最新半导体二极管及其基本电路
- 格式:doc
- 大小:111.00 KB
- 文档页数:11
二极管基本电路与分析方法二极管是一种最简单的半导体器件,具有只能单向导电的特点。
在电子电路中,二极管通常用于整流、限流、调制和混频等功能。
本文将介绍二极管的基本电路和分析方法。
一、二极管基本电路1.正向偏置电路正向偏置电路是将二极管的P端连接到正电压,N端连接到负电压的电路。
这种电路可以使二极管处于导通状态,实现电流流动。
2.逆向偏置电路逆向偏置电路是将二极管的P端连接到负电压,N端连接到正电压的电路。
这种电路可以使二极管处于截止状态,即不导电。
二、二极管分析方法1.静态分析静态分析是指在稳态条件下分析二极管的工作状态。
在正向偏置电路中,如果二极管被接入电路且正向电压大于二极管的正向压降时,二极管处于导通状态;反之,二极管处于截止状态。
在逆向偏置电路中,无论接入电路与否,二极管都处于截止状态。
2.动态分析动态分析是指在变化条件下分析二极管的工作状态。
例如,当正向电压瞬时增加时,二极管可能处于导通状态。
此时,需要考虑二极管的导通压降和电流变化情况。
三、常见二极管电路1.整流电路整流电路是将交流信号转换为直流信号的电路。
常见的整流电路有半波整流电路和全波整流电路。
半波整流电路只利用了交流信号的一半,而全波整流电路则利用了交流信号的全部。
整流电路中的二极管起到了只允许电流在一个方向上流动的作用。
2.限流电路限流电路是通过限制电流的大小来保护其他元件不受损坏的电路。
常见的限流电路有稳压二极管电路和过载保护电路。
稳压二极管电路利用二极管的电流-电压特性,使得二极管具有稳定的电流输出能力;过载保护电路则通过限制电流大小来保护负载电路。
3.调制电路调制电路是将低频信息信号调制到高频载波信号上的电路。
常见的调制电路有调幅电路和调频电路。
在调制电路中,二极管起到了快速改变电流或电压的作用,实现信号的调制效果。
4.混频电路混频电路是将两个不同频率的信号进行混合,得到新的频率信号的电路。
在混频电路中,二极管可以起到信号选择和调谐的作用,实现频率混合。
二极管原理及其基本电路二极管是一种最简单的半导体器件,它具有非常重要的功能和应用。
本文将介绍二极管的原理以及其基本电路。
一、二极管的原理二极管是由一种带有p型半导体和n型半导体的材料组成的。
在p-n 结的区域内,因为半导体的材料特性,会形成一个电势垒。
当外加电压的极性与电势垒形成的方向相反时,电势垒将变得更大,称为反向偏置;当外加电压的极性与电势垒形成的方向一致时,电势垒将变得更小,称为正向偏置。
在二极管的工作中,主要有以下几个重要的特性。
1.正向电压特性:当二极管处于正向偏置状态时,在两端加上正向电压时,电势垒逐渐缩小,直到消失。
在这个过程中,二极管的导电性变得很好。
正向电压越大,二极管导通越好。
2.反向电压特性:当二极管处于反向偏置状态时,在两端加上反向电压时,电势垒逐渐增加。
当反向电压超过反向击穿电压时,二极管就会发生击穿,电流急剧增大,此时二极管就会损坏。
3.导通和截止特性:当二极管处于正向偏置状态时,正向电压不超过一定限制时,二极管会导通。
当正向电压超过这个限制时,二极管截止,不导通。
而当二极管处于反向偏置状态时,无论外加电压的大小,其表现都是开路状态,不导通。
二、二极管的基本电路二极管广泛地应用于各种电路中,下面介绍几个常见的二极管基本电路。
1.正向电压特性测试电路:这是一个测试二极管正向电压特性的电路。
它由一个电压源、一个限流电阻和一个二极管组成。
通过改变电压源的电压,可以测量二极管在不同电压下的电流。
当电压逐渐增加时,电流也逐渐增加,直到达到二极管的最大电流。
2.整流电路:整流电路主要用于将交流电转换为直流电。
它由一个二极管和负载组成。
当二极管处于正向偏置状态时,它允许正向电流通过,从而将正半周期的交流信号变为直流信号。
而当二极管处于反向偏置状态时,它阻止反向电流通过。
3.限流电路:限流电路主要用于限制电流的大小。
它由一个电压源、一个电阻和一个二极管组成。
二极管起到了稳压和限流的作用。
半导体二极管及其基本电路二、半导体二极管及其基本电路基本要求•正确理解:PN结的形成及单向导电性•熟练掌握:普通二极管、稳压二极管的外特性及主要参数•能够查阅电子器件相关手册难点重点1.PN结的形成(1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。
但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。
P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。
这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。
图(1)浓度差使载流子发生扩散运动(2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。
(3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。
图(2)内电场形成(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。
(5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。
当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。
2.PN结的单向导电性(1)外加正向电压(正偏)在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要作用。
结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电流。
(2)外加反向电压(反偏)在外电场作用下,多子将背离PN结移动,结果使空间电荷区变宽,内电场被增强,有利于少子的漂移而不利于多子的扩散,漂移运动起主要作用。
漂移运动产生的漂移电流的方向与正向电流相反,称为反向电流。
因少子浓度很低,反向电流远小于正向电流。
当温度一定时,少子浓度一定,反向电流几乎不随外加电压而变化,故称为反向饱和电流。
内容提要2.1半导体的基本知识1.半导体的导电性能介于导体和绝缘体之间,半导体具有光敏、热敏和掺杂特性。
2.本征半导体(1)在0K时,本征半导体中没有载流子,呈绝缘体特性。
(2)温度升高→热激发→共价键中价电子进入导带→自由电子+空穴。
(3)两种载流子:导带中的自由电子,电荷极性为负;价带中挣脱共价键束缚的价电子所剩下的空穴,电荷极性为正。
(4)热激发条件下,只有少数价电子挣脱共价键的束缚,进入导带形成电子空穴对,所以本征半导体导电率很低。
3.杂质半导体(1)两种杂质半导体:N型---掺入微量五价元素;P型---掺入微量三价元素。
(2)两种浓度不等的载流子:多子---由掺杂形成,少子---由热激发产生。
(3)一般情况下,只要掺入极少量的杂质,所增加的多子浓度就会远大于室温条件下本征激发所产生的载流子浓度。
所以,杂质半导体的导电率高。
(4)杂质半导体呈电中性。
4.半导体中载流子的运动方式(1)漂移运动---载流子在外加电场作用下的定向移动。
(2)扩散运动---因浓度梯度引起载流子的定向运动。
2.2PN结的形成及特性1.PN结的形成当P型半导体和N型半导体结合在一起的时侯,由于交界面处存在载流子浓度的差异→多子扩散→产生空间电荷区和内电场→内电场阻碍多子扩散,有利少子漂移当扩散和漂移达到动态平衡时,交界面形成稳定的空间电荷区,即PN结。
2.PN结的单向导电性外加正向电压→多子向PN结移动,空间电荷区变窄,内电场减弱→扩散运动大于漂移运动→正向电流。
外加反向电压→多子背离PN结移动,空间电荷区变宽,内电场增强→漂移运动大于扩散运动→反向电流。
当温度一定时,少子浓度一定,反向电流几乎不随外加电压而变化,故称为反向饱和电流。
2.3半导体二极管1.半导体二极管按其结构的不同可分为点接触型、面接触型和平面型这样几类。
2.伏安特性它可划分为三个部分:(1)正向特性(外加正向电压)当正向电压超过某一数值后,二极管才有明显的正向电流,该电压值称为导通电压,用Vth表示。
在室温下,硅管的Vth约为0.5V,锗管的Vth约为0.1V。
当流过二极管的电流I比较大时,二极管两端的电压几乎维持恒定,硅管约为0.6~0.8V(通常取0.7V),锗管约为0.2~0.3V(通常取0.2V)。
(2)反向特性(外加反向电压)在反向电压小于反向击穿电压的范围内,由少数载流子形成的反向电流很小,而且与反向电压的大小基本无关。
由二极管的正向与反向特性可直观的看出:①二极管是非线性器件;②二极管具有单向导电性。
(3)反向击穿特性当反向电压增加到某一数值VBR时,反向电流急剧增大,这种现象叫做二极管的反向击穿。
3.电容效应:势垒电容与扩散电容4.主要参数器件的参数是其特性的定量描述,是我们正确使用和合理选择器件的依据。
(1)正向---最大整流电流IF(2)反向---反向击穿电压VBR2.4二极管应用电路1.分析方法:二极管是一种非线性器件,因而由二极管构成的电路一般要采用非线性电路的分析方法。
(1)图解分析法其步骤为:①把电路分为线性和非线性两部分;②在同一坐标上分别画出非线性部分的伏安特性和线性部分的特性曲线;③由两条特性曲线的交点求电路的V和I。
(2)模型分析法(非线性器件线性化处理)①理想二极管模型---正向导通时,压降为0;反向截止时,电流为0。
②恒压降模型---当二极管工作电流较大时,其两端电压为常数(通常硅管取0.7V,锗管取0.2V)。
③交流小信号模型--若电路中除有直流电源外,还有交流小信号,则对电路进行交流分析时,二极管可等效为交流电阻 r d=26mV/I DQ (I DQ为静态电流)2.二极管应用电路(1)限幅电路---利用二极管单向导电性和导通后两端电压基本不变的特点组成,将信号限定在某一范围中变化,分为单限幅和双限幅电路。
多用于信号处理电路中。
(2)箝位电路---将输出电压箝位在一定数值上。
(3)开关电路---利用二极管单向导电性以接通和断开电路,广泛用于数字电路中。
(4)整流电路---利用二极管单向导电性,将交流信号变为直流信号,广泛用于直流稳压电源中。
(5)低电压稳压电路---利用二极管导通后两端电压基本不变的特点,采用几只二极管串联,获得3V以下输出电压2.5特殊二极管1.稳压二极管(1)工作原理稳压管是一种特殊的二极管,它利用PN结反向击穿后特性陡直的特点,在电路中起稳压作用。
稳压管工作在反向击穿状态。
(2)主要参数:稳定电压Vz、稳定电流Iz、最大工作电流IzM和最大耗散功率PzM2.发光二极管发光二极管是一种将电能转化为光能的特殊二极管。
发光二极管简写成了LED,其基本结构是一个PN结,它的特性曲线与普通二极管类似,但正向导通电压一般为1~2V,正向工作电流一般为几~几十毫安。
3.光电二极管光电二极管又叫光敏二极管,是一种将光信号转换为电信号的特殊二极管。
4.变容二极管利用二极管结电容随反向电压的增加而减少的特性制成的电容效应显著的二极管。
多于高频技术中。
例题解析例1.求图所示电路的静态工作点电压和电流。
解:(1)图解分析法首先把电路分为线性和非线性两部分,然后分别列出它们的端特性方程。
在线性部分,其端特性方程为V=V1-IR将相应的负载线画在二极管的伏安特性曲线上,如图所示,其交点便是所求的(IQ,VQ)。
(2)模型分析法①理想二极管模型V=0,I=V1/R②恒压降模型设为硅管,V=0.7V,I=(V1-V)/R例2.如何用万用表的“欧姆”档来判别一只二极管的正、负极?分析:指针型万用表的黑笔内接直流电源的正端,而红笔接负端。
利用二极管的单向导电性,其正向导通电阻一般在几百欧~几千欧,而反向偏置电阻一般在几百千欧以上。
测量时,利用万用表的“R×100”和“R×1K”档,若两个数值比值在100以上,认为二极管正常,否则认为二极管的单向导电性已损坏。
例3.图所示电路中,设D为理想二极管,试画出其传输特性曲线(Vo~Vi)。
解:(1)vi<0,二极管D1、D2均截止,vo=2.5V。
(2)vi>0当0<vi<2.5V时,二极管D1、D2均截止,vo=2.5V;当vi>2.5V时,D1导通,假设此时D2尚未导通,则vo=(2/3).(vi-2.5)+2.5V;令vo=10V,则vi=13.75V,可见当vi>13.25V时,D1、D2均导通,此时vo=10V。
传输特性曲线略。
例4.试判断图中二极管是导通还是截止?并求出AO两端电压VA0。
设二极管为理想的。
解:分析方法:(1)将D1、D2从电路中断开,分别出D1、D2两端的电压;(2)根据二极管的单向导电性,二极管承受正向电压则导通,反之则截止。
若两管都承受正向电压,则正向电压大的管子优先导通,然后再按以上方法分析其它管子的工作情况。
本题中:V12=12V,V34=12+4=16V,所以D2优先导通,此时,V12=-4V,所以D1管子截止。
VA0 = -4V。
精品好文档,推荐学习交流例5.两个稳压管的稳压值VZ1=5V,VZ2=7V,它们的正向导通压降均为0.6V,电路在以下二种接法时,输出电压Vo为多少?若电路输入为正弦信号VI=20sinωt(V),画出图(a)输出电压的波形。
解:图(a)中D1、D2都承受反向偏压,所以输出电压Vo=VZ1+VZ2=5V+7V=12V若输入正弦信号VI=20sinωt(V):在输入信号正半周,若VI<12V 稳压管处于反向截止状态,Vo=VI;若VI ≥12V 稳压管处于反向击穿状态,Vo=12V。
在输入信号负半周,若VI> -1.2V稳压管处于截止状态,Vo=VI;若VI ≤-1.2V稳压管处于正向导通状态,Vo=-1.2V。
图(b)中D1承受正向电压、D2承受反向偏压,所以输出电压Vo=0.6V+7V=12.6V 。
仅供学习与交流,如有侵权请联系网站删除谢谢7。