非正弦周期信号 ; 周期函数分解为傅里叶级数 ; 有效值、平均值和平均功率、 非正弦周期电流电路的计算
- 格式:ppt
- 大小:929.00 KB
- 文档页数:39
非正弦周期信号有效值、平均值、功率
1 .有效值:
(1 )周期量有效值的定义:
留意:对于非正弦周期信号,其最大值与有效值之间并无关系。
(2 )非正弦周期量:
函数
则有效值为:
利用三角函数的正交性得:
同理非正弦周期电流的有效值为:
结论:周期函数的有效值为直流重量及各次谐波重量有效值平方和的方根。
2 .平均值:
非正弦周期性函数的平均值为直流重量:
明显正弦周期性函数的平均值为0
3 .功率:
如图所示,所示一端口N 的端口电压u ( t ) 和电流i ( t ) 的关联参考方向下,一端口电路汲取的瞬时功率和平均功率为
一端口电路的端口电压u ( t ) 和电流i ( t ) 均为非正弦周期量,其傅里叶级数形式分别为
在图示关联参考方向下,一端口电路汲取的平均功率
将上式进行积分,并利用三角函数的正交性,得
上式表明,不同频率的电压与电流只构成瞬时功率,不能构成平均功率,只有同频率的电压与电流才能构成平均功率;电路的平均功率等于直流重量和各次谐波重量各自产生的平均功率之和,即平均功率守恒。
即:平均功率=直流重量的功率+各次谐波的平均功率。
第十二章电路定理一、教学基本要求1、了解周期函数分解为傅里叶级数的方法和信号频谱的概念。
2、理解周期量的有效值、平均值的概念,掌握周期量有效值的计算方法。
3、掌握非正弦周期电流电路的谐波分析法和平均功率的计算,了解滤波器的概念。
二、教学重点与难点教学重点:1、非正弦周期电流电路的电流、电压的有效值、平均值;2、非正弦周期电流电路的平均功率3、非正弦周期电流电路的计算方法叠加定理、戴维宁定理和诺顿定理。
教学难点:1、叠加定理在非正弦周期电流电路中的应用2、非正弦周期电流电路功率的计算三、本章与其它章节的联系:本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。
非正弦周期信号可以分解为直流量和一系列不同频率正弦量之和,每一信号单独作用下的响应,与直流电路及交流电路的求解方法相同,再应用叠加定理求解,是前面内容的综合。
四、学时安排总学时:4五、教学内容§12.1 非正弦周期信号生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。
在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。
非正弦周期交流信号的特点:1) 不是正弦波2) 按周期规律变化,满足:(k=0,1,2…..)式中T 为周期。
图 12.1 为一些典型的非正弦周期信号。
(a)半波整流波形(b)锯齿波(c)方波图12.1本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。
采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。
§12.2周期函数分解为付里叶级数电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式:也可表示成:以上两种表示式中系数之间关系为:上述系数可按下列公式计算:(k=1,2,3……)求出a0、a k、b k便可得到原函数f(t) 的展开式。