数学3必修)第三章:概率
- 格式:docx
- 大小:332.50 KB
- 文档页数:10
高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
概率的基本性质说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“概率的基本性质”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“概率的基本性质”是高中数学必修 3 第三章概率的重要内容。
在此之前,学生已经学习了随机事件的概率,为本节课的学习奠定了基础。
本节课主要介绍了概率的基本性质,包括概率的取值范围、互斥事件和对立事件的概率加法公式等,这些性质不仅是进一步学习概率的计算和应用的基础,也为后续学习统计学等相关知识提供了重要的理论支持。
二、学情分析在知识方面,学生已经初步了解了概率的概念,但对于概率的基本性质的理解和应用还存在一定的困难。
在能力方面,学生具备了一定的逻辑思维能力和抽象概括能力,但在运用数学知识解决实际问题时,还需要进一步的引导和训练。
在心理方面,高中生思维活跃,好奇心强,具有较强的求知欲,但在学习过程中容易出现注意力不集中、缺乏耐心等问题。
三、教学目标基于以上的教材分析和学情分析,我制定了以下的教学目标:1、知识与技能目标(1)理解概率的基本性质,包括概率的取值范围、概率的加法公式等。
(2)能够运用概率的基本性质解决简单的概率问题。
2、过程与方法目标(1)通过观察、分析、归纳等活动,培养学生的逻辑思维能力和抽象概括能力。
(2)通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。
3、情感态度与价值观目标(1)让学生在学习过程中体验数学的严谨性和科学性,培养学生的数学素养。
(2)激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
四、教学重难点1、教学重点(1)概率的基本性质,特别是互斥事件和对立事件的概率加法公式。
(2)运用概率的基本性质解决实际问题。
2、教学难点(1)对互斥事件和对立事件概念的理解。
(2)灵活运用概率的基本性质解决复杂的概率问题。
五、教法与学法1、教法为了实现教学目标,突破教学重难点,我将采用以下的教学方法:(1)讲授法:通过讲解概率的基本性质,让学生系统地掌握知识。
第3章概率§3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率(教师用书独具)●三维目标1.知识与技能:①了解随机事件、必然事件、不可能事件的概念;②正确理解事件A出现的频率的意义和概率的概念和意义,明确事件A发生的频率与概率的区别与联系;2.过程与方法:通过经历试验、统计等活动,进一步发展学生合作交流的意识和能力.通过获取试验数据,归纳总结试验结果,体会随机事件发生的不确定性及其频率的稳定性;做到在探索中学习,在探索中提高.3.情感态度与价值观:通过学生自己动手、动脑和亲身试验来理解概率的含义,体会数学知识与现实生活的联系.●重点难点重点:理解随机事件发生的不确定性和频率的稳定性;正确理解概率的意义;难点:理解随机事件发生的随机性,以及随机性中表现出的规律性.难点突破:给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件发生的随机性以及随机性中表现出的规律性的直接感知.按照探究式教学法的核心思想,围绕概率定义产生的思维过程,从定义产生的必要性和合理性两方面不断设置问题,激发学生的探究欲望,让学生以研究者和探索者的身份,参与随机事件发生频率的统计规律的抽象概括过程,参与概率定义的过程。
从而强化重点.(教师用书独具)●教学建议在本节课的教学中建议教师主要渗透以下几个方面的学法指导.(1)让学生亲自经历运用科学方法探索的过程。
主要是创设“掷硬币时‘正面向上’出现的比例是多少”的问题情境,让学生在探索中体会科学知识.(2)培养学生学会通过自学、观察、试验等方法获取相关知识,使学生在探索研究过程中提高分析、归纳、推理能力.(3)让学生通过试验,相互交流试验数据,体会相互合作提升办事效率.结合本节课的教学内容以及学生的认知情况,本节课主要突出运用了“探究式”教学方法,在试验探究的过程中,培养学生探究问题的能力、语言表达能力.●教学流程创设问题情境,引出问题1日常生活中的实例和问题2掷骰子实验.⇒引导学生结合前面学习过的频率的知识,观察、比较、分析,得出概率的概念.⇒通过引导学生回答所提问题理解频率与概率的关系.⇒通过例1及其变式训练,使学生掌握随机事件,必然事件及不可能事件的概念.⇒通过例2及其变式训练,使学生掌握概率与频率的关系问题的解题策略.⇒通过例3及其变式训练阐明概率的意义,使学生明确与概率有关的问题的解决方法.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识考察下列现象:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)常温常压下石墨能变成金刚石;(4)三角形的内角和大于360°;(5)明天下雨以上现象中哪几个是必然会发生的?哪几个是肯定不会发生的?【提示】(1)(2)必然发生;(3)(4)肯定不会发生;(5)可能发生也可能不发生.1.(1)定义:对于某个现象,如果能让其条件实现一次,就是进行了一次试验,而试验的每一种可能的结果,都是一个事件.(2)分类【问题导思】做一个简单的实验:把一枚骰子掷多次,观察出现的结果,并记录各结果出现的频数.在本实验中出现了几种结果,还有其它实验结果吗?【提示】一共出现了1点,2点,3点,4点,5点,6点六种结果,没有其它结果出现.若做大量地重复实验,你认为出现每种结果的次数有何关系?【提示】大致相等一般地,对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).(1)有界性:对任意事件A,有0≤P(A)≤1.(2)规范性:若Ω、Ø分别代表必然事件和不可能事件,则P(Ω)=1,P(Ø)=0.指出下列事件中哪些是必然事件、不可能事件、随机事件:(1)巴西足球队在下届世界杯足球赛中夺得冠军;(2)x2-3x+2=0有两个不相等的实数根;(3)李四走到十字路口遇到张三;(4)某人购买福利彩票5注,均未中奖;(5)在标准大气压下,温度低于0 ℃时,冰融化.【思路探究】本题可以根据事件的定义去判断,解决此类问题的关键是根据题意明确条件,判断在此条件下,事先能否断定出现某种结果.【自主解答】巴西足球队在下届世界杯足球赛中是否夺得冠军不确定,故(1)为随机事件;(2)∵Δ=(-3)2-8=1>0,∴(2)是必然事件;(3)(4)是随机事件;(5)是不可能事件.准确掌握随机事件、必然事件、不可能事件的概念是解题的关键,应用时要特别注意看清条件,在给定的条件下判断是一定发生,还是不一定发生,还是一定不发生,来确定属于哪一类事件.在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?①如果a,b都是实数,那么a+b=b+a;②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;③没有水分,种子发芽;④某电话总机在60秒内接到至少15次传呼;⑤在标准大气压下,水的温度达到50 ℃时沸腾;⑥同性电荷,相互排斥.【解】由实数运算性质知①恒成立是必然事件;⑥由物理知识知同性电荷相斥是必然事件,①⑥是必然事件.没有水分,种子不会发芽,标准大气压下,水的温度达到50 ℃时不沸腾,③⑤是不可能事件.从1~6中取一张可能取出4也可能取不到4,电话总机在60秒可传呼15次也可不传呼15次.②④是随机事件.某公司在过去几年内使用了某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:时)进行了统计,统计结果如下表所示:(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率. 【思路探究】 (1)频率=频数÷总数.(2)先求出灯管使用寿命在[0,1 500)的频数,再应用公式f n (A )=n An 求解.【自主解答】 (1)频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042. (2)样本中使用寿命不足1 500小时的频数是48+121+208+223=600,所以样本中使用寿命不足1 500小时的频率是6001 000=0.6,即估计灯管使用寿命不足1500小时的概率为0.6.1.频率是事件A 发生的次数m 与试验总次数n 的比值,利用此公式可求出它们的频率.频率本身是随机变量,当n 很大时,频率总是在一个稳定值附近左右摆动,这个稳定值就是概率.2.解此类题目的步骤是:先利用频率的计算公式依次计算频率,然后用频率估计概率.下表中列出了10次抛掷一枚硬币的试验结果,n 为每次试验抛掷硬币的次数,m 为硬币正面向上的次数.计算每次试验中“正面向上”这一事件的频率,并考查它的概率.【解】 由事件发生的频率=mn ,可分别得出这10次试验中“正面向上”这一事件出现的频率依次为0.502,0.498,0.512,0.506,0.502,0.492,0.488,0.516,0.524,0.494.这些数字都在0.5附近摆动,由概率的统计定义可得,“正面向上”的概率为0.5.张明同学抛一枚硬币10次,共有8次反面向上,于是他指出:“抛掷一枚硬币,出现反面向上的概率应为0.8”.你认为他的结论正确吗?为什么?【思路探究】 正确理解频率定义及概率的统计性定义是解答本题的关键.他的结论显然是错误的.【自主解答】 从概率的统计定义可看出:事件A 发生的频率m n 叫做事件A 发生的概率的近似值.但要正确理解概率的定义必须明确大前提:试验次数n 应当足够多.也就是说,只有“在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定”时,才用这个常数来刻画该随机事件发生的可能性大小,即称为这一事件发生的概率的近似值.张明同学抛掷一枚硬币10次,有8次正面向上,就得出“正面向上”的概率为0.8,显然是对概率统计性定义曲解的结果.1.随机事件的概率,本质上是刻画该事件在一次试验中发生的可能性大小的数量,不能由此断定某次试验中一定发生某种结果或一定不发生某种结果.2.在理解概率的定义时,一定要将频率与概率区分开,频率与试验的次数有关,概率不随试验次数而变化,是个客观值.某同学认为:“一个骰子掷一次得到6点的概率是16,这说明一个骰子掷6次一定会出现一次6点.”这种说法正确吗?说说你的理由.【解】 这种说法是错误的.因为掷骰子一次得到6点是一个随机事件,在一次试验中,它可能发生,也可能不发生,掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现6点,也可能不出现6点,所以6次试验中有可能一次6点也不出现,也可能出现1次,2次,…,6次.混淆随机事件的概念致误先后抛两枚质地均匀的硬币.(1)一共可能出现多少种不同的结果?(2)出现“一枚正面,一枚反面”的结果有多少种? (3)出现“一枚正面,一枚反面”的概率是多少?【错解】 (1)一共可能出现“两枚正面”“两枚反面”“一枚正面,一枚反面”3种不同的结果.(2)出现“一枚正面,一枚反面”的结果有1种. (3)出现“一枚正面,一枚反面”的概率是13.【错因分析】 忽略了“一枚反面,一枚正面”与“一枚正面,一枚反面”是两种不同的结果,从而导致得出错误的结果.【防范措施】 1.明确事件的构成,分清事件间的区别与联系. 2.试验的所有结果要逐一写出,不能遗漏.【正解】 (1)一共可能出现“正、正”“正、反”“反、正”“反、反”4种不同的结果.(2)出现“一枚正面,一枚反面”的结果,是“正、反”“反、正”两种. (3)出现“一枚正面,一枚反面”的概率是12.1.随机事件可以重复地进行大量的试验,每次试验结果不一定相同,且无法预测下一次的结果,但随着试验的重复进行,其结果呈现出一定的规律性.2.随机事件频率与概率的区别与联系①2013年清明节下雨②打开电视,正在播放电视剧《西游记》③半径为R的圆,面积为πR2④某次数学考试二班的及格率为70%【解析】③为必然事件,其余为随机事件.【答案】①②④2.下面给出了四种现象:①若x∈R,则x2<0;②没有水分,种子发芽;③某地明年8月8日天晴;④若平面α∩平面β=m,n∥α,n∥β,则m∥n.其中是确定性现象的是________.【解析】根据确定性现象的定义知①②④为确定性现象.【答案】①②④3.已知随机事件A发生的频率为0.02,事件A出现了1 000次,由此可推知共进行了________次试验.【解析】1 0000.02=50 000.【答案】50 0004.对某电视机厂生产的电视机进行抽样检测的数据如表所示:(1)(2)估计该厂生产的电视机是优等品的概率是多少?【解】(1)结合公式f n(A)=mn及题意可计算出优等品的各个频率依次为:0.8,0.92,0.96,0.95,0.956,0.954.(2)由(1)知计算出的优等品的频率虽然各不相同,但却都在常数0.95左右摆动,且随着抽取台数n的增加,频率稳定于0.95,因此,估计该厂生产的电视机是优等品的概率是0.95.一、填空题1.下列事件:①物体在重力作用下会自由下落;②函数f(x)=x2-2x+3=0有两个零点;③下周日会下雨;④某寻呼台某一时段内收到传呼的次数少于10次.其中随机事件的个数为________.【解析】根据定义知①为必然事件,②为不可能事件,③④为随机事件.【答案】 22.某地气象局预报说,明天本地降雨概率为80%,则下列解释正确的是________.①明天本地有80%的区域降雨,20%的区域不降雨;②明天本地有80%的时间降雨,20%的时间不降雨;③明天本地降雨的机率是80%; ④以上说法均不正确.【解析】 本题主要考查对概率的意义的理解.选项①,②显然不正确,因为80%的概率是说降雨的概率,而不是说80%的区域降雨,更不是说有80%的时间降雨,是指降雨的可能性是80%.【答案】 ③3.某班共49人,在必修1的学分考试中,有7人没通过,若用A 表示参加补考这一事件,则下列关于事件A 的说法正确的是________(填序号).(1)概率为17;(2)频率为17;(3)频率为7;(4)概率接近17.【解析】 频率是概率的近似值,当试验次数很大时,频率在概率附近摆动,本题中试验次数是49,不是很大,所以只能求出频率为17,而不能求出概率.【答案】 (2)4.在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为________.【解析】 16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35.【答案】 0.35 5.给出下列4个说法:①现有一批产品,次品率为0.05,则从中选取200件,必有10件是次品;②做100次抛掷一枚硬币的试验,结果有51次出现正面向上,因此,出现正面向上的概率是51100;③抛掷一颗骰子100次,有18次出现1点,则出现1点的频率是950;④随机事件的概率一定等于这个事件发生的频率. 其中正确的说法是________(填序号).【解析】 次品率为0.05,即出现次品的概率(可能性)是0.05,所以200件产品中可能有10件是次品,并非“必有”,故①错;在1次具体的试验中,正面向上的次数与试验的总次数之比是频率,而不是概率,故②错;③显然正确;由概率的定义知,概率是频率的稳定值,频率在概率附近摆动,故随机事件的概率不一定等于该事件发生的频率,故④错.故填③.【答案】 ③6.某人忘记了自己的存折密码的最后一位数字,但只记得最后一位数字是偶数,他随意按了一个数字,则他按对密码的概率为________.【解析】 最后一位是偶数有0,2,4,6,8共5种情况,按任一数字都是随机的,因此他按对密码的概率P =15.【答案】 157.任意抛掷一颗质地不均匀的骰子,向上的各点数的概率情况如下表所示:【解析】 概率大的点数易出现,由上表知点数为6的最易出现. 【答案】 68.样本容量为200的频率分布直方图如图3-1-1所示,根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[2,10)内的概率约为________.图3-1-1【解析】 落在[6,10)内的概率为0.08×4=0.32,所以频数为0.32×200=64.落在[2,10)内的频率为(0.02+0.08)×4=0.4.【答案】 64 0.4 二、解答题9.我国西部某地区的年降水量在下列范围内的概率如下表所示:(1)年降水量在[180,280)范围内的概率; (2)年降水量小于230 mm 的概率.【解】 (1)[180,280)分成两个范围,第一范围是在[180,230);第二范围是[230,280). 由于在第一个范围的概率为0.31,第二个范围的概率为0.21,因此,年降水量在[180,280)范围内的概率为P =0.31+0.21=0.52.(2)由于小于230 mm 有三个范围,其一是低于130 mm 的;其二是[130,180)的;其三是[180,230)的;而这三个范围的概率分别是0.15、0.28、0.31,因此,年降水量小于230 mm 时的概率为P =0.15+0.28+0.31=0.74.10.如果掷一枚质地均匀的硬币10次,前5次都是正面向上,那么后5次一定都是反面向上,这种说法正确吗?为什么?【解】 不正确.如果把掷一枚质地均匀的硬币1次作为一次试验,正面向上的概率是12,指随着试验次数的增加,即掷硬币次数的增加,大约有一半正面向上.但对于一次试验来说,其结果是随机的,因此即使前5次都是正面向上,但对后5次来说,其结果仍是随机的,每次掷硬币试验正面向上的概率仍然是12,即每次可能是反面向上,也可能是正面向上,可能性相等.11.已知f (x )=x 2+2x ,x ∈[-2,1],给出事件A :f (x )≥a (1)当A 为必然事件时,求a 的取值范围; (2)当A 为不可能事件时,求a 的取值范围. 【解】 f (x )=x 2+2x ,x ∈[-2,1], ∴f (x )min =-1, 此时x =-1.又f (-2)=0<f (1)=3, ∴f (x )max =3. ∴f (x )∈[-1,3](1)当A 为必然事件时,即f (x )≥a 恒成立,故有a ≤f (x )min =-1,即a 的取值范围是(-∞,-1].(2)当A 为不可能事件时, 即f (x )≥a 一定不成立, 故有a >f (x )max =3, 则a的取值范围为(3,+∞).(教师用书独具)2011年6月4日,中国选手李娜在法国网球公开赛女单决赛中战胜意大利老将斯齐亚沃尼,顺利在罗兰·加洛斯红土球场夺得了个人第一座大满贯冠军,这是中国的第一个单打大满贯冠军,也创下了亚洲女选手首次登顶大满贯的纪录.决赛前,有人对两人参赛训练中一发成功次数统计如下表(1)分别计算出两位运动员一发成功的频率,完成表格;(2)根据(1)中计算的结果估计两位运动员一发成功的概率.【思路点拨】先计算两位运动员一发成功的频率,然后根据频率估计概率.【规范解答】(1)中在0.9的附近,所以估计两人一发成功的概率均为0.9.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)(2)估计这一地区男婴出生的概率约是多少. 【解】 (1)计算mn 即得到男婴出生的频率依次约是:0.5200,0.5173,0.5173,0.5173.(2)由于这些频率非常接近0.5173,因此估计这一地区男婴出生的概率约为0.5173.§3.2古典概型(教师用书独具)●三维目标 1.知识与技能(1)理解基本事件的特点;(2)通过实例,理解古典概型及其概率计算公式;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率. 2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
(数学3必修)第三章:概率 [基础训练A 组] 一、选择题1.下列叙述错误的是( )A . 频率是随机的,在试验前不能确定,随着试验次数的增加,频率一般会越来越接近概率B . 若随机事件A 发生的概率为()A p ,则()10≤≤A pC . 互斥事件不一定是对立事件,但是对立事件一定是互斥事件D .5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同 2.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )A .41B .21C .81D .无法确定3.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条, 则所取3条线段能构成一个三角形的概率为( )A .101B .103C .21D .1074.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是( )A. 3个都是正品B.至少有1个是次品C. 3个都是次品D.至少有1个是正品5.某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为03.0,出现丙级品的概率为01.0,则对产品抽查一次抽得正品的概率是( )A .09.0B .98.0C .97.0D .96.06.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[)85.4,8.4( g )范围内的概率是( )A.0.62B.0.38C.0.02D.0.68二、填空题1.有一种电子产品,它可以正常使用的概率为0.992,则它不能正常使用的概率是。
2.一个三位数字的密码键,每位上的数字都在0到9这十个数字中任选,某人忘记后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为___ 3.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是。
4.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是。
5.在5张卡片上分别写有数字,5,4,3,2,1然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是。
三、解答题1.从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率(2)丁没被选中的概率2.现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.3.某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).4.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时看见下列三种情况的概率各是多少?(1) 红灯(2) 黄灯(3) 不是红灯新课程高中数学训练题组(数学3必修)第三章:概率[综合训练B组]一、选择题1.同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况更可能正确的是()A.这100个铜板两面是一样的B.这100个铜板两面是不同的C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的 D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的2.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )A .0.42B .0.28C .0.3D .0.73.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个黒球与都是黒球B .至少有一个黒球与都是黒球C .至少有一个黒球与至少有1个红球D .恰有1个黒球与恰有2个黒球4.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是( )A .4030B .4012C .3012D .以上都不对5.先后抛掷骰子三次,则至少一次正面朝上的概率是( )A .81B . 83C . 85D . 876.设,A B 为两个事件,且()3.0=A P ,则当( )时一定有()7.0=B P A .A 与B 互斥 B .A 与B 对立 C.B A ⊆ D. A 不包含B 二、填空题1.在200件产品中,192有件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于100,其中是必然事件;是不可能事件;是随机事件。
2.投掷红、蓝两颗均匀的骰子,观察出现的点数,至多一颗骰子出现偶数点的概率是_____。
3.在区间(0,1)中随机地取出两个数,则两数之和小于65的概率是______________。
4.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是_____________。
三、解答题1.袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:①3只全是红球的概率;②3只颜色全相同的概率;③3只颜色不全相同的概率.2.抛掷2颗质地均匀的骰子,求点数和为8的概率。
3.从4名男生和2名女生中任选3人参加演讲比赛,①求所选3人都是男生的概率;②求所选3人恰有1名女生的概率;③求所选3人中至少有1名女生的概率。
的硬币任意掷在这个平面4.平面上画了一些彼此相距2a的平行线,把一枚半径r a上,求硬币不与任何一条平行线相碰的概率.第三章概率[基础训练A组]一、选择题1.A 频率所稳定在某个常数上,这个常数叫做概率,2.B23241()2C A P A C ===包含的基本事件的个数基本事件的总数3.B 能构成三角形的边长为(3,5,7),(3,7,9),(5,7,9),三种,3533()10A P A C ===包含的基本事件的个数基本事件的总数4.D 至少有一件正品5.D ()1()10.040.96P A P A =-=-=6.C 0.320.30.02-= 二、填空题1.0.008 ()1()10.9920.008P A P A =-=-= 2.1101()10A P A ==包含的基本事件的个数基本事件的总数 3.14 4.131526151()153C P A C ⨯===5.3544445523()5A A P A A +==,或者:个位总的来说有5种情况,符合条件的有3种 三、解答题1. 解:(1)记甲被选中为事件A ,则132431()62C P A C ===(2)记丁被选中为事件B ,则11()1()122P B P B =-=-=2. 解:(1)有放回地抽取3次,按抽取顺序(,,)x y z 记录结果,则,,x y z 都有10种可能,所以试验结果有310101010⨯⨯=种;设事件A 为“连续3次都取正品”,则包含的基本事件共有38888⨯⨯=种,因此,338()0.51210P A ==(2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(,,)x y z ,则x 有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为1098720⨯⨯=种.设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为876⨯⨯, 所以336()720P B =3. 解:可以认为人在任何时刻到站是等可能的。
设上一班车离站时刻为a ,则该人到站的时刻的一切可能为(,5)a a Ω=+,若在该车站等车时间少于3分钟,则到站的时刻为(2,5)g a a =++,3()5P A ==Ωg 的长度的长度。
4. 解:总的时间长度为3054075++=秒,设红灯为事件A ,黄灯为事件B ,(1)出现红灯的概率302()755P A ===构成事件A 的时间长度总的时间长度 (2)出现黄灯的概率51()7515P B ===构成事件B 的时间长度总的时间长度(3)不是红灯的概率23()1()155P A P A =-=-=第三章 概率 [综合训练B 组]一、选择题1.A 假设正反两面是不同的,则相同的面100次都朝上的概率为1001111 (22)22⨯⨯⨯= 这个概率太小了,几乎是不可能事件 2.C 1(0.420.28)0.3-+=3.D4. B 在40根纤维中,有12根的长度超过30mm ,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为40125.D 至少一次正面朝上的对立事件的概率为31117,12888=-= 6.B 对立事件 二、填空题1.③,④; ②; ①2.34 其对立事件为都出现奇数点,11113,122444⨯=-=3.512 556212=4.0.004 20.004500=三、解答题1.解:①每次抽到红球的概率为11111,22228P =⨯⨯=②每次抽到红球或黄球111884P =+=③颜色不全相同是全相同的对立,13144P =-=2. 解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,因此同时掷两颗骰子的结果共有6636⨯=,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2),共5种,所以,所求事件的概率为365.3.解:基本事件的总数为3620C =①所选3人都是男生的事件数为34414,205C P ===②所选3人恰有1女生的事件数为214212312,205C C P ⨯=== ③所选3人恰有2女生的事件数为1242414,205C C P ⨯===所选3人中至少有1名女生的概率为314555+=o4. 解:把“硬币不与任一条平行线相碰”的事件记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如图所示,这样线段OM 长度(记作OM )的取值范围就是[0,]a ,只有当r OM a <≤时硬币不与平行线相碰,所以所求事件A 的概率就是(,]()[0,]r a P A a =的长度的长度=a r a -。