9.6胶体稳定性
- 格式:ppt
- 大小:220.00 KB
- 文档页数:8
胶体稳定性名词解释胶体稳定性(胶体稳定性)指胶体不能聚集,形成较大颗粒,呈现为不均一的分散体系。
胶体不仅能在液态和固态之间转变,而且还能从液态转变为气态。
这就是说胶体具有“触变性”和“不稳定性”,即当它与其他物质接触时,如果发生化学作用或物理作用,都会失去稳定性。
只有当改变其外部条件(如温度、 pH值、离子强度、溶剂等)后才恢复其稳定性。
这种因外界条件变化引起的不稳定称为“触变性”,又称“水化作用”;若胶粒间发生碰撞,使其失去稳定性,则称为“动力稳定性”或“凝聚稳定性”。
电镜下可以看到,蛋白质溶液表面存在着空间网状结构,其中许多氢键的线性排列有利于保持胶粒的稳定。
正是由于这些疏水基团在蛋白质溶液表面,以及在蛋白质溶液与周围环境之间,建立了牢固的氢键,所以蛋白质溶液稳定地悬浮在水中。
由此可见,对蛋白质溶液稳定性影响最大的因素是蛋白质溶液中蛋白质的分子量,一般来讲蛋白质分子量越大,其溶液的稳定性也就越差。
大分子蛋白质胶体一般不能单独存在,必须溶解于某种溶剂,才能稳定地存在于溶液中。
由于大多数胶体溶液并不稳定,因此各种蛋白质都应该能够溶解在水中,或者能被水抽提出来,否则不能稳定地保存于溶液中。
如果蛋白质溶液的稳定性受到破坏,那么胶体在形成后很快就会出现不均匀性,导致物质间发生聚沉作用。
相互间反应而产生沉淀,胶体的稳定性也就遭到破坏,所以测定蛋白质的分子量就显得尤为重要。
生物相容性:通常包括无毒、无刺激性和无过敏反应三项内容。
如果不满足这些条件,则蛋白质胶体对人体是有害的。
例如链霉素的热稳定性不好,易受光照破坏,就是因为其含有杂链结构,它对人体有毒害作用。
这是一个专业问题,你应该问问研究生物胶体稳定性的教授,或查阅相关资料。
胶体的稳定性是指溶液中的胶体粒子,在外加的机械力或热、光、电等条件改变时,其在溶液中的存在状态或分布的规律不被破坏的特性。
胶体的稳定性主要决定于它的溶解性和粘度。
在一定条件下,胶粒带同号电荷,它们之间的排斥力远大于吸引力,这样就能保持胶粒稳定。
胶体稳定性名词解释胶体稳定性名词解释:指的是溶液中的微粒能长期稳定存在于溶液中,而不会聚结成大颗粒。
以及它们在胶体状态下具有稳定性、分散性和增稠性的特点。
如蛋白质溶液在常温下呈胶体状态,因此在通常的溶液状态下,这些胶体微粒是很稳定的,在稀释时也不会聚沉。
但当其浓度较高时,由于胶体微粒吸附水分子,使得微粒的浓度变小,故形成了稳定的胶体状态。
微粒的稳定性有两种类型:非均相性和均相性。
在非均相系统中,物理的或化学的作用可以使分散相或胶体聚集起来形成大的颗粒;在均相系统中,分散相或胶体只在一定条件下才聚集成大颗粒。
前者称为均相性胶体稳定性,后者称为非均相性胶体稳定性。
胶体的稳定性有些来自分散介质本身,有些来自微粒的性质,如尺寸、形状、电荷等。
胶体粒子在不同的条件下可表现出不同的稳定性,如当溶液处于静止状态时,微粒将表现出很强的稳定性;当微粒间的距离增大到某一数值时,所有微粒都将表现出相同的稳定性;随着微粒直径的减小,稳定性逐渐增加。
可见,颗粒粒子的尺寸对其稳定性有重要影响。
一般说来,微粒越小,越容易获得足够的稳定性。
胶体是一种很稳定的微粒群,常用来描述一种无固定形状的、或既有固定形状又有流动性的分散系统。
1、物理稳定性2、化学稳定性3、热稳定性4、生物稳定性5、光学稳定性6、电学稳定性7、磁学稳定性8、放射学稳定性9、相对稳定性10、光化学稳定性11、辐射学稳定性12、空化学稳定性13、动力学稳定性14、能量学稳定性15、静电学稳定性16、溶解学稳定性17、凝聚学稳定性18、界面学稳定性19、老化学稳定性20、输运学稳定性21、毒理学稳定性22、环境学稳定性23、免疫学稳定性24、生态学稳定性25、输血学稳定性26、神经学稳定性27、眼科学稳定性28、麻醉学稳定性29、心脑血管病防治稳定性30、分析化学稳定性31、文献信息传递稳定性32、生物学稳定性33、食品卫生学稳定性34、医学检验稳定性35、其他学科稳定性36、病例组织学鉴定37、临床化学试剂稳定性38、临床放射学稳定性39、医院感染控制稳定性40、肿瘤预防学稳定性41、卫生化学稳定性。
胶体稳定性名词解释胶体稳定性名词解释胶体稳定性的原因及过程大分子分散到溶液中所形成的分散体系称为胶体。
胶体具有不带电荷,不吸附质点,不易聚沉等性质。
胶体的性质: (1)溶解性胶体对不同的物质有不同的溶解能力。
(2)分散性胶体对固体、液体或气体有很强的分散能力,在水中不稳定的胶体会逐渐沉降;在水中稳定的胶体,放置时间长了也会发生聚沉现象。
(3)稳定性胶体能被某些试剂破坏的性质。
胶体具有胶体稳定性的原因:(1)胶体对悬浮液所含杂质的抵抗能力。
如油滴、胶体粒子或加入絮凝剂,可以消除或减弱胶体对悬浮液的稳定作用。
(2)胶体粒子的布朗运动使它们相互碰撞而凝聚,这是一种动态平衡。
在一定条件下,凝聚的速度取决于周围介质对它的吸引力。
此外,分散相颗粒的性质,如表面电荷、分子的极性、大小、分子量、表面张力等都会影响胶体的稳定性。
当悬浮液的粘度较高或悬浮液中杂质较多时,将增大悬浮液对胶体的吸引力。
液态小颗粒聚集并有足够稳定的最低密度(或浓度)的特性。
当小颗粒在介质中形成双电层时,这种聚集就会向宏观体积方向移动,同时向粒子表面及周围扩散,造成颗粒内部的紧密堆积。
当介质的粘度适当时,可以阻止或促进这种运动的进行,但粘度太高时则会阻碍这种运动。
通常把小颗粒稳定在分散介质中的最低密度或最大浓度,叫做该介质的“最稳定状态”,简称为“最稳定浓度”。
在水中,胶体粒子半径很小,离子浓度较高时,粒子将趋向于聚集,直至形成稳定的胶体。
1.两亲物系之一或另一个与一个亲水基团和一个疏水基团相连。
其胶体稳定性依赖于相互接触的两个物系的相对挥发性。
2.具有双电层结构,由同号离子组成的离子对,每个离子对的负电荷为若干单位。
这些离子对比相应的离子更容易彼此聚集。
其胶体稳定性取决于负电荷离子和正电荷离子的数目。
3.固体颗粒的聚集。
在胶体粒子周围,离子会吸引带相反电荷的离子聚集成团。
4.液滴的聚集。
当液滴的半径和周围的介质的折射率一致时,在折射率差的作用下,会引起液滴的凝聚。
胶体的稳定性名词解释胶体的稳定性胶体是分散系的一类。
它在一定条件下能长期存在而不沉淀、不分层、保持其原有状态,这个性质称为胶体的稳定性。
溶液中胶粒所带电荷与溶液中离子所带电荷相反,整个胶体带同种电荷,因此胶粒本身所带电荷等于整个胶体所带的电荷,整个胶体即为正电荷,如果胶粒带有异种电荷时,胶体就不稳定。
常见的胶体如蛋白质、淀粉、乳浊液等。
稳定性和胶体的分散质有关,也与胶体粒子的大小和形状有关,越小的胶粒,稳定性越高。
胶体粒子的稳定性不仅受到它本身结构的影响,而且还受到外界环境条件变化的影响。
胶体的稳定性的强弱可以用粘度来衡量。
测定方法: 1)毛细管法:将样品放入管内并使之充满液体,然后再逐滴加入毛细管中,当悬浮液呈现浑浊时,继续加入毛细管,直至出现明显的颜色分层时,则该悬浮液的浓度最大; 2)薄膜覆盖法:将试样制成平板,将一张薄膜覆盖在平板上,用另一张薄膜盖在上面,使二者连成一个封闭体系。
待封闭体系自行凝固,静置片刻后取下,观察到有无色分层。
这两种方法都需要仪器设备。
乳浊液的聚沉或絮凝乳浊液是由许多小液滴所组成的。
它们的大小通常是几十微米至几百微米,有时还会超过一千微米。
由于其表面积大,对电解质有很强的吸附力,因而不易沉降。
胶体的聚沉或絮凝作用,就是利用胶体粒子大小的差别。
当颗粒小于100nm时,它们的直径大约在几百纳米左右。
当颗粒大于100nm 时,直径往往大于1000nm。
当粒子表面被电解质所包围,即具有胶粒电性时,这些微粒对电解质起了反吸附作用,使胶体脱稳。
当粒子所带的电荷与电解质所带的电荷相反,胶体也会从溶液中析出。
盐析、晶种法、分子筛和硅胶分子筛等都是可用的方法。
加入电解质的目的,就是使溶液中的电解质聚集,形成均匀分散的胶粒,然后经过聚沉或絮凝过程将胶粒沉淀,分离出来。
除了利用胶体粒子的聚沉或絮凝作用外,电泳、静电沉淀、阳极溶出、磁性分离、选择性沉淀、离子交换以及透析等,也都可以应用。
高分子溶液的粘度由于高分子溶液粘度较大,沉降速度较慢,若不加入某种物质,可使高分子溶液稳定在某一低的高度,在这个位置上,不论搅拌或加入什么物质,高分子溶液的粘度不再发生显著变化,这种现象叫做高分子溶液的稳定性。
第五章胶体的稳定性分解胶体是由固体颗粒或液滴分散在连续相中而形成的混合物。
在胶体中,颗粒或液滴的尺寸通常在1纳米至1微米之间,介于溶液和悬浮液之间。
在自然界和工业中,我们经常可以观察到各种胶体,如乳液、凝胶和泡沫等。
胶体的稳定性是指胶体系统维持稳定状态的能力,即颗粒或液滴分散均匀,并且不易聚集和沉降。
胶体的分解是指胶体系统中颗粒或液滴发生聚集而失去稳定性的过程。
胶体分解的原因有很多,最常见的原因是颗粒之间的吸引力增强,导致聚集现象的发生。
颗粒之间的吸引力可以通过静电作用、范德华力、亲水性或疏水性相互作用等来实现。
当这些吸引力超过分散力时,胶体就会发生分解。
胶体的分解会导致胶体体系不均匀,颗粒或液滴会聚集成大块或沉降到容器底部。
为了维持胶体的稳定性,我们可以采用一些方法来防止胶体的分解。
常见的方法包括添加稳定剂、控制环境条件和调节胶体粒径。
添加稳定剂是最常用的方法之一、稳定剂可以降低颗粒或液滴之间的吸引力,从而有效地抑制聚集的发生。
常见的稳定剂包括表面活性剂、胶体保护剂和电解质等。
表面活性剂是一类能够吸附在颗粒或液滴表面的物质,通过形成电荷屏障或分散剂层来降低吸引力,从而使颗粒或液滴保持分散状态。
胶体保护剂是一类能够与颗粒或液滴表面发生化学反应的物质,形成一层稳定的保护膜来防止聚集的发生。
电解质可以通过改变胶体系统中的离子浓度,从而改变颗粒或液滴表面的电荷性质,进而影响吸引力的大小。
控制环境条件也是维持胶体稳定性的重要方法之一、环境条件的改变可以直接影响颗粒间的吸引力和分散力之间的平衡。
例如,温度的变化会改变胶体中颗粒或液滴的热运动速度,从而影响颗粒之间的碰撞频率和能量大小。
pH值的变化则会改变胶体中颗粒或液滴的表面电荷,进而影响吸引力的大小。
通过控制环境条件,我们可以调节各种力的平衡,从而更好地维持胶体的稳定性。
此外,调节胶体粒径也是维持胶体稳定性的一种方法。
胶体粒径的大小直接影响胶体中颗粒或液滴之间的相互作用力。