时,一次函数图象在反比例函数图象上方,y 1>y 2. 故答案为:x <0或1<x <4.【点睛】本题考查了反比例函数一次函数的交点问题,要注意y 轴左边的部分,一次函数图象在第二象限,反比例函数图象在第三象限,这也是本题容易忽视而导致出错的地方. 18.-10【分析】连接AC 交OB 于点D 根据菱形的性质可得出SOCD =×20=5再根据反比例函数系数k 的几何意义即可求出k 值由点C 在第二象限即可确定k 的值【详解】连接AC 交OB 于点D 如图所示∵四边形OAB解析:-10【分析】连接AC 交OB 于点D ,根据菱形的性质可得出S OCD =14×20=5,再根据反比例函数系数k 的几何意义即可求出k 值,由点C 在第二象限,即可确定k 的值.【详解】连接AC 交OB 于点D ,如图所示.∵四边形OABC 为菱形,∴AC ⊥OB ,∵菱形OABC 的面积为20, ∴S OCD =14×20=5. ∵点C 在反比例函数k y x=的图象上,CD ⊥y 轴, ∴S OCD =12|k|=5, 解得:k =±10. ∵点C 在第二象限,∴k =−10.故答案为:-10.【点睛】本题考查了反比例函数系数k 的几何以及菱形的性质,根据菱形的性质找出S OCD =14×20=5是解题的关键. 19.2【分析】如果设F (xy )表示点B 坐标再根据四边形OEBF 的面积为2列出方程从而求出k 的值【详解】解:∵双曲线经过矩形边的中点设F (xy )E (ab )那么B (x2y )∵点E 在反比例函数解析式上∴S △C解析:2【分析】如果设F (x ,y ),表示点B 坐标,再根据四边形OEBF 的面积为2,列出方程,从而求出k 的值.【详解】解:∵双曲线(0)k y x x=>经过矩形OABC 边AB 的中点F设F(x,y),E(a,b),那么B(x,2y),∵点E在反比例函数解析式上,∴S△COE=12ab=12k,∵点F在反比例函数解析式上,∴S△AOF=12xy=12k,即xy=k∵S四边形OEBF=S矩形ABCO-S△COE-S△AOF,且S四边形OEBF=2,∴2xy-12k-12xy=2,∴2k-12k-12k=2,∴k=2.故答案为:2.【点睛】本题的难点是根据点F的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.20.【分析】先根据点A的坐标求出反比例函数的解析式然后求出点的坐标由点B在直线上设出点B的坐标为(aa)从而利用平行四边形的性质可得到的坐标因为在反比例函数图象上将点代入反比例函数解析式中即可求出a的值解析:13,13)【分析】先根据点A的坐标求出反比例函数的解析式,然后求出点A'的坐标,由点B在直线上,设出点B的坐标为(a,a),从而利用平行四边形的性质可得到B'的坐标,因为B'在反比例函数图象上,将点B'代入反比例函数解析式中即可求出a的值,从而可确定点B的坐标.【详解】∵反比例函数y=kx(x>0)过点A(1,4),∴k=1×4=4,∴反比例函数解析式为:y=4x.∵点A'(4,b)在反比例函数的图象上,∴4b=4,解得:b=1,∴A'(4,1).∵点B在直线y=x上,∴设B点坐标为:(a,a).∵点A(1,4),A'(4,1),∴A点向下平移3个单位,再向右平移3个单位,即可得到A'点.∵四边形AA'B'B是平行四边形,∴B点向下平移3个单位,再向右平移3个单位,即可得到B'点(a+3,a﹣3).∵点B'在反比例函数的图象上,∴(a+3)(a﹣3)=4,解得:a=或a=舍去),故B点坐标为:.故答案为:.【点睛】本题主要考查反比例函数与几何综合,掌握待定系数法,平行四边形的性质,点的平移规律和一元二次方程的解法是解题的关键.三、解答题21.AD=4【分析】设AD=x,则12CE x=,根据平行线分线段成比例定理可得关于x的方程,解方程即可求出答案.【详解】解:∵DE∥BC,∴AD AEDB EC=,设AD=x,则12 CE x=,∴4122xx =,解得:x=4或﹣4(舍去),即AD=4.【点睛】本题考查了平行线分线段成比例定理和简单的一元二次方程的解法,熟练掌握上述知识、灵活应用方程思想是解题的关键.22.(1)见解析;(2)3BC =或2;(3)51OD -=. 【分析】 (1)由△AOB ≌△AOC ,推出∠C=∠B ,由OA=OC ,推出∠OAC=∠C=∠B ,由∠ADO=∠ADB ,即可证明△OAD ∽△ABD ;(2)如图2中,当△OCD 是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH ⊥AC 于H ,设OD=x .想办法用x 表示AD 、AB 、CD ,再证明AD 2=AC•CD ,列出方程即可解决问题;【详解】解:(1)在AOB 和AOC △中,OA OA AB AC OB OC =⎧⎪=⎨⎪=⎩,∴AOB AOC △≌△,C B ∴∠=∠,又∵OA OC =,OAC C B ∴∠=∠=∠,而ADO ADB ∠=∠,OAD ABD ∴∽△△.(2)如图:①当90ODC ∠=︒时,BD AC ⊥,OA OC =,AD DC ∴=,BA BC AC ∴==,ABC ∴是等边三角形,在Rt OAD 中,1OA =,30OAD ∠=︒,1122OD OA ∴==, 223AD OA OD ∴=-=, 23BC AC AD ∴===②90COD ∠=︒,90BOC ∠=°,22112BC =+=.③OCD ∠显然90≠︒,不需要讨论. 综上所述,3BC =或2.(3)如图:作OH AC ⊥于H ,设OD x =,DAO DBA ∽△△,AD OD OA DB AD AB∴==. 11AD x x AD AB∴==+. (1)AD x x ∴=+,(1)x x AB +=. 又2S 是1S 和3S 的比例中项,2213S S S ∴=⋅,而212S AD OH =⋅,112OAC S S AC OH ==⋅△,312S CD OH =⋅⨯, 2111222AD OH AC OH CD OH ⎛⎫⎛⎫∴⋅=⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 即2AD AC CD =⋅,又AC AB =,(1)(1)x x CD AC AD x x +=-=+, 代入上式可得:210x x +-=, 求得512x =,或512-,经检验,12x =是分式方程的根且符合题意,OD ∴=. 【点睛】 本题属于圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.23.(1)3;(2)BDA FGE ∽△△,证明见解析【分析】(1)先证明AGE ADC △∽△,再证明GEF DBF ∽△△,得到2DF GF =,则问题可解; (2)根据题意分别证明BDA FDB ∽△△,BDA FGE ∽△△问题可证.【详解】解:(1)D 是BC 的中点,E 是AC 的中点,BD CD ∴=,AE CE =,//GE BC ,AGE ADC ∴∽△△,12AG GE AE AD CD AC ∴===, AG GD ∴=,2GE CD BD ==,//GE BC ,GEF DBF ∴∽△△,12GE GF BD DF ∴==, 2DF GF ∴=,3AG DG GF ∴==,3AG GF ∴=.(2)当BD =4DF =时,由(1)可得122GF DF ==,36AG DG GF ===,212AD AG ==, 12GE BD ==,4BD DF ==AD BD ==, AD BD BD DF ∴=, 又BDG ADB ∠=∠,BDA FDB ∴∽△△,3GEGF =AD BD == AD GE BD GF∴=, //GE BC ,ADB EGF ∴∠=∠,BDA FGE ∴∽△△.【点睛】本题考查了相似三角形的性质和判定,解答关键是根据题意选择适当方法证明三角形相似.24.(1)8;(2)15.【详解】解:(1)∵点A 的横坐标为4,点A 在直线y =12x 上, ∴点A 的纵坐标为y =12×4=2,即A(4,2). 又∵点A(4,2)在双曲线y =k x 上, ∴k =2×4=8;(2)∵点C 在双曲线y =8x上,且点C 纵坐标为8, ∴C(1,8). 如图,过点C 作CM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N.∵S △COM =S △AON =82=4, ∴S △AOC =S 四边形CMNA =12×(|y A |+|y C |)×(|x A |-|x c |)=15. 【点睛】主要考查了待定系数法求反比例函数的解析式和反比例函数y =k x 中k 的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.25.(1)双曲线的解析式为:y=2x 直线的解析式为:y=x+1(2)y 2<y 1<y 3(3),x >1或﹣2<x <0【分析】(1)将点A (1,2)代入双曲线y=2k x,求出k 2的值,将B (m ,﹣1)代入所得解析式求出m 的值,再用待定系数法求出k 1x 和b 的值,可得两函数解析式.(2)根据反比例函数的增减性在不同分支上进行研究.(3)根据A 、B 点的横坐标结合图象找出直线在双曲线上方时x 的取值即可.【详解】解:(1)∵双曲线y=2k x 经过点A (1,2),∴k 2=2,∴双曲线的解析式为:y=2x. ∵点B (m ,﹣1)在双曲线y=2x上,∴m=﹣2,则B (﹣2,﹣1). 由点A (1,2),B (﹣2,﹣1)在直线y=k 1x+b 上,得 11k +b=2{2k +b=1--,解得1k =1{b=1. ∴直线的解析式为:y=x+1.(2)∵双曲线y=2x在第三象限内y 随x 的增大而减小,且x 1<x 2<0,∴y 2<y 1<0, 又∵x 3>0,∴y 3>0.∴y 2<y 1<y 3.(3)由图可知,x >1或﹣2<x <0. 26.(1)反比例函数解析式:3y x=-,一次函数解析式:2y x +=-;(2)4;(3)1x <-或03x <<【分析】(1)根据S △AOB =12|k|,可求k 的值,再求出一次函数解析式; (2)两个解析式构成方程组可求点A ,点C 坐标,即可△AOC 的面积;(3)由图象可得当一次函数图象在反比例函数图象上面的x 的取值范围.【详解】解:(1)∵AB ⊥x 轴于点B ,且S △ABO =32, ∴12|k|=32,∴k =±3. ∵反比例函数图象在第二、四象限,∴k<0,∴k =-3.∴反比例函数的解析式为3y x=-,一次函数的解析式为y =-x +2. (2)设一次函数y =-x +2的图象与x 轴的交点为D.令y =0,得x =2.∴点D 的坐标为(2,0). 由23y x y x =-+⎧⎪⎨=-⎪⎩解得13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩ ∴A(-1,3),C(3,-1),∴S△AOC=S△AOD+S△ODC=12×2×3+12×2×1=4.(3) 由图象可得:当x<−1或0<x<3时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数交点问题,反比例函数系数k的几何意义,利用方程组求交点坐标是本题的关键.。
期中测试
(时间:90分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.在△ABC 中,把三边的长度都扩大为原来的5倍,则锐角A 的正弦函数值( )
A .缩小为原来的15
B .扩大为原来的5倍
C .不变
D .不能确定
2.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )
A .先向左平移2个单位,再向上平移3个单位
B .先向左平移2个单位,再向下平移3个单位
C .先向右平移2个单位,再向下平移3个单位
D .先向右平移2个单位,再向上平移3个单位
3.(河南中考)在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( )
A .x <1
B .x >1
C .x <-1
D .x >-1
4.一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系式为s =10t +t 2,若滑到坡底的时间为2秒,则此人下滑的高度为( )
A .24米
B .6米
C .123米
D .12米
5.在直角坐标系xOy 中,点P(4,y)在第四象限内,且OP 与x 轴正半轴的夹角的正切值是2,则y 的值是( )
A .2
B .8
C .-2
D .-8
6.抛物线图象如图所示,根据图象,抛物线的表达式可能是( )
A .y =x 2-2x +3
B .y =-x 2-2x +3
C .y =-x 2+2x +3
D .y =-x 2+2x -3
7.(泰安中考)如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是________海里( )
A .20
B .40 C.2033 D.4033
8.在平面直角系中,二次函数y =x 2-6x +3的图象与下列哪一条直线没有交点( )
A .x =50
B .x =-50
C .y =50
D .y =-50
9.在平面直角坐标系中,设点P 到原点O 的距离为p ,OP 与x 轴正方向的夹角为α,则用[p ,α]表示点P 的极坐标,显然,点P 的极坐标与它的坐标存在一一对应关系.例如:点P 的坐标为(1,1),则其极坐标为[2,45°];若M 的坐标为(-1,-1),则其极坐标为[2,225°].若点Q 的极坐标为[4,60°],则点Q 的坐标为( )
A .(2,23)
B .(2,-23)
C .(23,2)
D .(2,2)
10.(梅州中考)对于二次函数y =-x 2+2x ,有下列四个结论:①它的对称轴是直线x =1;②设y 1=-x 21+2x 1,y 2=-x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为( )
A .1
B .2
C .3
D .4
二、填空题(每小题4分,共32分)
11.在△ABC 中,AC ∶BC ∶AB =3∶4∶5,则sinA +sinB =____________.
12.在高为100米的楼顶测得地面上某十字路口的俯角为β,那么楼底到这个十字路口的水平距离是____________米(用含β的代数式表示).
13.(河南中考)已知抛物线y =ax 2+bx +c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2,则线段AB 的长为____________.
14.若二次函数的图象开口向下,且经过点(2,-3),则符合条件的一个二次函数的表达式为____________.
15.如图,从热气球C 上测定建筑物A 、B 底部的俯角分别为30°和60°,如果这时气球的高度CD 为150米,且点A 、D 、B 在同一直线上,那么建筑物A 、B 间的距离为____________米.
16.一个函数的图象关于y 轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y =x 2+bx -4是“偶函数”,该函数的图象与x 轴交于点A 和点B ,顶点为P ,那么△ABP 的面积是____________.
17.如图,将一块斜边长为12 cm ,∠B =60°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB 向右平移,使点B′刚好落在斜边AB 上,那么此三角板向右平移的距离是____________cm.
18.某幢建筑物,从10米高的窗口A 用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直,如图).如
果抛物线的最高点M 离墙1米,离地面403米,那么水流落地点B 离墙的距离OB 是____________.。