用比例解决问题1
- 格式:ppt
- 大小:312.00 KB
- 文档页数:8
用比例解决问题1(共5篇)第一篇:用比例解决问题1《用比例解决问题》教学设计教学内容:教材P59、60页例5、例6及相应的练习教学目标:1、使学生能正确判断应用题中涉及的量成什么比例关系,能利用正(反)比例的意义正确解答实际问题。
2、引导学生利用已学知识,自主探索,培养学生解决问题的能力。
3、感受比例知识在现实生活中的广泛应用,体会数学与生活的联系。
教学重点:抓住用正、反比例实际问题关键。
教学难点:掌握用比例知识解答实际问题的解题步骤。
教学准备:课件教学过程一、激趣兴趣,引出新课南湖公园里有一棵高大的树,老师想知道这棵树的高大约有多少米,你们能用什么好办法来帮老师测量出它的高呢?如果测量更高的物体你会测量吗?(让学生说说自己的想法)引入新课:其实我们有一种既科学又方便的测量方法,但需要同学们掌握好这节课的知识,才能正确地测量出这棵树的高度,今天我们就来学习用比例解决问题。
(板书课题:用比例解决问题)(一)复习导入(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
(3)单价一定,总价和数量。
(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.根据上面的叙述,回答下面的问题。
(1)上面的题中涉及到哪三个量?(2)其中哪一种量是固定不变的?(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成什么关系?2、先根据条件说出下面各题的数量关系,再说出两种相关联的量成什么比例?你能根据题意列出相应的等式吗?(1)一台机床4小时加工36个零件,照这样计算,6小时加工54个零件。
(2)一列火车行驶360千米。
每小时行90千米,要行4小时;每小时行80千米,要行χ小时。
(二)引入新知:同学们,我们的生活离不开水,但每天的用水问题里有隐藏着许多数学问题,你们知道是什么数学问题吗?生:每吨水的价钱、应交的水费、用水的总量师:这3个量之间存在着那些数量关系?他们会构成怎样的比例关系呢?每吨水的价格=应交水费÷用水总量(正比例)应交水费=每吨水的价格×用水总量(反比例)用水总量=应交水费÷每吨水的价格(正比例)看来同学们对两种量构成什么比例掌握得不错,这节课我们就用比例的知识来解决生活中的实际问题。
用比例解决问题在生活中,我们经常会碰到各种各样的问题和难题。
有些问题需要我们用比例进行解决。
本文将从实际例子出发,介绍如何运用比例来解决问题。
第一种情况:比例乘法小王在超市购买了一袋苹果,他发现商家在标价的时候少贴了一个数字,书写成了3.9元/kg,而不是正确的价格3.98元/kg。
这时,小王突然想,如果按照3.98元/kg的价格,他需要支付多少钱呢?这个问题就可以通过比例来计算。
假设小王买了x kg的苹果,那么他需要支付的钱数y元可以表示成:3.98/x × x = y。
因此, y= 3.98x元。
同理,在解决商品打折问题时,也可以应用比例乘法。
例如,一家商铺宣传说“所有商品8折”,若商品最初的价格为P元,那么在打折后的售价为p元,它们之间的比例为0.8:1,也可以写成0.8/1 = p/P。
假设打折后的售价为p元,那么原价P可以表示为:P= p/0.8元。
第二种情况:比例除法小李在银行取出了100元钞票。
他需要将这100元换成1元硬币、5角硬币和1角硬币。
现在的问题是,他需要多少个1元硬币、5角硬币和1角硬币呢?在这种情况下,我们可以使用比例除法来计算。
设1元硬币的个数为x,5角硬币的个数为y,1角硬币的个数为z,则有:x+y+z= 100(单位:元)1元硬币和5角硬币和1角硬币之间的比例为1:0.5:0.1,那么,同样用比例除法可以推导出:1元硬币的个数为x个,则5角硬币的个数为0.5x个,1角硬币个数为0.1x个,则有:1x + 0.5x + 0.1x =100x = (100/(1+0.5+0.1)= 60 (个)因此,需要60个1元硬币,30个5角硬币和10个1角硬币。
第三种情况:比例的基准变化小明和小红比赛谁可以先吃两斤牛肉干。
小明以每分钟吃0.1公斤的速度吃完,而小红以每分钟吃0.15公斤的速度吃完。
在某一时间点,小明和小红一起吃了4/5斤的牛肉干(即小明吃了a公斤,小红吃了b公斤,且a+b=4/5),请问他们两人吃牛肉干用时谁更快?假设小明和小红A、B两人的吃肉干的速度成比例分别为0.1:1和0.15:1,他们吃两斤肉干用的时间分别是x、y分钟。
教学笔记第5课时用比例解决问题(1)教学内容教科书P61例5,完成教科书P63~64“练习十一”中第3、4、6、7题。
教学目标1.能正确判断情境中的两种量是否成正比例关系,并能用正比例的意义解决实际问题。
2.在经历问题解决的过程中,培养学生分析问题和解决问题的能力,发展学生的思维能力。
3.学会从不同的角度思考问题,沟通“算术法”与“比例方法”的联系和区别,发展探究解决问题策略的能力。
教学重点掌握用正比例的意义解答基本应用题的方法与步骤。
教学难点利用正比例关系列出含有未知数的等式。
教学准备课件。
教学过程一、复习正比例的意义,激活经验1.复习成正比例的量。
师:谁能说一说生活中有哪些成正比例关系的量?【学情预设】预设1:速度一定,路程与时间成正比例关系。
预设2:单价一定,总价与数量成正比例关系。
预设3:工作效率一定,工作总量与工作时间成正比例关系。
……师:判断两种相关联的量是不是成正比例关系的关键是什么?【学情预设】两种相关联的量的比值一定,这两种量就成正比例关系。
【设计意图】通过描述生活中常见的成正比例关系的量,唤起学生对旧知识的回忆,巩固判断两个量成正比例关系的关键要素,同时为新知的学习作准备。
2.揭示课题。
师:生活中成正比例的量有很多,今天这节课我们来学习用正比例知识解决生活中的实际问题。
[板书课题:用比例解决问题(1)]二、提出问题,探索用正比例知识解决问题1.阅读与理解。
课件出示教科书P61例5。
师:通过上图,你知道了什么?要解决什么问题?【学情预设】张大妈家上个月用了8t水,水费是28元;李奶奶家用了10t水。
要求李奶奶家上个月的水费是多少钱。
师:你能解决这个问题吗?试一试。
学生独立思考,完成解答。
2.分析与解答。
(1)教师收集学生用算术法解决问题的方法进行汇报交流。
【学情预设】预设1:先算出每吨水的价钱,再算10t水的总价。
28÷8×10 3.5×1035(元)预设2:先求出用水量的倍数关系,再求总价。
用比例解决问题汇编4篇用比例解决问题篇11、用比例解决问题这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。
从旧知识引出新知识,加强了知识之间的联系,先让学生用以前学过的方法解答,然后用用比例的知识解答。
2、让学生带着问题思考,目的是只有先判断题目中两种相关联的量成什么比例关系,才能列出比例式。
3、改变例1题目里的条件和问题用比例的知识解答,使学生进一步判断成正比例的量,从而加深对正比例意义的理解。
同时,由于解答时是根据比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。
4、课堂小结起着整理归纳、画龙点睛的作用,但不恰当的课堂小结也许适得其反。
我带领学生把用比例解应用题的方法整理、归纳得天衣无缝。
这样的小结对学生的当前解题确有帮助,或许在提示用比例方法解应用题时是不会出错的。
但新课程强调的是面向学生的未来,试想想,这样的小结会给学生的将来带来什么?由于把用比例解应用题归结为这样的四步,学生在解题时按照这样的四步也许是不会错的,但实际上用比例解应用题时,有的也不一定非要按照这样的四步,尽可能简单的列出算式,可以用多种方法列出比例式。
学生的思维训练得不到灵活开放,更不用说通过练习提高学生思维的灵活性了。
通过对这节课的总结,我意识到教师的“教”要以学生的发展为基准,把学生的“学”放到主要地位上来,真正的做到以学生为主体的教学模式。
用比例解决问题篇2今春,我校开展了“三生”课堂教学竞赛活动。
在这次活动中,我和六一班的吕梅老师进行了同课异构,执教了六年级数学下册第三单元《用正比例解决问题》一课。
本节课主要是教学利用比例的意义及基本性质,正比例、反比例的意义等基本知识来解决一些与实际生活相关的问题。
依据“三生”课堂的特点,结合学生实际和教材内容,我制订学习目标如下:知识与技能目标:会用正比例知识解答含有正比例关系的问题;过程与方法目标:在解决问题的过程中熟练判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;情感态度与价值观目标:增强学生探究解决问题策略的能力。