37算法与程序框图
- 格式:doc
- 大小:387.00 KB
- 文档页数:4
一、算法1.算法的概念在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.注意:(1)算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或看成按要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.(2)通俗地讲,算法就是计算机解题的过程.在这个过程中,无论是形成解题思路还是编写程序,都是实施某种算法,前者是推理实现的算法,后者是操作实现的算法.(3)描述算法可以有不同的方式.可以用自然语言和数学语言加以叙述,也可以用算法语言给出精确的说明,或用框图直观的显示等.2.算法的特点(1)确定性:算法中的每一步应该是确定的并且能有效的执行且得到确定的结果,而不应当是模棱两可或者有歧义.(2)可行性:算法对于某一类问题的解决都必须是有效的,切实可行的,并且能重复使用.(3)有效性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不是无限的.二、程序框图1.画程序框图的规则①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画;③除判断框外,大多数框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的唯一的符号;④一种判断是“是”与“不是”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果;⑤在图形符号内描述的语言要非常简练、清楚.2.算法的基本逻辑结构及框图表示任何一种算法都可由顺序结构、条件结构和循环结构这三种基本逻辑结构组成.学习这部分时应注意:①循环结构中一定包含条件结构;②在循环结构中,通常都有一个起循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中;③根据对条件的不同处理,循环结构又分为当型(WHILE型)和直到型(UNTIL型)两种.当型循环在每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止;直到型循环在执行了一次循环体之后,对控制循环的条件进行判断,当条件不满足时执行循环体,满足则停止.3.三种基本逻辑结构的共同特点(1)只有一个入口.(2)只有一个出口,请注意一个菱形判断框有两个出口,而一个条件结构只有一个出口,不要将菱形框的出口和条件结构的出口混淆了.(3)结构内的每一部分都有机会被执行到.也就是说对每一个框来说,都应当有一条从入口到出口的路径通过它.(4)结构内不存在死循环,即无终止的循环.在程序设计中是不允许有死循环出现的.以上这些共同特点,也是检查一个程序框图或算法是否正确,合理的有效方法.。
算法与程序框图(讲义)➢知识点睛一、算法1.概念:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.特点:(1)确定性算法的每一步都是确定的,能有效执行且得到确定的结果.(2)有限性算法要有明确的开始和结束,必须在有限步内完成任务,不能无限制的持续进行.(3)顺序性算法从开始的“第一步”到“最后一步”之间做到环环相扣.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.二、程序框图1.概念:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.构成程序框图的图形符号、名称及功能算法共有三种基本逻辑结构:顺序结构、条件结构和循环结构.1.顺序结构:由若干个依次执行的步骤组成.这是任何一个算法都离不开的基本结构.用程序框图表示为:2. 条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.常见的条件结构可以用程序框图表示为下面两种形式:3. 循环结构在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.⎧⎨⎩直到型循环结构循环结构当型循环结构(1)直到型循环结构在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.程序框图如图.直到型循环结构当型循环结构(2)当型循环结构在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.程序框图如图.➢精讲精练1.下列所给问题中,可以设计一个算法的是____________.①二分法求方程x-2sin x=0的一个近似解;②解一个二元一次方程组;③求半径为3的圆的面积;④判断函数y=x2的单调性.2.给出以下四个问题:①输入一个数x,输出它的相反数;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数1()2x xf xx x-⎧=⎨+<⎩≥,,的函数值.其中不需要用条件语句来描述其算法的有()A.1个B.2个C.3个D.4个3.阅读下面的流程图,若输入的a,b,c分别是21,32,75,则输出的a,b,c分别是()A.75,21,32B.21,32,75C.32,21,75D.75,32,21第3题图第4题图4.如图所示的程序框图的输出结果为____________.5.执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s的取值范围是()A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]第5题图 第6题图6. 阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为( )A .585B .512C .73D .647. 阅读如图所示的程序框图,运行相应的程序,则输出的i 的值为_________.8.__________.10. 如图所示,该程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .8911. 如图,当输入x 为2 016时,输出的y =( ) A .28B .10C .4D .2第11题图第12题图12.阅读如图所示的程序框图,运行相应的程序,则输出的s的值为_________.13.执行如图所示的程序框图,若输入的x,t的值均为2,则输出的S的值为()A.7B.6C.5D.414.执行如图所示的程序框图,若输入的a,b,k的值分别为1,2,3,则输出的M的值为()A.203B.72C.165D.15815.执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件为()A.8S<?S<?D.11S<?C.10S<?B.917.执行如图所示的程序框图,如果输出的s的值为3,那么判断框内应填入的条件是()【参考答案】1.①②③2.B3.A4.85.A6.C7.5 8.B9.9 510.B11.B12.913.A14.D15.C16.B17.B算法与程序框图(随堂测试)1.执行如图所示的程序框图,则输出的S的值为()A.1B.23C.1321D.610987第1题图第2题图2.执行如图所示的程序框图,若输出的X的值为31,则判断框中应填入的条件是()A.k≤2?B.k<3?C.k≤3?D.k≤4?3.执行如图所示的程序框图,若输出的S的值为126,则判断框中应填入的条件是()A.n≤5?B.n≤6?C.n≤7?D.n≤8?【参考答案】1.C2.C3.B算法与程序框图(习题)1.下面是某个问题的算法:第一步,比较a与b的大小,若a<b,则交换a,b的位置.第二步,比较a与c的大小,若a<c,则交换a,c的位置.第三步,比较b与c的大小,若b<c,则交换b,c的位置.第四步,输出a,b,c.该算法结束后解决的问题是()A.输入a,b,c三个数,按从小到大的顺序输出B.输入a,b,c三个数,按从大到小的顺序输出C.输入a,b,c三个数,按输入顺序输出D.输入a,b,c三个数,无规律地输出2.阅读程序框图,运行相应的程序,则输出的S的值为()A.-10B.6C.14D.18第2题图第3题图3.当m=7,n=3时,执行如图所示的程序框图,则输出的s的值为()A.7B.42C.210D.8404.执行如图所示的程序框图,则输出的结果为()A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)第4题图第5题图5.执行如图所示的程序框图,若输入的n的值为10,则输出的S的值为()A .511B .1011C .3655D .72556. 执行如图所示的程序框图,如果输入的t ∈[-2,2],则输出的S 的取值范围是( )A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6]7. 已知函数2log 222x x y x x ⎧=⎨-<⎩≥,,,若图中表示的是给定x 的值,求其对应的函数值y 的程序框图,则①处应填写_________,②处应填写___________.第7题图 第8题图8. 阅读程序框图,若输入的x 的值分别为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c =________.9. 执行如图所示的程序框图,若输入的a 的值为4,则输出的n 的值为( )A .2B .3C .4D .510.执行如图所示的程序框图,若输入的ε的值为0.25,则输出的n的值为___________.11.以下给出的是计算111124620++++…的值的一个程序框图,其中判断框内应填入的条件是()A.i>10?B.i<10?C.i>20?D.i<2012. 执行如图所示的程序框图,若输出的S 的值为52,则判断框内应填入的条件是( )A .i >10?B .i <10?C .i >9?D .i <9?第12题图 第13题图 13. 阅读如图所示的程序框图,若输出的i 的值为5,则空白矩形框中应填入的语句是( )A .S =2i -2B .S =2i -1C .S =2iD .S =2i +414. 阅读如图的程序框图,若输出的s 的值为-7,则判断框内可填写( )【参考答案】1. B2. B3. C4. B5. A6. D7. 2x < 2log y x = 8. 6 9. B 10. 3 11. A 12. A 13. C 14. D。
第4讲算法与程序框图,[学生用书P190~P191])1.算法的含义与程序框图(1)算法:算法是指按照一定规则解决某一类问题的明确和有限的步骤.(2)程序框图:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(3)2[做一做]1.在程序框图中,算法的一个步骤到另一个步骤的连接用( ) A .连接点 B .判断框 C .流程线 D .处理框解析:选C .带有方向箭头的流程线将程序框连接起来. 2.(2015·福建福州模拟)执行如图所示的程序框图,若输入x =0.1,则输出的m 的值是( )A .0B .0.1C .1D .-1解析:选A .当x =0.1时,m =lg 0.1=-1,因为-1<0,执行m =m +1=-1+1=0,将0赋给m ,输出的m 的值是0.1.辨明两个易误点(1)易混淆处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.(2)易忽视循环结构中必有条件结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.2.识别三种结构的关系顺序结构是每个算法结构都含有的,而对于循环结构有重复性,条件结构具有选择性没有重复性,并且循环结构中必定包含一个条件结构,用于确定何时终止循环体,循环结构和条件结构都含有顺序结构.[做一做]3.(2014·高考北京卷)执行如图所示的程序框图,输出的S值为()A.1 B.3C.7 D.15解析:选C.程序框图运行如下:k=0<3,S=0+20=1,k=1<3;S=1+21=3,k=2<3;S=3+22=7,k=3.输出S=7.4.阅读如图所示的程序框图,若输出的y=1,则输入的x的值可能是()A.±2和2 B.-2和2C.± 2 D.2解析:选C.由程序框图可知,当x>2时,log2x=1⇒x=2,舍去;当x≤2时,x2-1=1,x=±2.,[学生用书P 191~P 193])考点一__顺序结构与条件结构__________________(2013·高考课标全国卷Ⅰ)执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5][解析] 由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上函数的值域为[-3,4],即输出的s 属于[-3,4].[答案] A若本例的判断框中的条件改为“t ≥1?”,则输出的s 的范围是________.解析:由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t ≥1,4t -t 2,t <1.所以当1≤t ≤3时,s =3t ∈[3,9],当-1≤t <1时,s =4t -t 2=-(t -2)2+4,所以此时-5≤s <3.综上函数的值域为[-5,9],即输出的s 属于[-5,9].答案:[-5,9][规律方法] 应用顺序结构和条件结构的注意点 (1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)条件结构利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一图框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.1.(2015·辽宁省大连市高三模拟)执行如图所示的程序框图,若输入的x ∈[0,2π],则输出y 的取值范围是( )A .[0,1]B .[-1,1]C .[-22,1] D .[-1,22] 解析:选C .根据程序框中判断框内的条件,得知y 为sin x ,cos x 中的较大值.在同一个坐标系中画出y =sin x ,y =cos x 的图象,可知y 的取值范围为[-22,1]. 考点二__循环结构(高频考点)____________________循环结构是高考命题的一个热点问题,多以选择题、填空题的形式呈现,试题难度不大,多为容易题或中档题.高考对循环结构的考查主要有以下三个命题角度: (1)由框图求输出的结果; (2)完善程序框图;(3)由程序框图及输出结果,求输入的值.(1)(2014·高考重庆卷)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >45(2)(2014·高考辽宁卷)执行如图所示的程序框图,若输入x =9,则输出y =________.(3)(2014·高考山东卷)执行如图所示的程序框图,若输入的x 的值为1,则输出的n 的值为________.[解析] (1)第一次执行循环:s =1×910=910,k =8,s =910应满足条件;第二次执行循环:s =910×89=810,k =7,s =810应满足条件,排除选项D ;第三次执行循环:s =810×78=710,k =6,正是输出的结果,故这时程序不再满足条件,结束循环,而选项A 和B 都满足条件,故排除A 和B ,故选C .(2)x =9时,y =93+2=5,|y -x |=|5-9|=4<1不成立;x =5,y =53+2=113,|y -x |=⎪⎪⎪⎪113-5=43<1不成立;x =113,y =119+2=299,|y -x |=⎪⎪⎪⎪299-113=49<1成立,输出y =299. (3)由x 2-4x +3≤0,解得1≤x ≤3.当x =1时,满足1≤x ≤3,所以x =1+1=2,n =0+1=1; 当x =2时,满足1≤x ≤3,所以x =2+1=3,n =1+1=2; 当x =3时,满足1≤x ≤3,所以x =3+1=4,n =2+1=3; 当x =4时,不满足1≤x ≤3,所以输出n =3. [答案] (1)C (2)299(3)3[规律方法] 利用循环结构表示算法的步骤: 利用循环结构表示算法,第一要先确定是利用当型循环结构,还是利用直到型循环结构;第二要选择准确的表示累计的变量;第三要注意在哪一步开始循环,满足什么条件不再执行循环体.2.(1)(2015·山西省四校联考)如图所示的程序框图的输出结果为( )A .2 0142 015B .12 015C .2 0152 016D .12 016(2)如图,在算法框图的判断框中,若输出S 的值为120,则判断框内可填入________.(3)(2015·沈阳市教学质量监测)有如图所示的程序框图,则该程序框图表示的算法的功能是( )A .输出使1×2×4×…×n ≥2 015成立的最小整数nB .输出使1×2×4×…×n ≥2 015成立的最大整数nC .输出使1×2×4×…×n ≥2 015成立的最大整数n +2D .输出使1×2×4×…×n ≥2 015成立的最小整数n +2解析:(1)本框图是对{1i (i +1)}的求和,所以S =11×2+12×3+…+12 015×2 016=1-12 016=2 0152 016.(2)120=1×2×3×4×5,所以当i =1,2,3,4,5时执行,判断框内可填入“i <6?”. (3)依题意与题中的程序框图可知,该程序框图表示的算法的功能是输出使1×2×4×…×n ≥2 015成立的最小整数n +2.答案:(1)C (2)i <6? (3)D考点三__基本算法语句__________________(1)(2013·x 为60时,输出y 的值为( )A .25B .30C .31D .61(2)设计一个计算1×3×5×7×9×11×13的算法,下面给出了程序的一部分,则在①处不能填入的数是( )A .13B .13.5C .14D .14.5[解析] (1)该语句的分段函数y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x >50, 当x =60时,y =25+0.6×(60-50)=31. ∴输出y 的值为31.(2)若填13,当i =11+2=13时,不满足条件,终止循环,因此得到的是1×3×5×7×9×11的计算结果,故不能填13,但填的数字只要超过13且不超过15均可保证终止循环时,得到的是1×3×5×7×9×11×13的计算结果.[答案] (1)C (2)A[规律方法] 1.输入语句的要求(1)输入语句要求输入的值是具体的常量.(2)提示内容提示用户输入的是什么信息,必须加双引号,提示内容“原原本本”地在计算机屏幕上显示,提示内容与变量之间要用分号隔开.2.输出语句的要求(1)表达式是算法和程序要求输出的信息.(2)提示内容提示用户要输出的是什么信息,必须加双引号,提示内容和表达式要用分号分开.(3)输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔;输出语句还可以是“提示内容1”;表达式1,“提示内容2”;表达式2,“提示内容3”;表达式3,…的形式,例如,PRINT“a,b,c”;a,b,c;PRINT“a”;a,“b”;b,“c”;c.3.(1).(2).解析:(1)程序反映出的算法过程为i=11⇒S=11×1,i=10;i=10⇒S=11×10,i=9;i=9⇒S=11×10×9,i=8;i=8<9退出循环,执行“PRINT S”.故S=990.(2)由程序可知,m为a,b中的较大值,故最后输出的m值为3.答案:(1)990(2)3,[学生用书P 194])交汇创新——算法与不等式的交汇(2014·高考四川卷)执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .3[解析] 当条件x ≥0,y ≥0,x +y ≤1不成立时输出S 的值为1,当条件x ≥0,y ≥0,x +y ≤1成立时S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分所示,由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.[答案] C[名师点评] 本题是算法与不等式的交汇,以算法为载体,考查了线性规划问题.在新课标中,算法成为高考的热点,算法经常与数列、函数、概率交汇出现.给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值个数是( )A .1B .2C .3D .4解析:选C .由程序框图得到如下分段函数:y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5.当x ≤2时,y =x 2=x ,解得x 1=0,x 2=1; 当2<x ≤5时,y =2x -3=x ,解得x =3; 当x >5时,y =1x =x ,解得x =±1(舍去),故x 可为0,1,3.1.(2015·济南市模拟)若某程序框图如图所示,则该程序运行后输出的值是( )A .2B .3C .4D .5解析:选C .逐次运行的结果是n =3,i =2;n =4,i =3;n =2,i =4.故输出的值是4.2.(2015·太原市模拟试题)如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A .k ≤6?B .k ≤7?C .k ≤8?D .k ≤9?解析:选B .第一次执行循环,得到S =10,k =9;第二次执行循环,得到S =90,k =8,第三次执行循环,得到S =720,k =7.此时满足条件,故选B .3.(2014·高考课标全国卷Ⅰ)执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A .203B .165C .72D .158解析:选D .当n =1时,M =1+12=32,a =2,b =32;当n =2时,M =2+23=83,a =32,b =83;当n =3时,M =32+38=158,a =83,b =158;n =4时,终止循环.输出M =158.4.某程序框图如图所示,若该程序运行后输出的值是95,则( )A .a =4B .a =5C .a =6D .a =7解析:选A .该程序框图的功能为计算1+11×2+12×3+…+1a (a +1)=2-1a +1的值,由已知输出的值为95,可知当a =4时2-1a +1=95.故选A .5.已知实数x ∈[2,30],执行如图所示的程序框图,则输出的x 不小于103的概率为( )A .514B .914C .59D .49解析:选B .由程序框图可知,经过3次循环跳出,设输入的初始值为x =x 0,则输出的x =2[2(2x 0+1)+1]+1≥103,∴8x 0≥96,即x 0≥12,故输出的x 不小于103的概率为P =30-1230-2=1828=914. 6.(2015·东北三校联考)已知某算法的程序框图如图所示,若输入x =7,y =6,则输出的有序数对为( )A .(13,14)B .(12,13)C .(14,13)D .(13,12)解析:选A .执行程序框图得,n =1,x =6+1=7,y =8; n =2,x =y +1=9,y =10; n =3,x =y +1=11,y =12; n =4,x =y +1=13,y =14;n =5,循环结束,输出(13,14),故选A . 7.(2015·合肥二检)执行如图所示的程序框图,输出的所有值之和是________.解析:列举几项,发现输出的x 开始为1,每次递增2,去掉x 是3的倍数的那些数,最后可得输出的所有值之和为1+5+7+11+13+17+19=73.答案:738.关于函数f (x )=⎩⎪⎨⎪⎧-x ,1<x ≤4,cos x ,-1≤x ≤1的程序框图如图,现输入区间[a ,b ],则输出的区间是________.解析:由程序框图的第一个判断条件为f(x)>0,当f(x)=cos x,x∈[-1,1]时满足,然后进入第二个判断框,需要解不等式f′(x)=-sin x≤0,即0≤x≤1.故输出区间为[0,1].答案:[0,1]9.(2015·海淀区第二学期调研)李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的是方案________.方案一:方案二:方案三:解析:方案一所用时间为8+5+13+7+15+6=54.方案二所用时间为8+15+7=30.方案三所用时间为8+13+7=28.所以所用时间最少的是方案三.答案:三10.(2015·长沙模拟)已知数列{a n}中,a1=1,a n+1=2a n+n-1,若利用如图所示的程序框图进行运算,则输出n的值为________.解析:由数列递推关系可得a n +1+(n +1)=2(a n +n ),故数列{a n +n }是首项为1+1=2,公比为2的等比数列,a n +n =2×2n -1=2n ,a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2(1-2n )1-2-n (n +1)2=2n +1-2-n (n +1)2,当n =11时,S 11=212-2-66=4028>2 015,当n =10时,S 10=211-2-55<2 015,结合程序框图可知输出的n =11.答案:111.(2015·大连模拟)在如图所示的程序框图中,输入A =192,B =22,则输出的结果是( )A .0B .2C .4D .6解析:选B .输入后依次得到:C =16,A =22,B =16;C =6,A =16,B =6;C =4,A =6,B =4;C =2,A =4,B =2;C =0,A =2,B =0.故输出的结果为2.2.(2015·贵州省六校第一次联考)如图,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分,当x 1=6,x 2=9,p =9.5时,x 3等于( )A.10 B.9C.8 D.7解析:选A.x1=6,x2=9,|x1-x2|=3,|x3-6|<|x3-9|不成立,取x1=x3⇒x3+9=9.5×2⇒x3=10.3.(2015·成都模拟)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?解:(1)由程序框图知,当x=1时,y=0,当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 008.4.(2015·河南郑州市预测)每年的三月十二日,是中国的植树节.林管部门为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):甲:137,121,131,120,129,119,132,123,125,133;乙:110,130,147,127,146,114,126,110,144,146.(1)根据抽测结果,画出甲、乙两种树苗高度的茎叶图,并根据你画出的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;(2)设抽测的10株甲种树苗高度平均值为x ,将这10株树苗的高度依次输入,按程序框图进行运算(如图),问输出的S 大小为多少?并说明S 的统计学意义.解:(1)茎叶图如图所示:统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度; ②甲种树苗比乙种树苗长得整齐;③甲种树苗高度的中位数为127,乙种树苗高度的中位数为128.5; ④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散.(2)依题意,x -=127,S =35.S 表示10株甲种树苗高度的方差,是描述树苗高度的离散程度的量. S 值越小,表示树苗长得越整齐,S 值越大,表示树苗长得越参差不齐.。
算法与程序框图【学习目标】1.了解算法的含义,了解算法的思想.2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.【预习案】1.算法通常是指按照一定规则解决某一类问题的_______和_______的步骤.这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.程序框图又称________,是一种用________、________及____________来准确、直观地表示算法的图形.通常程序框图由________和________组成,一个或几个程序框的组合表示算法中的一个步骤;________带方向箭头,按照算法进行的顺序将________连结起来.3.顺序结构是由__________________组成的,这是任何一个算法都离不开的基本结构.其结构形式为4.条件结构是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式.其结构形式为5.循环结构是指_________________.反复执行的步骤称为________.循环结构又分为___________和_____________.其结构形式为6.算法的五个特征:概括性、逻辑性、有穷性、不惟一性、普遍性.【预习自测】1.如图所示是求样本x1,x2,…,x10平均数的程序框图,图中空白框中应填入的内容为( )A.S=S+x n B.S=S+C.S=S+n D.S=S+第1题图 第2题图2.如果执行如图所示的框图,输入N=5,则输出的数等于( ) A. B. C. D.3.执行如图所示的程序框图,输出的s值为( )A.-3 B.-C. D.2第3题图 第4题图4.执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是________.【合作探究】题型一 算法的顺序结构例1 已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到直线l的距离d,写出其算法并画出程序框图.探究1 阅读如图的程序框图,若输入的a、b、c分别是21、32、75,则输出的a、b、c分别是( )A.75、21、32 B.21、32、75C.32、21、75 D.75、32、21题型二 算法的条件结构例2 函数y=,写出求该函数的函数值的算法,并画出程序框图.探究2 给出一个如图所示的程序框图,若要使输入的x值与输出的y值相等,则这样的x值的个数是( )A.1 B.2 C.3 D.4题型三 算法的循环结构例3 写出求1×2×3×4×…×100的一个算法并画出程序框图.探究3 在如图所示的程序框图中,当程序被执行后,输出s的结果是______.【名师点睛】1.程序框图主要包括三部分:(1)表示相应操作的框;(2)带箭头的流程线;(3)框内外必要的文字说明,读懂程序框图要从这三个方面研究.流程线反映了流程执行的先后顺序,主要看箭头方向,框内外文字说明表明了操作内容.2.两种循环结构的区别:(1)执行情况不同:当型循环是先判断条件,当条件成立时才执行循环体,若循环条件一开始就不成立,则循环体一次也不执行.而直到型循环是先执行一次循环体,再判断循环条件,循环体至少要执行一次.(2)循环条件不同:当型循环是当条件成立时循环,条件不成立时停止循环,而直到型循环是当条件不成立时循环,直到条件成立时结束循环.算法与程序框图预习案1.明确 有限 2.流程图 程序框 流程线 文字说明 程序框 流程线 流程线 程序框 3.若干个依次执行的步骤 5.从某处开始,按照一定的条件反复执行某些步骤的情况 循环体 当型(WHILE 型) 直到型(UNTIL型)预习自测1.A [由循环结构的程序框图可知需添加的运算为S=x1+x2+…+x10的累加求和.]2.D [第一次运行N=5,k=1,S=0,S=0+,1<5成立,进入第二次运行;k=2,S=+,2<5成立,进入第三次运行;k=3,S=++,3<5成立,进入第四次运行;k=4,S=+++,4<5成立,进入第五次运行;k=5,S=++++=1-=,5<5不成立,此时退出循环,输出S.]3.D [由框图可知i=0,s=2→i=1,s=→i=2,s=-→i=3,s =-3→i=4,s=2,循环终止,输出s,故最终输出的s值为2.] 4.68解析 当输入l=2,m=3,n=5时,不满足l2+m2+n2=0,因此执行:y=70l+21m+15n=70×2+21×3+15×5=278.由于278>105,故执行y=y-105,执行后y=278-105=173,再执行一次y=y-105后y 的值为173-105=68,此时68>105不成立,故输出68.合作探究例1 解题导引 顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.程序框图中一定包含顺序结构.解 算法如下:第一步,输入x0,y0及直线方程的系数A,B,C.第二步,计算Z1=Ax0+By0+C.第三步,计算Z2=A2+B2.第四步,计算d=.第五步,输出d.程序框图:探究1 A [由程序框图中的各个赋值语句可得x=21,a=75,c=32,b=21,故a、b、c分别是75、21、32.]例2 解题导引 求分段函数函数值的程序框图的画法,如果是分两段的函数,则需引入一个判断框;如果是分三段的函数,则需引入两个判断框.解 算法如下:第一步,输入x;第二步,如果x>0,则y=-2;如果x=0,则y=0;如果x<0,则y =2;第三步,输出函数值y.相应的程序框图如图所示.探究2 C [本问题即求函数y=的值.若x≤2,由x2=x得,x=1或0;若2<x≤5,由x=2x-3得,x=3;若x>5,由x=得,x=±1,不符合.故符合要求的x值有3个.]例3 解题导引 数学中的累加、累乘、累差等重复性操作可以用循环结构来实现.循环结构分当型和直到型两种,二者的区别是:前者是,当满足条件时执行循环体,而后者是“直到”条件满足时结束循环.解 第一步,设S的值为1.第二步,设i的值为2.第三步,如果i≤100执行第四步,否则转去执行第七步.第四步,计算S乘i并将结果赋给S.第五步,计数i加1并将结果赋给i.第六步,转去执行第三步.第七步,输出S的值并结束算法.根据自然语言描述,程序框图如下:探究3 286解析 数列{a n}:4,7,10,…为等差数列,令a n=4+(n-1)×3=40,得n=13,∴s=4+7+…+40==286.。
算法与程序框图知识讲解一、算法的概念概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照一定规则解决某一类问题的明确的和有限的步骤,称为算法(algorithm).通常可以编成计算机程序,让计算机执行并解决问题.二、算法的特征1.有穷性:算法必须在执行有限步后结束,通常还理解为实际上能够容忍的合理限度;2.确定性:算法的每一个步骤必须有确定的含义;3.可行性:组成算法的每个步骤和操作必须是相当基本的,原则上都是能精确地执行的;4.输入:有零个或多个输入;5.输出:有一个或多个输出.三、算法的描述描述:自然语言、数学语言、算法语言(程序设计语言)、程序框图(流程图).四、算法的三种基本逻辑结构1.顺序结构:最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.如下左图,只有在执行完A框指定的操作后,才能接着执行B框指定的操作;2.条件(分支)结构:在一个算法中,用来处理需要根据条件是否成立有不同的流向的结构.常见的条件结构的程序框图有下面两种形式:3.循环结构:从某处开始,按照一定的条件反复执行某些步骤的情况,就是循环结构,其中反复执行的步骤称为循环体.常见的循环结构的框图对应为:五、程序框图的概念及常用图形符号1.概念:用一些通用的图形符号构成的一张图来表示算法,称为程序框图(简称框图).2.常用图形符号:典型例题一.选择题(共4小题)1.(2015•重庆)执行如图所示的程序框图,则输出s的值为()A.B.C.D.【解答】解:模拟执行程序框图,可得s=0,k=0满足条件k<8,k=2,s=满足条件k<8,k=4,s=+满足条件k<8,k=6,s=++满足条件k<8,k=8,s=+++=不满足条件k<8,退出循环,输出s的值为.故选:D.2.(2015•重庆)执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是()A.s≤B.s≤C.s≤D.s≤【解答】解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=(此时k=6),因此可填:S.故选:C.3.(2015•天津)阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.2 B.3 C.4 D.5【解答】解:模拟执行程序框图,可得S=10,i=0i=1,S=9不满足条件S≤1,i=2,S=7不满足条件S≤1,i=3,S=4不满足条件S≤1,i=4,S=0满足条件S≤1,退出循环,输出i的值为4.故选:C.4.(2015•陕西)根据如图框图,当输入x为6时,输出的y=()A.1 B.2 C.5 D.10【解答】解:模拟执行程序框图,可得x=6x=3满足条件x≥0,x=0满足条件x≥0,x=﹣3不满足条件x≥0,y=10输出y的值为10.故选:D.二.填空题(共3小题)5.(2017•启东市校级模拟)运行下面的一个流程图,则输出的S值是35.【解答】解:经过第一次循环得到结果为n=3,s=3,此时满足判断框的条件经过第二次循环得到结果为n=5,s=3+5,此时满足判断框的条件经过第三次循环得到结果为n=7,s=3+5+7,此时满足判断框的条件经过第四次循环得到结果为n=9,s=3+5+7+9,此时满足判断框的条件,经过第四次循环得到结果为n=11,s=3+5+7+9+11,此时不满足判断框的条件,执行输出s,即输出s=3+5+7+9+11=35故答案为:356.(2012•江苏)图是一个算法流程图,则输出的k的值是5.【解答】解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.7.(2017春•阜宁县校级期中)阅读如图的流程图,则输出S=30.【解答】解:根据题意,模拟程序框图的运行过程,知该程序框图的运行是计算S=12+22+…+n2;当i=4+1=5>4时,S=12+22+32+42=30;输出S=30.故答案为:30.三.解答题(共2小题)8.写出求一元二次方程ax2+bx+c=0的根的算法.【解答】解:求一元二次方程ax2+bx+c=0的根的算法步骤是;第一步,输入3个系数a,b,c;第二步,计算△=b2﹣4ac;第三步,判断△≥0是否成立,若是,则计算p=﹣,q=,否则,输出“方程没有实数根”,结束算法;第四步,判断△=0是否成立,若是,则输出x1=x2=p,否则,计算x1=p+q,x2=p ﹣q,并输出x1,x2.9.高一(2)班共有54名学生参加数学竞赛,现已有他们的竞赛分数,请设计一个将竞赛成绩优秀学生的平均分输出的算法(规定90分以上为优秀).【解答】解:算法如下:第一步:i=0,n=0,S=0第二步:输入一个成绩a第三步:若a>90,则S=S+a,n=n+1否则,执行第四步。
算法与程序框图
【学习目标】
1.了解算法的含义,了解算法的思想.
2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.
【预习案】
1.算法通常是指按照一定规则解决某一类问题的_______和_______的步骤.这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.程序框图又称________,是一种用________、________及____________来准确、直观地表示算法的图形.
通常程序框图由________和________组成,一个或几个程序框的组合表示算法中的一个步骤;________带方向箭头,按照算法进行的顺序将________连结起来.
3.顺序结构是由__________________组成的,这是任何一个算法都离不开的基本结构.
其结构形式为
4.条件结构是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式.
其结构形式为
5.循环结构是指_________________.反复执
行的步骤称为________.循环结构又分为
___________和_____________.
其结构形式为
6.算法的五个特征:概括性、逻辑性、有穷
性、不惟一性、普遍性.
【预习自测】
1.如图所示是求样本x1,x2,…,x10平均数x
的程序框图,图中空白框中应填入的内容为( )
A.S=S+x n B.S=S+
x n
n
C.S=S+n D.S=S+
1
n
第1题图第2题图
2.如果执行如图所示的框图,输入N=5,则
输出的数等于( )
A.
5
4
B.
4
5
C.
6
5
D.
5
6
3.执行如图所示的程序框图,输出的s值为
( )
A.-3 B.-
1
2
C.
1
3
D.
2
第3题图第4题图
4.执行如图所示的程序框图,输入l=2,m
=3,n=5,则输出的y的值是________.
【合作探究】
题型一算法的顺序结构
例1已知点P(x0,y0)和直线l:Ax+By+C
=0,求点P(x0,y0)到直线l的距离d,写出其算
法并画出程序框图.
探究1 阅读如图的程序框图,若输入的a、b、
c分别是21、32、75,则输出的a、b、c分别是( )
A.75、21、32 B.21、32、75
C.32、21、75 D.75、32、21
题型二 算法的条件结构 例2 函数y =⎩⎪⎨⎪
⎧
-2 x>0 0 x=0
2 x<0
,写出求
该函数的函数值的算法,并画出程序框图.
探究2 给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是(
)
A .1
B .2
C .3
D .4
题型三 算法的循环结构
例3 写出求1×2×3×4×…×100的一个算法并画出程序框图.
探究3 在如图所示的程序框图中,当程序被
执行后,输出s 的结果是______.
【名师点睛】
1.程序框图主要包括三部分: (1)表示相应操作的框; (2)带箭头的流程线;
(3)框内外必要的文字说明,读懂程序框图要从这三个方面研究.流程线反映了流程执行的先后顺序,主要看箭头方向,框内外文字说明表明了操作内容.
2.两种循环结构的区别:
(1)执行情况不同:当型循环是先判断条件,当条件成立时才执行循环体,若循环条件一开始就不成立,则循环体一次也不执行.而直到型循环是先执行一次循环体,再判断循环条件,循环体至少要执行一次.
(2)循环条件不同:当型循环是当条件成立时循
环,条件不成立时停止循环,而直到型循环是当条件不成立时循环,直到条件成立时结束循环.
算法与程序框图
预习案
1.明确 有限 2.流程图 程序框 流程线
文字说明 程序框 流程线 流程线 程序框 3.
若干个依次执行的步骤 5.从某处开始,按照一定
的条件反复执行某些步骤的情况 循环体 当型
(WHILE 型) 直到型(UNTIL 型)
预习自测
1.A [由循环结构的程序框图可知需添加的
运算为S =x 1+x 2+…+x 10的累加求和.]
2.D [第一次运行N =5,k =1,S =0,S =0+11×2,1<5成立,进入第二次运行;k =2,S =
1
1×2+12×3,2<5成立,进入第三次运行;k =3,S =1
1×2+12×3+13×4,3<5成立,进入第四次运行;k =4,
S =11×2+12×3+13×4+14×5
,4<5成立,进入第五次运行;k =5,S =11×2+12×3+13×4+1
4×5
+15×6=1-16=5
6,5<5不成立,此时退出循环,输出S.] 3.D [由框图可知i =0,s =2→i=1,s =13→i=2,s =-1
2
→i=3,s =-3→i=4,s =2,循环终止,输出s ,故最终输出的s 值为2.]
4.68
解析 当输入l =2,m =3,n =5时,不满足l 2+m 2+n 2=0,因此执行:y =70l +21m +15n =
70×2+21×3+15×5=278.由于278>105,故执
行y =y -105,执行后y =278-105=173,再执行一次y =y -105后y 的值为173-105=68,此时68>105不成立,故输出68. 合作探究 例1 解题导引 顺序结构是最简单的算法
结构,语句与语句之间、框与框之间是按从上到下
的顺序进行的.程序框图中一定包含顺序结构.
解 算法如下:
第一步,输入x 0,y 0及直线方程的系数A ,B ,
C.
第二步,计算Z 1=Ax 0+By 0+C.
第三步,计算Z 2=A 2+B 2
.
第四步,计算d =|Z 1|
Z 2
. 第五步,输出d. 程序框图:
探究 1 A [由程序框图中的各个赋值语句
可得x =21,a =75,c =32,b =21,故a 、b 、c 分别是75、21、32.] 例2 解题导引 求分段函数函数值的程序框图的画法,如果是分两段的函数,则需引入一个判断框;如果是分三段的函数,则需引入两个判断框.
解 算法如下: 第一步,输入x ; 第二步,如果x>0,则y =-2;如果x =0,则y =0;如果x<0,则
y =2;
第三步,输出函数值y.
相应的程序框图如图所示.
探究2 C [本问题即求函数y =⎩⎪⎨⎪⎧
x 2,x≤2,2x -3,2<x≤5,1
x ,x>5的值. 若x ≤2,由x 2
=x 得,x =1或0; 若2<x≤5,由x =2x -3得,x =3; 若x>5,由x =1x 得,x =±1,不符合. 故符合要求的x 值有3个.] 例3 解题导引 数学中的累加、累乘、累差等重复性操作可以用循环结构来实现.
循环结构分当型和直到型两种,二者的区别是:前者是,当满足条件时执行循环体,而后者是“直到”条件满足时结束循环. 解 第一步,设S 的值为1. 第二步,设i 的值为2. 第三步,如果i≤100执行第四步,否则转去执行第七步.
第四步,计算S 乘i 并将结果赋给S. 第五步,计数i 加1并将结果赋给i. 第六步,转去执行第三步.
第七步,输出S 的值并结束算法. 根据自然语言描述,程序框图如下:
探究3 286
解析 数列{a n }:4,7,10,…为等差数列,令a n =4+(n -1)×3=40,得n =13,∴s=4+7+…
+40= 4+40 ×13
2
=286.。