(完整版)第十八章平行四边形知识点及练习
- 格式:doc
- 大小:116.66 KB
- 文档页数:13
平行四边形知识点复习及强化练习一、知识点梳理:1、平行四边形:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。
3、平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形。
4、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
5、两条平行线间的距离处处相等。
二、典型例题:例1、(1)不能判定一个四边形是平行四边形的条件是【】A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等(2)如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是【】A.DF=BE B.AF=CE C.CF=AE D.CF∥AE(3)如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O ,则OA 的取值范围是【 】A .2cm <OA <5cmB .2cm <OA <8cmC .1cm <OA <4cmD .3cm <OA <8cm(4)如图,平行四边形ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 .【课堂练习1】1.如图1, D,E,F 分别在△ABC 的三边BC,AC,AB 上,且DE ∥AB, DF ∥AC, EF ∥BC,则图中共有_______________个平行四边形,分别是________________________.2、如图2,在ABCD 中,AD =8,点E 、F 分别是BD 、CD 的中点,则EF = .图(1) 图(2) (3) 图(4)3、如图3,平行四边形ABCD 中,E,F 是对角线AC 上的两点,连结BE,BF,DF,DE,添加一个条件使四边形BEDF 是平行四边形,则添加的条件是______________(添加一个即可).4、如图4,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE //AD ,若AC =2,CE =4,则四边形ACEB 的周长为 。
《平行四边形边、角的性质》基础训练知识点1 平行四边形边、角的性质1.在下列性质中,平行四边形不一定具有的是( ) A.对边相等 B.对边平行C.对角互补D.内角和为3602.如图,在ABCD 中,M 是BC 延长线上的一点.若135A ︒∠=,则MCD ∠的度数是( )A.45︒B.55︒C.65︒D.75︒3.如图,若平行四边形ABCD 的周长是28cm ,△ABC 的周长是22cm ,则AC 的长为( )A.14cmB.12cmC.10cmD.8cm4.(1)在ABCD 中,若200B D ︒∠+∠=,则A ∠=______;若:5:4A B ∠∠=,则C ∠=______________; (2)已知ABCD 的周长为28cm ,若:3:4AB BC =,则AB =________,BC =_____.5.(2019·吉林)如图,在ABCD 中,点E 在边AD 上,以C 为圆心,AE 长为半径画弧,交边BC 于点F ,连接,,BE DF .求证:△ABE ≌△CDF .6.(2019·广安)如图,点E 是ABCD 的边CD 的中点,,AE BC 的延长线交于点,3,2F CF CE ==,求ABCD 的周长.知识点2 平行线间的距离7.如图,//,//,,a b AB CD CE b FG b ⊥⊥,点,E G 为垂足,则下列说法不正确的是( )A.AB CD =B.EC GF =C.,A B 两点的距离就是线段AB 的长度D.a 与b 的距离就是线段CD 的长度 8.如图,//,AB CD AB BC ⊥.若24cm,12cm ABCAB S ==,则△ABD 中AB 边上的高等于____________cm .易错点1 位置不确定,造成漏解9.已知直线////,a b c a 与b 的距离是5cm,b 与c 的距离是3cm ,则a 与c 的距离是__________.易错点2 不注意分情况讨论,造成漏解10.在ABCD中,A的平分线把BC边分成长度是3和4的两部分,则ABCD的周长是___________.参考答案1.C2.A3.D4.(1)80100︒︒(2)6cm 8cm5.证明:由题意可得:AE FC =,在ABCD 中,,AB DC A C =∠=∠.在△ABE和△CDF 中,,,,AE CF A C AB CD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ).6.解:∵四边形ABCD 是平行四边形,//.AD BC DAE ∴∴∠=,F D ECF ∠∠=∠. 又E 是CD 的中点,.ED EC ∴=∴△ADE ≌△FCE (AAS ).3AD CF ∴==,2, 4. DE CE DC ABCD ==∴=∴的周长为2()14AD DC +=.7.D 8.6 9.8cm 或2cm 10.22或20《平行四边形边、角的性质》提升训练1.如图,在ABCD 中,4,6,AB BC AC ==的垂直平分线交AD 于点E ,则△CDE的周长是( )A.7B.10C.11D.122.如图所示,直线//,a b A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中△ABC 的面积( )A.变大B.变小C.保持不变D.无法确定3.如图,将ABCD 沿对角线BD 折叠,使点A 落在点E 处,DE 交BC 于点F ,连接CE ,则下列结论:①BE CD =;②BF DF =;③BEFDCFS S=;④//BD CE ,其中正确的有( )A.1个B.2个C.3个D.4个4.(2019·梧州)如图,在ABCD 中,119,ADC BE DC ︒∠=⊥于点,E DF BC ⊥于点,F BE 与DF 交于点H ,则BHF ∠=______________.5.(2019·福建)在平面直角坐标系xOy 中,OABC 的三个顶点坐标分别为(0,0),(3,0),(4,2)O A B ,则其第四个顶点的坐标是____________.6.如图,在ABCD 中,CM AD ⊥于点,M CN AB ⊥于点N .(1)若45B ︒∠=,求MCN ∠的大小; (2)若ABCD 的周长等于15,2,3CM CN ==,求,AB AD 的长.7.(原创题)已知四边形ABCD 是平行四边形,,DAB ABC ∠∠的平分线相交于点P .(1)如图1,若点P 刚好落在CD 边上,5cm,8cm AD AP ==,求△APB 的周长; (2)如图2,若点P 落在ABCD 的内部,5cm,8cm AD AB ==,求EF 的长;(3)若点P 落在ABCD 的外部,画出图形并直接写出ABCD 应满足的条件.参考答案 1.B 2.C 3.D 4.61 5.(1,2)6.解:(1)45MCN ︒∠=.(2)3, 4.5AB AD ==7.解:(1)∵四边形ABCD 是平行四边形,//,//,,AD BC AB DC AD BC AB DC ∴==.180DAB CBA ︒∴∠+∠=.又AP 和BP 分别平分DAB ∠和CBA ∠,1()902PAB PBA DAB CBA ︒∴∠+∠=∠+∠=.180()90APB PAB PBA ︒︒∴∠=-∠+∠=.AP 平分,//DAB AB CD ∠,DAP PAB DPA ∴∠=∠=∠.5cm AD DP ∴==.同理:5cm PC BC AD ===. 10cm AB DC DP PC ∴==+=.在Rt △APB 中,10cm,8cm AB AP ==,221086(cm)BP ∴=-=.∴△APB 的周长为681024(cm)++=. (2)由(1)可知,,.5cm AD DE BC CF AD ===,5cm DE CF ∴==.又8cm AB =,8cm.2cm CD EF DE CF CD ∴=∴=+-=.(3)当ABCD 满足2AB AD >时,点P 落在ABCD 的外部,如图所示.《平行四边形对角线的性质》基础训练知识点1 平行四边形的对角线互相平分1.如图,在ABCD 中,O 是对角线,AC BD 的交点,下列结论错误的是( )A.//AB CDB.AB CD =C.AC BD =D.OA OC =2.(教材P44练习T1变式)如图,ABCD 的对角线,AC BD 相交于点O ,已知8,12,6AD BD AC ===,则△OBC 的周长为( )A.13B.17C.20D.263.如图,在ABCD 中,已知90,10cm,6cm ODA AC BD ︒∠===,则AD 的长为( )A.4cmB.5cmD.8cm4.如图,若ABCD的周长为22cm,,AC BD相交于点O,△AOD的周长比△AOB 的周长小3cm,则AD=_________,AB=________.5.在ABCD中,3,5AB BCAC BD相交于点O,则OA的取值范围==,对角线,是________________.6.如图所示,在ABCD中,对角线AC与BD相交于点O,点,M N在对角线AC上,且AM CNBM DN.=,求证//知识点2 平行四边形的面积7.如图,在ABCD中,O是对角线,AC BD的交点.若△AOD的面积是5,则ABCD的面积是()A.10B.15C.208.如图,若ABCD的面积为20,5BC=,则边AD与BC间的距离为_____________.9.如图,在ABCD中,对角线,==,AC BD相交于点O.若 1.5cm,5cmDO ABBC=,则ABCD的面积为___________.4cm易错点考虑不全面而致错10.如图,在ABCD中,对角线AC与BD相交于点,O AE BD⊥于⊥于点,E CF BD点F,则图中全等三角形共有()A.7对B.6对C.5对D.4对参考答案1.C2.B3.A4. 4cm 7cm5.14OA <<6.证明:四边形ABCD 是平行四边形,,.OA OC OB OD AM CN ∴===,OM ON ∴=.在△BOM 和△DON 中,,,,OB OD BOM DON OM ON =⎧⎪∠=∠⎨⎪=⎩∴△BOM ≌△DON (SAS)..//OBM ODN BM DN ∴∠=∠∴7.C 8.4 9.12 10.A《平行四边形对角线的性质》提升训练1.【整体思想】如图,ABCD 的对角线相交于点O ,且5AB =,△OCD 的周长为23,则ABCD 的两条对角线的和是( )A.18B.28C.36D.462.如图,ABCD 的对角线AC 的长为10cm,30,CAB AB ︒∠=的长为6cm ,则ABCD 的面积为( )A.260cmB.230cmC.220cmD.216cm3.(2019·遂宁)如图,在ABCD 中,对角线,AC BD 相交于点,O OE BD ⊥交AD 于点E ,连接BE .若ABCD 的周长为28,则△ABE 的周长为( )A.28B.24C.21D.144.如图,在ABCD 中,,AC BD 为对角线,6,BC BC =边上的高为4,则阴影部分的面积为___________.5.(2018·福建改编)(1)如图1,ABCD 的对角线,AC BD 相交于点O ,过点O 作直线EF 分别交,AD BC 于点,E F .求证OE OF =;(2)如图2,在ABCD 中,若过点O 的直线与,BA DC 的延长线分别交于点,E F ,能得到(1)中的结论吗?由此你能得到什么样的一般性结论?6.(2019·荆门)如图,已知在ABCD 中,5,3,213AB BC AC === (1)求ABCD 的面积; (2)求证:BD BC ⊥.7.如图,在ABCD 中,对角线AC 与BD 相交于点,45,2E AEB BD ︒∠==,将△ABC 沿AC 所在直线翻折.若点B 的落点记为B ',则DB '的长为___________.参考答案1.C2.B3.D4.125.解:(1)证明:四边形ABCD 为平行四边形,∴//,AD BC OA OC =.,EAO FCO AEO CFO ∴∠=∠∠=∠.∴△AEO ≌△CFO (AAS ). OE OF ∴=.(2)能得到(1)中的结论.证明如下:四边形ABCD 为平行四边形,//,.,AB CD OA OC EAO FCO AEO CFO ∴=∴∠=∠∠=∠.∴△AEO ≌△CFO(AAS ). OE OF ∴=.一般性结论是:过平行四边形对角线的交点O 作一条直线与平行四边形相对的两边或其延长线相交于,E F 两点,则OE OF =.6.解:(1)作CE AB ⊥交AB 的延长线于点E .设,BE x CE h ==,在Rt △CEB 中,229x h +=①,在Rt △CEA 中,22(5)52x h ++=②,联立①②,解得95x =,12.5h ABCD =∴的面积为12AB h ⋅=.(2)证明:作DF AB ⊥,垂足为,90F DFA CEB ︒∴∠=∠=.四边形ABCD 是平行四边形,,//AD BC AD BC ∴=.DAF CBE ∴∠=∠.又90DFA CEB ︒∠=∠=,,AD BC =∴△ADF ≌△BCE (AAS ). 9916,5555AF BE BF ∴===-=,125DF CE ==.在Rt △DFB 中,2222212161655BD DF BF ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,4BD ∴=.2223,5,BC DC CD DB BC ==∴=+.BD BC ∴⊥.《平行四边形的判定1》基础训练平行四边形的判定定理1:已知:四边形ABCD, AB=CD ,AD=BC 求证:四边形ABCD 是平行四边形平行四边形的判定定理2: 已知:四边形ABCD, ∠A=∠C ,∠B=∠D 求证:四边形ABCD 是平行四边形平行四边形的判定定理3已知:四边形ABCD, AC 、BD 交于点O 且OA=OC ,OB=OD 求证:四边形ABCD 是平行四边形例题解析例:已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且OE=OF 。
八年级数学下册第十八章平行四边形重点归纳笔记单选题1、如图,将矩形纸片ABCD 的两个直角进行折叠,使CB ,AD 恰好落在对角线AC 上,B ′,D ′分别是B ,D 的对应点,折痕分别为CF ,AE .若AB =4,BC =3,则线段B ′D ′的长是( )A .52B .2C .32D .1答案:D分析:先利用矩形的性质与勾股定理求解AC, 再利用轴对称的性质求解AB ′,CD ′,从而可得答案.解:∵ 矩形纸片ABCD ,∴AD =BC =3,AB =DC =4,∠B =∠D =90°,∴AC =√32+42=5,由折叠可得:∠CB ′F =∠B =90°,CB ′=CB =3,∴AB ′=AC −CB ′=2,同理:CD ′=2,∴B ′D ′=AC −AB ′−CD ′=5−2−2=1,故选:D.小提示:本题考查的是勾股定理的应用,轴对称的性质,矩形的性质,掌握以上知识是解题的关键.2、如图,▱ ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE +EO =4,则▱ABCD 的周长为( )A .20B .16C .12D .8答案:BBC,由AE+EO=4,推出AB+BC=8即可解决问题;分析:首先证明:OE=12解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=1BC,2∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.小提示:本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.3、如图,正方形ABCD的边长是2,∠DAC的平分线交CD于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值为()D.2A.√2B.2√2C.32答案:A分析:过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE 的对称点,进而可知D′P′即为DQ+PQ的最小值.作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=2,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=4,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=4,∴P′D′=√2,即DQ+PQ的最小值为√2,故A正确.故选:A.小提示:本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的关键.4、如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为()A .4B .4.8C .5D .5.5答案:B分析:由垂线段最短,可得AP ⊥BC 时,AP 有最小值,由菱形的性质和勾股定理可求BC 的长,由菱形的面积公式可求解.如图,设AC 与BD 的交点为O ,∵点P 是BC 边上的一动点,∴AP ⊥BC 时,AP 有最小值,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO =12AC =3,BO =DO =12BD =4, ∴BC =√BO 2+CO 2=√9+16=5, ∵S 菱形ABCD =12×AC×BD =BC×AP ,∴AP =245=4.8,故选:B .小提示:本题考查了菱形的性质,勾股定理,确定当AP ⊥BC 时,AP 有最小值是本题关键.5、如图,矩形OABC 的顶点B 的坐标为(2,3),则AC 长为( )A.√13B.√7C.5D.4答案:A分析:首先连接OB,根据两点间距离公式即可求得OB,再根据矩形的性质可得OB=AC,即可求得AC的长.解:如图:连接OB∵点B的坐标为(2,3),∴OB=√22+32=√13,又∵四边形OABC是矩形,∴AC=OB=√13,故选:A.小提示:本题考查了两点间距离公式,矩形的性质,作出辅助线是解决本题的关键.6、如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.√27B.3+√27C.6+√3D.6√3答案:D分析:过点D作DE⊥AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.解:过点D作DE⊥AB于点E,连接BD,如图所示:∵四边形ABCD为菱形,∴AD=AB=DC=BC,AD∥BC,∵∠ABC=120°,∴∠DAB=60°,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE=√AD2−AE2=√62−32=3√3,∴2DE=6√3,∴MA+MB+MD的最小值是6√3,故D正确.故选:D.小提示:本题主要考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识点,解决本题的关键是掌握菱形的性质,等边三角形的判定与性质.7、一块直角三角板按如图所示方式放置在一张长方形纸条上,若∠1=28°,则∠2的度数为()A.28°B.56°C.36°D.62°答案:D分析:根据矩形的性质得出EF∥GH,过点C作CA∥EF,利用平行线的性质得出∠2=∠MCA,∠1=CAN,然后代入求解即可.解:如图所示标注字母,∵四边形EGHF为矩形,∴EF∥GH,过点C作CA∥EF,∴CA∥EF∥GH,∴∠2=∠MCA,∠1=∠NCA,∵∠1=28°,∠MCN=90°,∴∠2=∠MCA=90°-∠1=62°,故选:D.小提示:题目主要考查矩形的性质,平行线的性质,角度的计算等,理解题意,作出相应辅助线是解题关键.8、如图,已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值是()A.5B.10C.6D.8答案:A分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、BP,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,则P是AC中点,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴PQ∥AD,而点Q是AB的中点,故PQ是△ABD的中位线,即点P是BD的中点,同理可得,PM是△ABC的中位线,故点P是AC的中点,即点P是菱形ABCD对角线的交点,∵四边形ABCD是菱形,则△BPC为直角三角形,CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故选:A.小提示:本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.9、如图,在▱ABCD中,AC平分∠DAB,AB=2,则▱ABCD的周长为()A.4B.6C.8D.12答案:C分析:在平行四边形ABCD中,AC平分∠DAB,则四边形ABCD为菱形,根据菱形的性质求周长.解:∵在▱ABCD中,AC平分∠DAB,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=8.故选C.小提示:本题考查了菱形的判定定理,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形,④对角线平分一组对角的平行四边形是菱形.10、如图,点P是矩形ABCD的对角线上一点,过点P作EF//BC,分别交AB,CD于E,F,连接PB,PD,若AE= 1,PF=3,则图中阴影部分的面积为()A.3B.6C.9D.12答案:A分析:先根据矩形的性质证得S△DFP=S△PBE,然后求解即可.解:作PM⊥AD于M,交BC于N,∴四边形AEPM、四边形DFPM、四边形CFPN和四边形BEPN都是矩形,∵S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S矩形DFPM=S矩形BEPN,∵PM=AE=1,PF=NC=3,∴S△DFP=S△PBE=12×1×3=32,∴S阴=32+32=3,故选:A.小提示:本题主要考查矩形的性质、三角形的面积等知识,证得S△DFP=S△PBE是解答本题的关键.填空题11、若正方形的边长为a,则它的对角线长为__________.答案:√2a分析:根据题意,可得正方形的相邻两边与对角线正好构成一个等腰直角三角形,对角线是斜边,结合勾股定理计算可得答案.解:∵正方形的相邻两边与对角线正好构成一个等腰直角三角形,对角线是斜边;∵正方形的边长为a,∴对角线长是√a2+a2=√2a.所以答案是:√2a小提示:本题考查了正方形的性质和勾股定理,熟知正方形的两邻边与对角线构成一个等腰直角三角形是解题的关键.12、如图,在等腰Rt△ABC中,CA=BA,∠CAB=90°,点M是AB上一点,点P为射线CA(除点C外)上一个动点,直线PM交射线CB于点D,若AM=1,BM=3,ΔCPD的面积的最小值为________.答案:6分析:设点M是PD的中点,过点M作直线P′D′与射线CA、CB分别交于点P′,D′,得到当点M是PD的中点时,△CPD的面积最小,再根据直角三角形的性质及三角形的面积公式求解即可.设点M是PD的中点,过点M作直线P′D′与射线CA、CB分别交于点P′,D′,则点M不是P′D′的中点当MD′>MP′时,在MD′上截取ME=MP′,连接DE∵∠PMP′=∠DME∴△PMP′≅△DME(SAS)=S△PCD∴S△P′CD′>S四边形P′CDE当MD′<MP′时,同理可得S△P′CD′>S△PCD∴当点M是PD的中点时,△CPD的面积最小如图,作DH⊥AB于H则△DHM≌△PAM∴AM=MH,∠DHM=∠PAM=90°,AP=DH∴∠BHD=90°∵AM=1,BM=3∴AM=1=MH∴BH=2在等腰Rt△ABC中,CA=BA=3+1=4∴∠B=45°=∠C∴∠B=∠BDH=45°∴BH=DH=2=AP∴CP=AC+AP=4+2=6过点D作DK⊥PC交于K∴四边形AKDH是矩形∴DK=AH=AM+HM=2∴S△CDP=12CP⋅DK=12×6×2=6所以答案是:6小提示:本题考查了全等三角形的判定和性质、矩形的判定和性质、直角三角形的性质,熟练掌握知识点是解题的关键.13、如图,在▱ABCD中,DB=CD,∠C=70°,AE⊥BD于E,则∠DAE=_______.答案:20°分析:要求∠DAE,就要先求出∠ADE,要求出∠ADE,就要先求出∠DBC.利用DB=DC,∠C=70°即可求出.解:∵DB=DC,∠C=70°,∴∠DBC=∠C=70°,又∵AD∥BC,∴∠ADE=∠DBC=70°,∵AE⊥BD,∴∠AEB=90°,∴∠DAE=90°−∠ADE=20°.故答案是:20°.小提示:此题考查平行四边形的性质,解决本题的关键是利用三角形内角和定理,等边对等角等知识得到和所求角有关的角的度数.14、如图,将一个长方形纸片ABCD沿EF折叠,使C点与A点重合,若AB=2,AD=4,则线段DF的长是_________.答案:32分析:根据折叠的性质和勾股定理即可求得DF.解:∵长方形纸片ABCD,∴CD=AB=2,∠C=90°,根据折叠的性质可得AD′=CD=AB=2,∠AD′F=∠C=90°,D′F=DF,设D′F=DF=x,AF=AD−DF=4−x,根据勾股定理D′F+AD′=AF,即x2+2=(4−x)2,,解得x=32.所以答案是:32小提示:本题考查折叠与勾股定理.能正确表示直角三角形的三边是解题关键.15、如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为___________.答案:2分析:连接AP,根据正方形的性质和翻折的性质证明Rt△AFP≌Rt△ADP(HL),可得PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,然后根据勾股定理即可解决问题.解:连接AP,如图所示,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,∵点E是BC的中点,∴BE=CE=1AB=3,2由翻折可知:AF=AB,EF=BE=3,∠AFE=∠B=90°,∴AD=AF,∠AFP=∠D=90°,在Rt△AFP和Rt△ADP中,{AP=AP,AF=AD∴Rt△AFP≌Rt△ADP(HL),∴PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,在Rt△PEC中,根据勾股定理得:EP2=EC2+CP2,∴(3+x)2=32+(6−x)2,解得x=2,则DP的长度为2,所以答案是:2.小提示:本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.解答题16、如图,二次函数y=-x2 +2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),且S△ABD=S△ABC,求点D的坐标;(4)若点P在直线AC上,点Q是平面内一点,是否存在点Q,使以点A、B、P、Q为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.答案:(1)m=3;(2)B(-1,0);(3)点D的坐标为(2,3);(4)点Q的坐标为(3,4)或(1,-2).分析:(1)直接将点A的坐标代入到二次函数的解析式即可求出m的值,写出二次函数的解析式;(2)分别计算当x=0和y=0时的值,写出B、C两点的坐标;(3)因为S△ABD=S△ABC,则根据同底等高的两个三角形的面积相等,所以只要高与OC的长相等即可,因此要计算y=3时对应的点即可;(4)分AB是矩形的边、AB是矩形的对角线两种情况,通过画图,利用数形结合即可求解.解:(1)把A(3,0)代入二次函数y=-x2+2x+m得:-9+6+m=0,∴m=3;(2)由(1)可知,二次函数的解析式为:y=-x2+2x+3;当x=0时,y=3,∴C(0,3),当y=0时,-x2+2x+3=0,x2-2x-3=0,(x+1)(x-3)=0,∴x=-1或3,∴B(-1,0);(3)∵S△ABD=S△ABC,当y=3时,-x2+2x+3=3,-x2+2x=0,x2-2x=0,x(x-2)=0,x=0或2,∴只有(2,3)符合题意.综上所述,点D的坐标为(2,3);(4)存在,理由:①当AB是矩形的边时,此时,对应的矩形为ABP′Q′,∵AO=OC=3,故∠PAB=45°,∴矩形ABP′Q′为正方形,故点Q′的坐标为(3,4);②当AB是矩形的对角线时,此时,对应的矩形为APBQ,同理可得,矩形APBQ为正方形,故点Q的坐标为(1,-2),故点Q的坐标为(3,4)或(1,-2).小提示:本题是二次函数综合题,主要考查的是一次函数的性质、矩形的性质、正方形的性质,面积的计算等,其中(4),要注意分类求解,避免遗漏.17、如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=3,AO=2,求BD的长及四边形ABCD的周长.2答案:(1)见解析(2)BD=6,四边形ABCD的周长为4√13分析:(1)根据对角线互相垂直的平行四边形是菱形即可得证;(2)根据三角形中位线的性质可得OD=2EF=3,进而可得BD的长,Rt△AOD中,勾股定理求得AD,根据菱形的性质即可求解.(1)证明:∵四边形ABCD是平行四边,AB=AD,∴四边形ABCD是菱形,∴AC⊥BD;(2)解:∵点E,F分别为AD,AO的中点,∴EF是△AOD的中位线,OD,∴EF=12,∵EF=32∴OD=3,∵四边形ABCD是菱形,∴BD=2OD=6,∵AC⊥BD,在Rt△AOD中,AO=2,OD=3,∴AD=√AO2+OD2=√22+32=√13,∴菱形形ABCD的周长为4√13.小提示:本题考查了菱形的性质与判定,三角形中位线的性质,勾股定理,掌握菱形的性质与判定是解题的关键.18、如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F.⊙O经过点C、D、F,与AD相交于点G.(1)求证△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.答案:(1)证明见解析;(2)52.分析:分析:(1)先根据∠ADC=90∘,AF⊥DE证出∠DAF=∠CDF,再根据四边形GFCD是⊙O的内接四边形,得到∠FGA=∠FCD,从而证出结论;(2) 连接CG,根据△EDA∽△ADF得到EADA =AFDF,根据△AFG∽△DFC得AGDC=AFDF,从而AGDC=EADA,再根据DA=DC得AG=EA=1,DG=3,利用勾股定理得CG=5,即可求出⊙O的半径. (1)证明:在正方形ABCD中,∠ADC=90∘.∴∠CDF+∠ADF=90∘.∵AF⊥DE.∴∠AFD=90∘.∴∠DAF+∠ADF=90∘.∴∠DAF=∠CDF.∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180∘.又∠FGA+∠DGF=180∘,∴∠FGA=∠FCD.∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90∘,∠EDA=∠ADF,∴△EDA∽△ADF.∴EAAF =DADF,即EADA=AFDF.∵△AFG∽△DFC,∴AGDC =AFDF.∴AGDC =EADA.在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA−AG=4−1=3.∴CG=√DG2+DC2=√32+42=5.∵∠CDG=90∘,∴CG是⊙O的直径.∴⊙O的半径为52.小提示:本题考查了相似三角形的判定与性质,圆周角定理的推论,正方形的性质.关键是利用正方形的性质证明相似三角形,利用线段,角的关系解题.。
一、选择题1.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A .3100mB .4600mC .5500mD .6100m 2.如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为( )A .8B .6C .5D .43.如图,E 是直线CD 上的一点,且12CE CD =.已知ABCD 的面积为252cm ,则ACE △的面积为( )A .52B .26C .13D .39 4.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE 5.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,四边形ABCD 是菱形B .当AC BD ⊥时,四边形ABCD 是菱形C .当90ABC ∠=时,四边形ABCD 是矩形D .当AC BD =时,四边形ABCD 是正方形6.如图,在123A A A △中,160A ∠=︒,230A ∠=︒,131A A =,3+n A 是1(1,2,3)n n A A n +=⋅⋅⋅的中点,则202120222023A A A △中最短边的长为( )A .100912B .101012C .101112D .102112 7.如图,以平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH ,当()090ADC αα∠=︒<<︒时,有以下结论:①180GCF α∠=︒-;②90HAE α∠=︒+;③HE HG =;④ EH GH ⊥;⑤四边形EFGH 是平行四边形.则结论正确的是( )A .①③④B .②③⑤C .①③④⑤D .②③④⑤8.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是()A.60 B.30 C.20 D.16a b c,若,a c的边长分别为1和3,则b的面积为()9.如图,直线L上有三个正方形,,A.8 B.9 C.10 D.1110.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4 B.8 C.13D.611.如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4,则重叠部分(即BDE)的面积为()A.6 B.7.5 C.10 D.2012.如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE 折叠,得到△CFE,则△BCF面积的最大值是()A.8 B.3C.16 D.16313.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º14.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+ 15.如图,将三角形纸片ABC 沿过,AB AC 边中点D 、E 的线段DE 折叠,点A 落在BC 边上的点F 处,下列结论中,一定正确的个数是( )①BDF 是等腰三角形 ②12DE BC =③四边形ADFE 是菱形 ④2BDF FEC A ∠+∠=∠A .1B .2C .3D .4二、填空题16.菱形的周长为20cm ,一条对角线长为8cm ,则菱形的面积为______cm 2. 17.在正方形ABCD 中,点E 在对角线BD 上,点P 在正方形的边上,若∠AEB=105°,AE=EP ,则∠AEP 的度数为_________.18.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.19.如图,在平行四边形ABCD 中,BE 平分ABC ∠,CF BE ⊥,连接AE ,G 是AB 的中点,连接GF ,若4AE =,则GF =_____.20.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是_____cm . 21.菱形有一个内角为120︒,较长的对角线长为63,则它的面积为__________. 22.如图,点E 是矩形ABCD 的边AD 上的一点,且12DE AE =,连接BE 并延长交CD 的延长线于点F ,若4AB =,6BC =,则EDF 的周长为__________.23.在△ABC 中, AD 是BC 边上的高线,CE 是AB 边上的中线,CD =AE ,且CE <AC .若AD =6,AB =10,则CE =___________24.如图,B ,E ,F ,D 四点在一条直线上,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为___cm .25.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.26.如图,在平行四边形ABCD 中,∠ABC =135°,AD =42,AB =8,作对角线AC 的垂直平分线EF ,分别交对边AB 、CD 于点E 和点F ,则AE 的长为_____.三、解答题27.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 分别为OB ,OD 的中点,连接AM 并延长至点E ,使EM AM =,连接CE ,CN .(1)求证:ABM CDN ≌;(2)当AB 与AC 满足什么数量关系时,四边形MECN 是矩形?请说明理由;(3)连接AN ,EN .当ANE 满足什么条件时,四边形MECN 是正方形?请说明理由.28.如图,将矩形ABCD 沿DE 折叠,连接CE 使得点A 的对应点F 落在CE 上.(1)求证:CEB DCF ≅;(2)若2AB BC =,求CDE ∠的度数.29.如图,平行四边形ABCD 中,BD 是它的一条对角线,过A 、C 两点作,AE BD CF BD ⊥⊥,垂足分别为E 、F ,延长AE 、CF 分别交CD 、AB 于M 、N .(1)求证:四边形CMAN 是平行四边形; (2)已知4,3DE FN ==.求BN 的长.30.如图,AD 为ABC ∆的中线,BE 为ABD ∆的中线. (1)15ABE ∠=︒,40BAD ∠=︒,求 BED ∠的度数;(2)若ABC ∆的面积为40,5BD =,则E 到BC 边的距离为多少.。
一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠ 2.如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为( )A .8B .6C .5D .43.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0) 4.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 5.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个6.四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有( )A .1组;B .2组;C .3组;D .4组.7.如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4,BC CF =四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .6B .8C .3D .48.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个9.矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,连接AG ,取AG 的中点H ,连接EH .若4AB CF ==,2BC CE ==,则EH =( )A .2B .2C .3D .510.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠11.在平面直角坐标系中,点A ,B ,C 的坐标分别为()5,0,()1,3--,()2,5-,当四边形ABCD 是平行四边形时,点D 的坐标为( )A .()8,2-B .()7,3-C .()8,3-D .()14,0 12.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对边相等且平行 13.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③14.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .2415.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .32aD .33a 二、填空题16.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.17.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)18.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.19.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.20.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.21.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是_____cm .22.如图,在正八边形ABCDEFGH 中,AE 是对角线,则EAB ∠的度数是__________.23.如图,菱形ABCD 的对角线相交于点O ,AC =12,BD =16,点P 为边BC 上一点,且P 不与写B 、C 重合.过P 作PE ⊥AC 于E ,PF ⊥BD 于F ,连结EF ,则EF 的最小值等于__________.24.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____.25.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).26.如图所示,在ABCD 中,AC 与BD 相交于点O ,若DAC EAC ∠=∠,4AE =,3AO =,则AEC S ∆的面积为____.三、解答题27.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.28.如图,已知在Rt ABC ∆中,90,ACB CD ∠=︒是斜边AB 上的中线,点E 是边BC 延长线上一点,连结,AE DE 、过点C 作CF DE ⊥于点F ,且DF EF =.(1)求证:AD CE =.(2)若5,6AD AC ==,求BDE ∆的面积.29.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,∠ACB =∠ADB =90°,M 为边AB 的中点,连接MC ,MD .(1)求证:MC =MD :(2)若△MCD 是等边三角形,求∠AOB 的度数.30.如图1,创建文明城市期间,路边设立了一块宣传牌,图2为从此场景中抽象出的数学模型,宣传牌(AB )顶端有一根绳子(AC ),自然垂下后,绳子底端离地面还有0.7m (即0.7BC =),工作人员将绳子底端拉到离宣传牌3m 处(即点E 到AB 的距离为3m ),绳子正好拉直,已知工作人员身高(DE )为1.7m ,求宣传牌(AB )的高度.。
平行四边形知识点总结及分类练习题一、知识点总结平行四边形是几何学中一个重要的概念,其性质和判定方法对于理解几何学中的其他问题有着至关重要的作用。
以下是对平行四边形知识点的总结:1、定义:平行四边形是一个四边形,其中相对的两边平行且相等。
可以用符号“▭”表示。
2、性质:1)对边平行:平行四边形的对边平行且相等。
2)对角相等:平行四边形的对角相等,邻角互补。
3)平行四边形的面积等于其底乘高。
3.判定方法:1)两组对边分别平行的四边形是平行四边形。
2)两组对边分别相等的四边形是平行四边形。
3)一组对边平行且相等的四边形是平行四边形。
4)对角线互相平分的四边形是平行四边形。
5)邻角互补的四边形是平行四边形。
4.特殊平行四边形:矩形、菱形和正方形都是特殊的平行四边形,它们分别具有以下性质:1)矩形:对角线相等,四个角都是直角。
2)菱形:对角线垂直且平分,四边相等。
3)正方形:对角线垂直且相等,四个角都是直角。
二、分类练习题1、选择题:1)下列哪个条件可以判定一个四边形为平行四边形?A.一组对边相等,一组对角相等B.一组对边平行,另一组对边相等C.一组对角相等,另一组对边平行D.一组对角相等,一组邻角互补答案:(C)一组对角相等,另一组对边平行。
因为一组对角相等,另一组对边平行的四边形可以由一组对边平行,另一组对边相等的四边形经过平移得到,因此选项C正确。
其他选项都不满足平行四边形的定义或判定方法。
2)下列哪个条件可以判定一个四边形为矩形?A.三个内角都是直角B.对角线相等且互相平分C.对角线互相垂直且平分D.一组对边平行且相等,一组邻角互补答案:(B)对角线相等且互相平分的四边形是矩形。
因为矩形的定义是对角线相等的平行四边形,而对角线相等且互相平分的四边形是平行四边形,因此选项B正确。
其他选项分别是矩形的定义或判定方法的一部分,但不足以单独判定一个四边形为矩形。
特殊平行四边形知识点总结及题型一、平行四边形的性质:1、平行四边形的对边平行且相等;2、平行四边形的对角相等;3、平行四边形的对角线互相平分。
八年级数学下册第十八章平行四边形必考知识点归纳单选题1、如图,平行四边形ABCD的对角线AC,BD相交于点O,添加下列条件仍不能判断四边形ABCD是矩形的是( )A.AB+BC=AC B.AB= AD C.OA= OD D.∠ABC+∠ADC=180°答案:B分析:由勾股定理的逆定理证得∠ABC=90°,根据有一个角是直角的平行四边形是矩形可判断A;根据有一组邻边相等的平行四边形是菱形可判断B;根据对角线相等的平行四边形是矩形可判断C;根据有一个角是直角的平行四边形是矩形可判断D.解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴▱ABCD为矩形,故本选项不符合题意;B.∵AB=AD,∴▱ABCD为菱形,故本选项符合题意;C.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴▱ABCD是矩形,故本选项不符合题意;D.∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴▱ABCD为矩形,故本选项不符合题意;故选:B.小提示:本题考查了矩形的判定定理,勾股定理的逆定理,平行四边形的性质,熟练掌握矩形的判定方法是解决问题的关键.2、如图,四边形ABCD是菱形,∠DAB=60°,点E是DA中点,F是对角线AC上一点,且∠DEF=45°,则AF:FC的值是()A.3B.√5+1C.2√2+1D.2+√3答案:D分析:取AC的中点M,连接EM设CD=2x,由中位线性质可得EM//CD,EM=12CD,EM=x,再根据∠DAB= 60°,∠DEF=45°可得出FM=EM=x,从而得到FC的长,即可得到AF:FC的结果.解:如图所示:取AC的中点M,连接EM,DM,设CD=2x,∵点E是DA中点,∴EM是△ACD的中位线,∴EM//CD,EM=12 CD,∴EM=x,∵∠DAB=60°,四边形ABCD是菱形,∴∠DAC=∠DCA=∠EMA=30°,∠AMD=90°,∵∠DEF=45°∴∠EFM=45°−30°=15°,∠FEM=30°−15°=15°,∴∠EFM=∠FEM=15°,∴FM=EM=x,∵CD=DA=2x,∠CAD=∠ACD=30°,∴DM=12AD=x,∴AM=√AD2−AM2=√3x∴AC=2√3x,∴AM=√3x,∴FC=2√3x−√3x−x=√3x−x,∴AFFC=√3x√3x−x=√3√3−1=2+√3,故选:D.小提示:本题主要考查了菱形的性质和中位线的性质,熟练掌握这些性质是解此题的关键.3、如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于E点,已知∠A=134°,则∠BEC的大小为( )A.23°B.28°C.62°D.67°答案:D分析:先说明ABD=∠ADC=∠CBD,然后再利用三角形内角和180°求出即可∠CBD度数,最后再用直角三角形的内角和定理解答即可.解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵∠A =134°∴∠CBD=∠BDC=∠ABD=∠ADB=12(180°-134°)=23° ∴∠BEC =90°-23°=67°故答案为D.小提示:本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理.4、如图所示,在矩形纸片ABCD 中,AB =3,BC =6,点E 、F 分别是矩形的边AD 、BC 上的动点,将该纸片沿直线EF 折叠.使点B 落在矩形边AD 上,对应点记为点G ,点A 落在M 处,连接EF 、BG 、BE,EF 与BG 交于点N .则下列结论成立的是( )①BN =AB ;②当点G 与点D 重合时EF =3√52; ③△GNF 的面积S 的取值范围是94≤S ≤72; ④当CF =52时,S △MEG =3√134.A .①③B .③④C .②③D .②④答案:D分析:①根据题意可知四边形BFGE 为菱形,所以EF ⊥BG 且BN=GN ,若BN=AB ,则BG=2AB=6,又因为点E 是AD 边上的动点,所以3<BG<3√5.从而判断①不正确;②如图,过点E 作EH ⊥BC 于点H ,再利用勾股定理求解即可;③当点E 与点A 重合时,△GNF 的面积S 有最小值94,当点G 与点D 重合时△GNF 的面积S 有最大值4516.故94<S <4516. ④因为CF =52,则EG=BF=6-52=72.根据勾股定理可得ME=√(72)2−(62)2=√132 ,从而可求出△MEG 的面积.解:①根据题意可知四边形BFGE 为菱形,∴EF ⊥BG 且BN=GN ,若BN=AB ,则BG=2AB=6,又∵点E 是AD 边上的动点,∴3<BG<3√5.故①错误;②如图,过点E 作EH ⊥BC 于点H ,则EH=AB=3,在Rt △ABE 中AE 2+AB 2=(AD −AE )2即AE 2+32=(6−AE )2解得:AE=94,∴BF=DE=6-94=154. ∴HF=154-94=32. 在Rt △EFH 中EF =√EH 2+FH 2 =3√52; 故②正确;③当点E 与点A 重合时,如图所示,△GNF 的面积S 有最小值=14S 正方形ABFG =14×3×3 =94, 当点G 与点D 重合时△GNF 的面积S 有最大值=14S 菱形EBFG =14×154×3=4516. 故94<S <4516.故③错误.④因为CF =52,则EG=BF=6-52=72.根据勾股定理可得ME=√(72)2−(62)2=√132 , ∴S △MEG =12×√132×3=3√134. 故④正确.故选D .小提示:本题考查了矩形的性质和判定,菱形的判定与性质,勾股定理,翻折的性质等知识,掌握相关知识找到临界点是解题的关键.5、如图,平行四边形ABCD 的对角线AC ,BD 相交于点O .点E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC.其中正确结论的个数是( )A.4B.3C.2D.1答案:A分析:通过判定ΔABE为等边三角形求得∠BAE=60°,利用等腰三角形的性质求得∠EAC=30°,从而判断①;利用有一组邻边相等的平行四边形是菱形判断③,然后结合菱形的性质和含30°直角三角形的性质判断②;根据三角形中线的性质判断④.解:∵点E为BC的中点,∴BC=2BE=2CE,又∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴ΔABE是等边三角形,∴∠BAE=∠BEA=60°,∴∠EAC=∠ECA=30°,∴∠BAC=∠BAE+∠EAC=90°,即AB⊥AC,故①正确;在平行四边形ABCD中,AD//BC,AD=BC,AO=CO,∴∠CAD=∠ACB,在ΔAOF和ΔCOE中,{∠CAD=∠ACBOA=OC∠AOF=∠COE,∴ΔAOF≅ΔCOE(ASA),∴AF=CE,∴四边形AECF是平行四边形,又∵AB⊥AC,点E为BC的中点,∴AE=CE,∴平行四边形AECF是菱形,故③正确;∴AC⊥EF,在RtΔCOE中,∠ACE=30°,∴OE=12CE=14BC=14AD,故②正确;在平行四边形ABCD中,OA=OC,又∵点E为BC的中点,∴SΔBOE=12SΔBOC=14SΔABC,故④正确;综上所述:正确的结论有4个,故选:A.小提示:本题考查平行四边形的性质,等边三角形的判定和性质,菱形的判定和性质,含30°的直角三角形的性质,掌握菱形的判定是解题关键.6、如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE + PF的最小值是()A.2B.√3C.1.5D.√5答案:A分析:取AB中点G点,根据菱形的性质可知E点、G点关于对角线AC对称,即有PE=PG,则当G、P、F三点共线时,PE+PF=PG+PF最小,再证明四边形AGFD是平行四边形,即可求得FG=AD.解:取AB中点G点,连接PG,如图,∵四边形ABCD是菱形,且边长为2,∴AD=DC=AB=BC=2,∵E点、G点分别为AD、AB的中点,∴根据菱形的性质可知点E、点G关于对角线AC轴对称,∴PE=PG,∴PE+PF=PG+PF,即可知当G、P、F三点共线时,PE+PF=PG+PF最小,且为线段FG,如下图,G、P、F三点共线,连接FG,∵F点是DC中点,G点为AB中点,∴DF=12DC=12AB=AG,∵在菱形ABCD中,DC∥AB,∴DF∥AG,∴四边形AGFD是平行四边形,∴FG=AD=2,故PE+PF的最小值为2,故选:A.小提示:本题考查了菱形的性质、轴对称的性质、平行四边形的判定与性质等知识,找到E点关于AC的对称点是解答本题的关键.7、如图,将矩形纸片ABCD 的两个直角进行折叠,使CB ,AD 恰好落在对角线AC 上,B ′,D ′分别是B ,D 的对应点,折痕分别为CF ,AE .若AB =4,BC =3,则线段B ′D ′的长是( )A .52B .2C .32D .1答案:D分析:先利用矩形的性质与勾股定理求解AC, 再利用轴对称的性质求解AB ′,CD ′,从而可得答案.解:∵ 矩形纸片ABCD ,∴AD =BC =3,AB =DC =4,∠B =∠D =90°,∴AC =√32+42=5,由折叠可得:∠CB ′F =∠B =90°,CB ′=CB =3,∴AB ′=AC −CB ′=2,同理:CD ′=2,∴B ′D ′=AC −AB ′−CD ′=5−2−2=1,故选:D.小提示:本题考查的是勾股定理的应用,轴对称的性质,矩形的性质,掌握以上知识是解题的关键.8、如图,菱形ABCD ,点A 、B 、C 、D 均在坐标轴上,∠ABC =120°,点A (−3,0),点E 是CD 的中点,点P 是OC 上的一动点,则PD +PE 的最小值是( )A.3B.5C.2√2D.3√32答案:A分析:直线AC上的动点P到E、D两定点距离之和最小属“将军饮马”模型,由D关于直线AC的对称点B,连接BE,则线段BE的长即是PD+PE的最小值.如图:连接BE,,∵菱形ABCD,∴B、D关于直线AC对称,∵直线AC上的动点P到E、D两定点距离之和最小∴根据“将军饮马”模型可知BE长度即是PD+PE的最小值.,∵菱形ABCD,∠ABC=120°,点A(−3,0),∴∠CDB=60°,∠DAO=30°,OA=3,∴OD=√3,AD=DC=CB=2√3∴△CDB是等边三角形∴BD=2√3∵点E是CD的中点,∴DE=1CD=√3,且BE⊥CD,2∴BE=√BD2−DE2=3故选:A.小提示:本题考查菱形性质及动点问题,解题的关键是构造直角三角形用勾股定理求线段长.9、如图,正方形ABCD的边长是2,∠DAC的平分线交CD于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值为()D.2A.√2B.2√2C.32答案:A分析:过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE 的对称点,进而可知D′P′即为DQ+PQ的最小值.作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=2,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=4,∵AP ′=P ′D ’,2P ′D ′2=AD ′2,即2P ′D ′2=4,∴P ′D ′=√2,即DQ +PQ 的最小值为√2,故A 正确.故选:A .小提示:本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的关键.10、如图,菱形ABCD 的两条对角线长分别为AC =6,BD =8,点P 是BC 边上的一动点,则AP 的最小值为( )A .4B .4.8C .5D .5.5答案:B分析:由垂线段最短,可得AP ⊥BC 时,AP 有最小值,由菱形的性质和勾股定理可求BC 的长,由菱形的面积公式可求解.如图,设AC 与BD 的交点为O ,∵点P 是BC 边上的一动点,∴AP ⊥BC 时,AP 有最小值,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO =12AC =3,BO =DO =12BD =4,∴BC=√BO2+CO2=√9+16=5,∵S菱形ABCD=1×AC×BD=BC×AP,2∴AP=24=4.8,5故选:B.小提示:本题考查了菱形的性质,勾股定理,确定当AP⊥BC时,AP有最小值是本题关键.填空题11、如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=_____,平行四边形CDEB为菱形.答案:75分析:首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD=OB,CD=CB;最后Rt△BOC中,根据勾股定理得,OB的值,则AD=AB−2OB.解:如图,连接CE交AB于点O.∵Rt△ABC中,∠ACB=90°,AC=4,BC=3∴AB=√AC2+BC2=5 (勾股定理)若平行四边形CDEB为菱形时,CE⊥BD,且OD=OB,CD=CB.∵12AB ⋅OC =12AC ⋅BC , ∴OC =125.∴在Rt △BOC 中,根据勾股定理得,OB =√BC 2−OC 2=32−(125)2=95,∴AD =AB −2OB =75 故答案是:75. 小提示:本题考查菱形的判定与性质,解题的关键是熟记菱形的判定方法.12、如图所示,六边ABCDEF 中,AB 平行且等于ED ,AF 平行且等于CD ,BC 平行且等于FE ,对角线FD ⊥BD .已知FD =24cm ,BD =18cm .则六边形ABCDEF 的面积是______.答案:432分析:连接AC 交BD 于G ,AE 交DF 于H .根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB 和AFDC .易得AC=FD ,EH=BG .计算该六边形的面积可以分成3部分计算,即平行四边形AFDC 的面积+三角形ABC 的面积+三角形EFD 的面积.解:连接AC 交BD 于G ,AE 交DF 于H .∵AB 平行且等于ED ,AF 平行且等于CD ,∴四边形AEDB 是平行四边形,四边形AFDC 是平行四边形,∴AE=BD ,AC=FD ,∴EH=BG .平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=24×18=432,故答案为432.小提示:此题要熟悉平行四边形的判定和性质.注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.13、如图,在平面直角坐标系xOy中,正方形ABCD的顶点A坐标为(3,0),顶点B的横坐标为−1,点E是AD的中点,则侧OE=_________.答案:52分析:作BF⊥AF交于点F,交y轴于点G,作DH⊥AH交于点H,连接AE,首先根据题意证明出ΔDHA≌ΔAFB(AAS),然后利用勾股定理求出AD的长度,最后根据直角三角形斜边上的中线等于斜边的一半求解即可.解:如图所示,作BF⊥AF交于点F,交y轴于点G,作DH⊥AH交于点H,连接AE,∵BF⊥AF,∴∠HDA+∠DAH=90°,∵∠DAB=90°,∴∠FAB+∠DAH=90°,∴∠HDA=∠FAB,又∵∠H=∠F=90°,AD=AB,∴ΔDHA≌ΔAFB(AAS),∴AH=BF,由题意可得,四边形DOAH和四边形OGFA都是矩形,∵正方形ABCD的顶点A坐标为(3,0),∴DH=GF=OA=3,∵顶点B的横坐标为−1,∴BG=1,∴BF=BG+GF=4,∴AH=BF=4,∵∠H=90°,∴AD=√DH2+AH2=5,∵点E是AD的中点,∠DOA=90°,∴OE=12AD=52.所以答案是:52.小提示:此题考查了正方形的性质,勾股定理,全等三角形的性质和判定,解题的关键是熟练掌握正方形的性质,勾股定理,全等三角形的性质和判定定理.14、如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE、BC于点H、G,则BG=________.答案:1分析:连接AG,EG,根据线段垂直平分线性质可得AG=EG,由点E是CD的中点,得CE=4,设BG=x,则CG=8-x,由勾股定理,可得出(8-x)2+42=82+x2,求解即可.解:连接AG,EG,如图,∵HG垂直平分AE,∴AG=EG,∵正方形ABCD的边长为8,∴∠B=∠C=90°,AB=BC=CD=8,∵点E是CD的中点,∴CE=4,设BG=x,则CG=8-x,由勾股定理,得EG2=CG2+CE2=(8-x)2+42,AG2=AB2+BG2=82+x2,∴(8-x)2+42=82+x2,解得:x=1,所以答案是:1.小提示:本题考查正方形的性质,线段垂直平分线的性质,勾股定理,熟练掌握正方形的性质、线段垂直平分线的性质、勾股定理及其运用是解题的关键.15、如图,D,E,F分别是△ABC各边的中点,若△DEF的周长为18,则△ABC的周长为________.答案:36分析:根据中位线定义得DF=12BC,DE=12AC,EF=12AB,再表示出三角形ABC 的周长即可求解. 解:∵D ,E ,F 分别是△ABC 各边的中点,∴DF=12BC,DE=12AC,EF=12AB,(中位线性质), ∵△DEF 的周长为18,即DE+DE+EF=18,∴△ABC 的周长=2(DE+DE+EF )=36.小提示:本题考查了中位线的应用,属于简单题,熟悉中位线的性质是解题关键.解答题16、在平行四边形ACBO 中,AO =5,点B 的坐标为(﹣2,4).(1)写出点A 、C 的坐标;(2)求出平行四边形ACBO 的面积.答案:(1)点A 坐标(﹣5,0),点C 坐标(﹣7,4);(2)20分析:(1)首先过点C 作CE ⊥x 轴于E ,过点B 作BD ⊥x 轴于D ,根据平行四边形的性质,可得OA =BC =5,OA ∥BC ,AC =OB ,易得CE =BD =4,AE =OD =2,则点A 坐标,点C 坐标即可求出;(2)利用平行四边形的面积公式直接计算即可.解:(1)∵四边形OACB 是平行四边形,∴OA =BC =5,OA ∥BC ,AC =OB ,过点C 作CE ⊥x 轴于E ,过点B 作BD ⊥x 轴于D ,∴CE =BD =4,∴AE =OD =2,∴点A坐标(﹣5,0),点C坐标(﹣7,4);(2)∵AO=5,BD=4,∴S▱AOBC=5×4=20.小提示:此题考查了平行四边形的性质以及平行四边形面积公式的运用,解题的关键是利用数形结合思想解题.17、如图①,四边形ABCD是正方形,点E是BC上一点,连接AE,以AE为一边作正方形AEFG,连接DG.(1)求证:DG=BE;(2)如图②,连接AF交CD于点H,连接EH,求证:EH=BE+DH;(3)在(2)的条件下,若AB=4,点H恰为CD中点,求△CEH的面积.答案:(1)证明见解析(2)证明见解析(3)S△CEH=83分析:(1)由正方形的性质得AB=AD,∠BAD=∠EAG=90°,AE=AG,再证∠BAE=∠DAG,然后证△ADG≌△ABE(SAS即可得出结论;(2)证△AEH≌△AGH(SAS),得EH=GH,再证C、D、G三点共线,然后由GH=DG+DH=BE+DH,即可得出结论;(3)设BE=x,则CE=4−x,DG=BE=x,EH=BE+DH=x+2,再由勾股定理得出方程,求出x=43,则CE=4−x=83,然后由三角形面积公式即可得出答案.(1)∵四边形ABCD是正方形∴∠BAD=90°,AB=AD∴∠BAE+∠EAD=90°∵四边形AEFG是正方形∴∠EAG=90°,AE=AG∴∠EAD+∠DAG=90°∴∠BAE=∠DAG在△BAE和△DAG中{AB=AD∠BAE=∠DAG AE=AG∴△BAE≌△DAG∴DG=BE.(2)由(1)知△BAE≌△DAG∴∠ADG=∠B−90°,BE=DG∵∠ADC=90°∴∠CDG=∠ADC+∠ADG=90°+90°=180°∴H,D,G三点共线∵四边形AEFG是正方形∴AE=AG,∠EAF=∠GAF=45°在△BAE和△DAG中{AE=AG∠EAF=∠GAFAH=AH,∴△EAH≌△GAH∴EH=HG∵HG=DG+DH∴EH=BE+DH(3)∵四边形ABCD是正方形,AB=4∴CD=AB=4∵H恰CD中点∴DH=HC=12CD=2∵△BAE≌△DAG∴BE=DG设BE=x,则DG=x,EC=4−x由(2)知EH=BE+DH=2+x在Rt△ECH中,由勾股定理知EC2+CH2=EH2∴(4−x)2+22=(2+x)2解得,x=43∴EC=83∴S△CEH=12EC⋅CH=12×83×2=83.小提示:本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、三点共线等知识,本题综合性强,熟练掌握正方形的性质,证明三角形全等是解题的关键,属于中考常考题型.18、(1)如图,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45°.直接写出BE、DF、EF之间的数量关系;(2)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF=1∠BAD,求证:EF=BE+DF;2(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,延长BC到点E,延长CD到点F,使得∠BAD,则结论EF=BE+DF是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并∠EAF=12证明.答案:(1)EF=BE+DF,理由见详解;(2)见详解;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由见详解.分析:(1)在CD的延长线上截取DM=BE,连接AM,证出△ABE≌△ADM,根据全等三角形的性质得出BE=DM,再证明△AEF≌△AMF,得EF=FM,进而即可得出答案;(2)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;(3)按照(2)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(2)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE−BG=BE−DF.所以(1)的结论在(3)的条件下是不成立的.(1)解:EF=BE+DF,理由如下:延长CD,使DM=BE,连接AM,∵在正方形ABCD中,AB=AD,∠B=∠ADM=90°,∴△ABE≌△ADM,∴∠BAE=∠DAM,AE=AM,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAM+∠DAF =90°-45°=45°,∴∠EAF=∠MAF=45°,又∵AF=AF,AE=AM,∴△AEF≌△AMF,∴EF=MF=MD+DF=BE+DF;(2)在CD的延长线上截取DG=BE,连接AG,如图,∵∠ADF=90°,∠ADF+∠ADG=180°,∴∠ADG=90°,∵∠B=90°,∴∠B=∠ADG=90°,∵BE=DG,AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AG=AE,∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,∵∠EAF=1∠BAD,2∠EAG,∴∠EAF=12∴∠EAF=∠FAG,又∵AF=AF,AE=AG,∴△AEF≌△AGF(SAS),∴EF=FG=DF+DG=EB+DF;(3)结论EF=BE+FD不成立,应当是EF=BE−FD.理由如下:如图,在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵在△ABG与△ADF中,{AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD =12∠GAF .∴∠GAE =12∠BAD =∠EAF .∵AE =AE ,AG =AF .∴△AEG ≌△AEF .∴EG =EF ,∵EG =BE −BG∴EF =BE −FD .小提示:本题考查了三角形综合题,三角形全等的判定和性质等知识,解题的关键是学会利用旋转变换的思想添加辅助线,构造全等三角形解决问题,解题时注意一些题目虽然图形发生变化,但是证明思路和方法是类似的,属于中考压轴题.。
描述:例题:初二数学下册(人教版)知识点总结含同步练习题及答案第十八章 平行四边形 18.1 平行四边形一、学习任务1. 了解平行四边形的概念,掌握平行四边形的性质,能够运用平行四边形的性质进行有关的证明和计算.2. 理解并掌握平行线间的距离及性质,并能利用这个性质解决有关的面积问题.3. 掌握平行四边形的判定方法,并能灵活的运用,解决相应的问题,培养推理论证的能力.4. 掌握三角形的中位线定理.二、知识清单平行四边形 三角形的中位线三、知识讲解1.平行四边形平行四边形两组对边分别平行的四边形叫做平行四边形(parallelogram ).平行四边形的性质① 平行四边形的对边相等;② 平行四边形的对角相等;③ 平行四边形的对角线互相平分.平行四边形的判定① 两组对边分别平行的四边形是平行四边形;② 两组对边分别相等的四边形是平行四边形;③ 一组对边平行且相等的四边形是平行四边形;④ 两组对角分别相等的四边形是平行四边形;⑤ 对角线互相平分的四边形是平行四边形.如图,在平行四边形 中,,, 与 相交于点,图中有多少个平行四边形?解: 个.ABCD EF ∥AB GH ∥AD EF GH O 9描述:例题:2.三角形的中位线三角形中位线的定义平面几何内的三角形任意两边中点的连线叫做三角形的中位线.三角形中位线的定理三角形的中位线平行于三角形的第三边,并且等于第三边的一半.四、课后作业 (查看更多本章节同步练习题,请到快乐学)分别是:平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 ,平行四边形 .AGOE GBF O F CHO HDEO AGHD GBCH ABF E EF CD ABCD 已知平行四边形 中,,则 ( )A. B. C. D. 解:B.ABCD ∠B =4∠A ∠C =18∘36∘72∘144∘在下列条件中,不能确定四边形 为平行四边形的是( )A. ,B.C. ,D. ,解:D.D 梯形是个反例.ABCD ∠A =∠C ∠B =∠D∠A =∠B =∠C =90∘∠A +∠B =180∘∠B +∠C =180∘∠A +∠B =180∘∠C +∠D =180∘、、、 为平面内四个点,从下面这四个条件中任意选两个,能使四边形 是平行四边形的选法有( )① ;② ;③ ;④ .A. 种B. 种C. 种D. 种解:B.能使四边形 是平行四边形的选法有①③,①②,③④,②④.A B C D ABCD AB ∥CD AB =CD BC ∥AD BC =AD 5432ABCD 已知 的各边长度分别是 ,,,则连接各边中点的三角形的周长为()A. B. C. D. 解:D.△ABC 3 cm 4 cm 5 cm 2 cm 7 cm 5 cm 6 cm答案:1. 下面几组条件中,能判断一个四边形是平行四边形的是 A .一组对边相等B .两条对角线互相平分C .一组对边平行D .两条对角线互相垂直B ()ABCD ()高考不提分,赔付1万元,关注快乐学了解详情。
第1页 共4页 ◎ 第2页 共4页}第十八章 平行四边形知识点总结考点题型分析:证明线段相等:①证明线段所在的两个三角形全等;②在同一个三角形中,利用等角对等边;一.平行四边形1.(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示方法:,平行四边形ABCD 记作,读作“平行四边形ABCD ”.2.性质:(1)角:平行四边形的邻角互补,对角相等;(2)边:两组对边分别平行且相等;(3)对角线:对角线互相平分;(4)面积:①S ==⨯底高ah ;②对角线将四边形分成4个面积相等的三角形. 3.平行四边形的判别及证明四边形是平行四边形:方法有(5种)①定义:两组对边分别平行 ②方法1:两组对角分别相等③方法2:两组对边分别相等 的四边形是平行四边形 ④方法3:对角线互相平分⑤方法4:一组对边平行且相等二、矩形:(1)定义:有一个角是直角 的平行四边形 是矩形。
注意条件:① 平行四边形; ② 一个角是直角,两者缺一不可.(2)矩形性质:①边:对边平行且相等; ②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条). (3)矩形的判定及证明四边形是矩形:方法有(3种)①有一个角是直角的平行四边形;②对角线相等的平行四边形; ③四个角都相等三、菱形:(1)菱形的定义:有一组邻边相等 的平行四边形 是菱形。
注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可. (2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角; ④对称性:轴对称图形(对角线所在直线,2条).(2)(2)菱形的判定及证明四边形是菱形:方法有(3种)①有一组邻边相等的平行四边形; ②对角线互相垂直的平行四边形; ③四条边都相等.四、正方形:(1)定义:有一组邻边相等且有一个直角 的平行四边形 叫做正方形。
它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(2)正方形性质:①边:四条边都相等; ②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).(3)正方形的判定及证明四边形是正方形:方法有(5种)① 有一组邻边相等 且有一个直角 的平行四边形 ② 有一组邻边相等 的矩形;③ 对角线互相垂直 的矩形. ④ 有一个角是直角 的菱形 ⑤ 对角线相等 的菱形;2.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab . ③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a . ④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h +. 五、梯形:(选学)(1)定义:一组对边平行而另一组对边不平行的四边形叫做梯形。
八年级数学下册第十八章平行四边形知识汇总大全单选题1、如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.√2B.1C.2D.√3答案:B分析:由矩形的性质得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'=√AD2−C′D2=4,设CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故选:B.小提示:本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解题的关键.2、如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE= 5,BE=13,则EF2的值是()A.128B.64C.32D.144答案:A分析:13和5为两条直角边长时,求出小正方形的边长8,即可利用勾股定理得出EF2的长.解:根据题题得:小正方形的边长等于BE-AE,∵AE=5,BE=13,∴小正方形的边长=13-5=8,∴EF2=82+82=128.故选:A小提示:本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.3、有下列说法:①平行四边形具有四边形的所有性质:②平行四边形是中心对称图形:③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是().A.①②④B.①③④C.①②③D.①②③④答案:D分析:根据平行四边形的性质、中心对称图形的定义和全等三角形的判定进行逐一判定即可.解:∵平行四边形是四边形的一种,∴平行四边形具有四边形的所有性质,故①正确:∵平行四边形绕其对角线的交点旋转180度能够与自身重合,∴平行四边形是中心对称图形,故②正确:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,∠ADC=∠CBA∴△ADC≌△CBA(SAS)同理可以证明△ABD≌△CDB∴平行四边形的任一条对角线可把平行四边形分成两个全等的三角形,故③正确;∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∴S△ADO=S△ABO,S△ADO=S△DOC,S△DOC=S△BOC,∴S△ADO=S△ABO=S△DOC=S△BOC,∴平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形,故④正确.故选D.小提示:本题主要考查了中心对称图形的定义,平行四边形的性质,全等三角形的判定,三角形中线把面积分成相同的两部分等等,解题的关键在于能够熟练掌握相关知识进行求解.4、“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D,B′之间的距离为()A.1cmB.2cmC.(√2-1)cmD.(2√2-1)cm答案:D分析:先求出BD,再根据平移性质求得BB′=1cm,然后由BD−BB′求解即可.解:由题意,BD=2√2cm,由平移性质得BB′=1cm,∴点D,B′之间的距离为DB′=BD−BB′=(2√2−1)cm,故选:D.小提示:本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.5、如图,平行四边形ABCD的对角线AC,BD相交于点O,添加下列条件仍不能判断四边形ABCD是矩形的是( )A.AB+BC=AC B.AB= AD C.OA= OD D.∠ABC+∠ADC=180°答案:B分析:由勾股定理的逆定理证得∠ABC=90°,根据有一个角是直角的平行四边形是矩形可判断A;根据有一组邻边相等的平行四边形是菱形可判断B;根据对角线相等的平行四边形是矩形可判断C;根据有一个角是直角的平行四边形是矩形可判断D.解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴▱ABCD为矩形,故本选项不符合题意;B.∵AB=AD,∴▱ABCD为菱形,故本选项符合题意;C.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴▱ABCD是矩形,故本选项不符合题意;D.∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴▱ABCD为矩形,故本选项不符合题意;故选:B.小提示:本题考查了矩形的判定定理,勾股定理的逆定理,平行四边形的性质,熟练掌握矩形的判定方法是解决问题的关键.6、如图,在平行四边形ABCD中,AD=3,CD=2.连接AC,过点B作BE//AC,交DC的延长线于点E,连接AE,交BC于点F.若∠AFC=2∠D,则四边形ABEC的面积为()A.√5B.2√5C.6D.2√13答案:B分析:先证明四边形ABEC为矩形,再求出AC,即可求出四边形ABEC的面积.解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=2,BC=AD=3,∠D=∠ABC,∵BE//AC,∴四边形ABEC为平行四边形,∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF,∴AF=BF,∴2AF=2BF,即BC=AE,∴平行四边形ABEC是矩形,∴∠BAC=90°,∴AC=√BC2−AB2=√32−22=√5,∴矩形ABEC的面积为AB·AC=2√5.故选:B小提示:本题考查了平行四边形的性质,矩形的判定与性质,勾股定理等知识,熟知相关定理,证明四边形ABEC为矩形是解题关键.7、在▱ABCD中,AC与BD相交于点O,要使四边形ABCD是菱形,还需添加一个条件,这个条件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC答案:C分析:根据菱形的判定分析即可;∵四边形ABCD时平行四边形,AO⊥BO,∴▱ABCD是菱形;故选C.小提示:本题主要考查了菱形的判定,准确分析判断是解题的关键.8、如图,在菱形ABCD中,∠ABC=60°,连接AC、BD,则AC的值为()BDA .12B .√22C .√32D .√33答案:D分析:设AC 与BD 的交点为O ,由题意易得∠ABD =∠CBD =12∠ABC,AB =BC ,AC ⊥BD,BO =DO,AO =CO ,进而可得△ABC 是等边三角形,BO =√3AO ,然后问题可求解.解:设AC 与BD 的交点为O ,如图所示:∵四边形ABCD 是菱形,∴∠ABD =∠CBD =12∠ABC,AB =BC ,AC ⊥BD,BO =DO,AO =CO ,∵∠ABC =60°,∴△ABC 是等边三角形,∴∠ABO =30°,AB =AC ,∴AO =12AB , ∴OB =√AB 2−AO 2=√3OA ,∴BD =2√3OA,AC =2AO ,∴AC BD =2√3OA =√33; 故选D . 小提示:本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9、若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD的两条对角线AC,BD一定是( ) A.互相平分B.互相垂直C.互相平分且相等D.互相垂直且相等答案:D分析:由题意作出图形,然后根据正方形的判定定理可进行排除选项.解:如图所示,点E、F、G、H分别是四边形ABCD边AD、DC、BC、AB的中点,∴EF//AC//GH,EH//BD//FG,EF=GH=12AC,EH=FG=12BD,∴四边形EFGH是平行四边形,对于A选项:对角线互相平分,四边形EFGH仍是平行四边形,故不符合题意;对于B选项:对角线互相垂直,则有EF⊥EH,可推出四边形EFGH是矩形,故不符合题意;对于C选项:对角线互相平分且相等,则有EF=EH,可推出四边形EFGH是菱形,故不符合题意;对于D选项:对角线互相垂直且相等,则有EF⊥EH,EF=EH,可推出四边形EFGH是正方形,故符合题意;故选D.小提示:本题主要考查三角形中位线及正方形、菱形、矩形、平行四边形的判定,熟练掌握三角形中位线及正方形、菱形、矩形、平行四边形的判定是解题的关键.10、如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为矩形,则可以添加的条件是()A.∠AOB=60°B.AC=BD C.AC⊥BD D.AB=BC答案:B分析:根据对角线互相平分的四边形是平行四边形可得四边形ABCD是平行四边形,再根据菱形的判定定理和矩形的判定定理逐一分析即可.∵在四边形ABCD中,OA=OC,OB=OD∴四边形ABCD是平行四边形若添加∠AOB=60°,无法判断,故A不符合题意;若添加AC=BD,则四边形ABCD是矩形,故B符合题意;若添加AC⊥BD,则四边形ABCD是菱形,故C不符合题意;若添加AB=BC,则四边形ABCD是菱形,故D不符合题意;故选B.小提示:此题考查的是平行四边形的判定、矩形的判定和菱形的判定,掌握平行四边形的判定定理、矩形的判定定理和菱形的判定定理是解决此题的关键.填空题11、如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,AD=4,CD=2,那么∠A=____度.答案:30分析:过点D作DE⊥AB于E,取A、D的中点F,连接EF,根据角平分线性质求出DE=CD=2,然后通过证明△EFD是等边三角形得出∠EDF=60°,由三角形内角和定理即可求解.证明:过点D作DE⊥AB于E,取A、D的中点F,连接EF,则∠DEA=90°,∵AD=4,∴DF=1AD=2,2∵EF是R t△AED的中线,∴EF=1AD=2,2∵∠C=90°,BD平分∠ABC,CD=2,∴DE=CD=2,∴DF=EF=DE,∴△EFD是等边三角形,∴∠EDF=60°,∴∠A=180°−90°−∠EDF=90°−60°=30°所以答案是:30.小提示:本题考查了三角形内角和定理、角平分线性质的应用及直角三角形斜边上的中线,解题的关键是做辅助线证明△EFD是等边三角形,注意:角平分线上的点到角的两边的距离相等.12、如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2时,则菱形的边长为____cm.答案:13分析:连接BD、AC、EF,BD与AC交于点O,由题意易得B、E、F、D在同一条直线上,则有AC⊥BD,EF⊥AC,OA=OC,OB=OD,AC=EF,然后根据菱形和正方形的面积及勾股定理可进行求解.解:连接BD、AC、EF,BD与AC交于点O,如图所示:∵四边形ABCD是菱形、四边形AECF是正方形,∴点B、E、F、D在同一条直线上,∴AC⊥BD,EF⊥AC,OA=OC,OB=OD,AC=EF,∵菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,∴S菱形ABCD =12BD⋅AC=120,S正方形AECF=12AC2=50,∴AC=10cm,BD=24cm,∴OA=5cm,OB=12cm,在Rt△AOB中,由勾股定理可得AB=√AO2+OB2=13cm,故答案为13.小提示:本题主要考查菱形与正方形的性质,熟练掌握菱形与正方形的性质是解题的关键.13、如图,在平面直角坐标系中,长方形OABC的边OA 在x轴上,OC在y轴上,OA=1,OC=2,对角线 AC 的垂直平分线交AB 于点E,交AC于点D.若y轴上有一点P(不与点C重合),能使△AEP是以为 AE 为腰的等腰三角形,则点 P的坐标为____.答案:(0,34),(0,−34)或(0,12) 分析:设AE=m ,根据勾股定理求出m 的值,得到点E (1,54),设点P 坐标为(0,y ),根据勾股定理列出方程,即可得到答案.∵对角线 AC 的垂直平分线交AB 于点E ,∴AE=CE ,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴设AE=m ,则BE=2-m ,CE=m ,∴在Rt∆BCE 中,BE 2+ BC 2=CE 2,即:(2-m )2+12=m 2, 解得:m=54, ∴E (1,54), 设点P 坐标为(0,y ),∵△AEP 是以为 AE 为腰的等腰三角形,当AP=AE ,则(1-0)2+(0-y)2= (1-1)2+(0-54)2,解得:y=±34, 当EP=AE ,则(1-0)2+(54-y)2= (1-1)2+(0-54)2,解得:y=12, ∴点 P 的坐标为(0,34),(0,−34),(0,12),故答案是:(0,34),(0,−34),(0,12). 小提示:本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键.14、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE ⊥AD ,垂足为E ,AC =8,BD =6,则OE 的长为______.答案:125分析:直接利用菱形的性质得出AO,DO的长,再利用勾股定理得出菱形的边长,进而利用等面积法得出答案.解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=8,DB=6,∴AO=4,DO=3,∠AOD=90°,∴AD=5,在Rt△ADO中,由等面积法得:12AO·DO=12AD·OE ,∴OE=AO·DOAD =3×45=125所以答案是:125.小提示:本题考查了菱形的性质,勾股定理,直角三角形斜边上的高的求法(等面积法),熟记性质与定理是解题关键.15、如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=1,则AD=________.答案:2+√2##√2+2分析:证明Rt△EBF≌Rt△EB′D(HL),推出BF=DB′,再证明DB′=EC=BF=1,想办法求出AB′,可得结论.解:由翻折的性质可知,EB=EB′,∠B=∠AB′E=∠EB′D=90°,在Rt△EBF和Rt△EB′D中,{EB=EB ′EF=ED,∴Rt△EBF≌Rt△EB′D(HL),∴BF=DB′,∵四边形ABCD是矩形,∴∠C=∠CDB′=∠EB′D=90°,∴四边形ECDB′是矩形,∴DB′=EC=1,∴BF=EC=1,由翻折的性质可知,BF=FG=1,∠FAG=45°,∠EGF=∠B=∠AGF=90°,∴AG=FG=1,∴AF=√2.∴AB=AB′=1+√2,∴AD=AB′+DB′=2+√2,所以答案是:2+√2.小提示:本题考查翻折变换,矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.解答题16、如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若∠BDE=15°,求∠DOE;(3)在(2)的条件下,若AB=2,求△BOE的面积.答案:(1)见解析;(2)135°;(3)√3−1分析:(1)根据有三个角是直角是四边形是矩形判定即可;(2)首先根据矩形的性质得出OD=OC,然后利用角平分线的定义得出△DCE是等腰直角三角形,进而得出△OCD是等边三角形,然后可得∠OCE=30°,再利用等腰三角形的性质和三角形内角和定理得出∠COE=∠CEO=75°,最后利用∠DOE=∠COD+∠COE即可求解;(3)作OF⊥BC于F,首先根据三角形中位线的性质得出OF=1,然后利用勾股定理求出BC的长度,进而得出BE的长度,最后利用面积公式求解即可.解:(1)∵AD//BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)由(1)可得:AO=CO,BO=DO,AC=BD,∴OD=OC,∵DE平分∠ADC,∴∠CDE=45°,∴△DCE是等腰直角三角形,∴∠DEC=45°,CD=CE,∵∠BDE=15°,∴∠DBC=∠ADB=45°-15°=30°,∴∠BDC=60°,又OD=OC,∴△OCD是等边三角形,∴OC=CD=CE,∠DCO=∠COD=60°,∴∠OCE=30°,∴∠COE=∠CEO=(180°-30°)÷2=75°,∴∠DOE=∠COD+∠COE=60°+75°=135°;(3)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=12CD=1,∵EC=CD=AB=2,∴AC=BD=4,∴BC=√42−22=2√3,∴BE=BC-CE=2√3-2,∴△BOE的面积=12BE⋅OF=12×(2√3−2)×1=√3−1.小提示:本题主要考查四边形综合,掌握矩形的判定及性质,等腰三角形的性质和勾股定理是解题的关键.17、如图,已知AD,AE分别是△ABC的高和中线,AB=9cm,AC=12cm,BC=15cm,∠BAC=90°.(1)求AD的长度;(2)求△ABE的面积.答案:(1)AD=365cm(2)SΔABE=27cm2分析:(1)根据三角形的面积求出AD即可;(2)根据直角三角形斜边上的中线等于斜边的一半求出BE,再根据三角形面积公式求出面积即可.(1)解:在ΔABC中,∠BAC=90°,AD是边BC上的高,∵AB=9cm,AC=12cm,BC=15cm,∴根据SΔABC=12AB·AC=12BC·AD可得∴AD=AB·ACBC =9×1215=365cm;(2)解:在ΔABC中,BE是边BC上的中线,且BC=15cm,∴BE=12BC=152cm,在ΔABE中,AD是边BE上的高,且由(1)知AD=365cm,∴SΔABE=12BE·AD=12×152×365=27cm2.小提示:本题考查直角三角形斜边上的中线等于斜边的一半,直角三角形的性质,解题关键是巧用面积法求直角三角形斜边上的高.18、如图,在平行四边形ABCD中,AC是对角线,且AB=AC,CF是∠ACB的角平分线交AB于点F,在AD上取一点E,使AB=AE,连接BE交CF于点P.(1)求证:BP=CP;(2)若BC=4,∠ABC=45°,求平行四边形ABCD的面积.答案:(1)见解析;(2)8分析:(1)设AP与BC交于H,根据平行线的性质得到∠AEB=∠CBE,根据等腰三角形的性质得到∠ABE=∠AEB,推出BE平分∠ABC,求得AP平分∠BAC,根据线段垂直平分线的性质即可得到结论;(2)根据线段垂直平分线的性质和平行四边形的面积公式即可得到结论.解:(1)如图,设AP与BC交于H,∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=1BC=2,2∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.小提示:本题考查了平行四边形的性质,线段垂直平分线的判定和性质,角平分线的定义,利用数形结合的思想是解题的关键.。
第12讲平行四边形复习训练考点一、平行四边形的性质及判定 【知识要点】(1)、平行四边形的边、角、对角线性质, 对称性 (2)、平行四边形判定方法 (3)、三角形中位线【典型例题】例1、下列图形中是中心对称图形,但不是轴对称图形的是( ) A 、菱形 B 、矩形 C 、正方形 D 、平行四边形例2、如图,□ABCD 与□DCFE 的周长相等,且∠BAD=60°,∠F=110°,则∠DAE 的度数为 例3、如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E,与DC 交于点F,且点F 为边DC 的中点,DG ⊥AE,垂足为G,若DG=1,则AE 的长为( ) A 、2B 、4C 、4D 、8例4、平面直角坐标系中,□ABCD 的顶点,A ,B ,D 的坐标分别是(0,0)(5,0),(2,3),则顶点C 的坐标是( )A 、(3,7)B 、(5,3)C 、(7,3)D 、 (8,2)(例2) (例3) (例4) 例5、如图,E 是平行四边形内任一点, 若S 平行四边形ABCD=8,则图中阴影部分的面积是( ) A 、3B 、4C 、5D 、6例6、如图,将平行四边形ABCD 纸片沿EF 折叠,使点C 与点A 重合,点D 落在点G 处。
(1)求证:AE =AF (2)求证:△ABE ≌△AGF例7、如图所示:四边形ABCD 是平行四边形,DE 平分BF ADC ,∠平分ABC ∠.试证明四边形BFDE 是平行四边形.例8、如图,在△ABC 中,AB =4,AC =3,BC =5,以三边为边,在BC 的同侧分别作三个等边三角形即△ABD、△BCE、△ACF。
(1)求证:四边形EFAD是平行四边形;(2)求四边形EFAD的面积。
1、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可能是()A、1:2:3:4B、2:2:3:3C、2:3:2:3D、2:3:3:22、顺次连结四边形各边的中点,所成的四边形必定是()A、等腰梯形B、直角梯形C、矩形D、平行四边形3、如图,在ABCD中,AB=5,AD=8,∠BAD、∠ADC的平分线分别交BC于E、F,则EF的长为()A、1B、2C、3D、44、如图,在□ABCD中,EF∥AD, GH∥AB,EF、GH相交于点O,则图中共有个平行四边形.(3)(4)5、如图,△ABC 中,∠ACB=90°,点D、E分别为AC,AB中点,点F在BC延长线上,且∠CDF=∠A。
名师总结优秀知识点新人教版八年级下册第十八章平行四边形全章知识点要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:( 1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形 .3.面积:S平行四边形底高4.判定:边:( 1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:( 4)两组对角分别相等的四边形是平行四边形;(5)两组邻角分别互补的四边形是平行四边形.边与角:( 6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:( 7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:( 1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形 .3.面积:S矩形=长宽4.判定:( 1)有一个角是直角的平行四边形是矩形.( 2)对角线相等的平行四边形是矩形.( 3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中, 30 度角所对应的直角边等于斜边的一半.要点三、菱形1.定义:有一组邻边相等的平行四边形叫做菱形.2.性质:( 1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形 .对角线对角线3.面积:S菱形=底高=24.判定:( 1)一组邻边相等的平行四边形是菱形;( 2)对角线互相垂直的平行四边形是菱形;名师总结优秀知识点( 3)四边相等的四边形是菱形.要点四、正方形1.定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形 .3.面积:S正方形 = 边长×边长=1×对角线×对角线24.判定:( 1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.要点五、。
人教版八年级数学下册第18章平行四边形知识要点总结第18章平行四边形复习平行四边形知识点一、平行四边形定义:二、平行四边形的性质边:1.两组对边互相平行且相等;符号语言:角:2.两组对角分别相等;符号语言:对角线:3.对角线互相平分。
符号语言:对称性:中心对称图形但不一定是轴对称图形平行线之间的距离:平行线间的距离都相等符号语言:∵AE∥BF且AB⊥BF,CD⊥BF,EF⊥BF∴AB=CD=EF三、平行四边形的判定边:1. 两组对边分别平行.....的四边形是平行四边形;符号语言:2. 两组对边分别相等......的四边形是平行四边形;符号语言:3. 一组对边平行且相等......的四边形是平行四边形;符号语言:角:4. 两组对角分别相等......的四边形是平行四边形;符号语言:对角线:5.对角线互相平分的四边形是平行四边形;符号语言:四、平行四边形的面积公式S□ABCD=ah(a是边,h是这个边的高);五、与三角形有关的知识点1.三角形中位线定义:连接三角形两边中点的线段..叫做三角形的中位线。
2.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半符号语言:3.取值范围:利用三角形的性质:两边之和大于第三边;两边之差小于第三边 如:已知□ABCD 两对角线的长分别为6和8,则较短边长x 的取值范围为1<x<7.4.直角三角形性质定理(1)直角三角形斜边上的中线等于斜边的一半.符号语言:∵在Rt △ABC 中,且AD =CD∴ BD=AD=CD(2)直角三角形中,30°角所对应的直角边等于斜边的一半.符号语言:∵在Rt △ABC 中,且∠A=30°∴BC=12AC 或 2BC=AC特殊的平行四边形知识点—矩形一、矩形的定义:二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的四个角都是直角; 符号语言:3.矩形的对角线平分且相等。
符号语言:三、矩形判定1.有一个角是直角的平行四边形.....叫做矩形。
第十八章《平行四边形》知识点及考点典例一、平行四边形1、平行四边形的概念两组对边分别__________的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的邻角_______,对角_______。
(2)平行四边形的对边_______且________。
推论:夹在两条平行线间的平行线段_______。
(3)平行四边形的对角线_________。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定(1)定义:两组对边分别________的四边形是平行四边形(2)定理1:两组对角分别_________的四边形是平行四边形(3)定理2:两组对边分别_________的四边形是平行四边形(4)定理3:对角线___________的四边形是平行四边形(5)定理4:一组对边_________的四边形是平行四边形二、矩形1、矩形的概念有一个角是_______的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)矩形的四个角都是_______;(3)矩形的对角线_______;(4)矩形是______对称图形。
3、矩形的判定(1)定义:有一个角是________的平行四边形是矩形。
(2)定理1:有___________是直角的四边形是矩形。
(3)定理2:对角线相等的_______________是矩形。
4、矩形的面积S矩形=长×宽=ab三、菱形1、菱形的概念有一组___________的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)菱形的________边相等(3)菱形的对角线________,并且每一条对角线平分一组对角(4)菱形是________对称图形3、菱形的判定(1)定义:有一组___________的平行四边形是菱形(2)定理1:___________都相等的四边形是菱形(3)定理2:对角线___________的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半四、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的______________叫做正方形。
人教版八年级数学下《第十八章平行四边形》课时作业(含答案)第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角特征01基础题知识点1平行四边形的概念1.如图,在▱ABCD中,EF∥BC,则图中平行四边形有3个.第1题图第2题图2.如图,AB∥EG,EF∥BC,AC∥FG,图中有3个平行四边形,它们分别是▱ABCE,▱ABGC,▱AFBC.知识点2平行四边形的边、角特征3.(教材P43T1的变式)在▱ABCD中,AD=3 cm,AB=2 cm,则▱ABCD的周长等于(A) A.10 cm B.6 cmC.5 cm D.4 cm4.(2016·衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是(A)A.45°B.55°C.65°D.75°5.在▱ABCD中,两邻边的差为4 cm,周长为32 cm,则两邻边长分别为10__cm,6__cm.6.(1)在▱ABCD 中,若∠A∶∠B=5∶4,则∠C=100°;(2)已知▱ABCD 的周长为28 cm,若AB∶BC=3∶4,则AB=6__cm,BC=8__cm.7.如图,在▱ABCD中,CM⊥AD于点M,CN⊥AB于点N,若∠B=45°,求∠MCN的大小.解:∵四边形ABCD是平行四边形,∴AB∥CD,∠B=∠D.∵∠B=45°,∴∠BCD=135°,∠D=45°.∵CM⊥AD,CN⊥AB,∴∠BNC=∠DMC=90°.∴∠BCN=∠DCM=45°.∴∠MCN=∠BCD-∠BCN-∠DCM=45°.8.如图,已知四边形ABCD是平行四边形,点E,B,D,F在同一直线上,且BE=DF.求证:AE=CF.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD. ∴∠ABD =∠CDB. ∴∠ABE =∠CDF.在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF(SAS ). ∴AE =CF.知识点3 平行线间的距离9.如图,a ∥b ,AB ∥CD ,CE ⊥b ,FG ⊥b ,点E ,G 为垂足,则下列说法不正确的是(D )A .AB =CD B .EC =GFC .A ,B 两点的距离就是线段AB 的长度D .a 与b 的距离就是线段CD 的长度第9题图 第10题图10.(2016·柳州)如图,若▱ABCD 的面积为20,BC =5,则边AD 与BC 间的距离为4.02 中档题11.在▱ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是(A)A .2∶5∶2∶5B .3∶4∶4∶5C .4∶4∶3∶2D .2∶3∶5∶612.如图,在▱ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是(B )A .7B .10C .11D .12第12题图 第13题图13.如图所示,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中△ABC 的面积(C )A .变大B .变小C .不变D .无法确定 14.(2017·鹤岗)在▱ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则▱ABCD 的周长是(C)A .22B .20C .22或20D .18 15.(2017·武汉)如图,在▱ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为30°.第15题图 第16题图16.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为25°.17.如图,在▱ABCD 中,点P 是对角线BD 上的一个动点(点P 与点B 、点D 不重合),过点P 作EF ∥BC ,GH ∥AB ,则图中面积始终相等的平行四边形有3 对. 18.(2016·温州)如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠DAE =∠F ,∠D =∠ECF. ∵E 是CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAE =∠F ,∠D =∠ECF ,DE =CE ,∴△ADE ≌△FCE(AAS ). (2)∵△ADE ≌△FCE , ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF =90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.03 综合题19.如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA.(1)求∠APB 的度数;(2)如果AD =5 cm ,AP =8 cm ,求△APB 的周长. 解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥CB ,AB ∥CD ,AD =BC ,AB =DC. ∴∠DAB +∠CBA =180°.又∵AP 和BP 分别平分∠DAB 和∠CBA , ∴∠PAB +∠PBA =12(∠DAB +∠CBA)=90°.∴∠APB =180°-(∠PAB +∠PBA)=90°. (2)∵AP 平分∠DAB ,AB ∥CD , ∴∠DAP =∠PAB =∠DPA. ∴AD =DP =5 cm .同理:PC =BC =AD =5 cm . ∴AB =DC =DP +PC =10 cm .在Rt △APB 中,AB =10 cm ,AP =8 cm , ∴BP =102-82=6(cm ).∴△APB 的周长为6+8+10=24(cm ).第2课时 平行四边形的对角线性质01 基础题知识点1 平行四边形的对角线互相平分1.如图,在▱ABCD 中,O 是对角线AC ,BD 的交点,下列结论错误的是(C )A .AB ∥CD B .AB =CDC .AC =BD D .OA =OC第1题图 第2题图2.(教材P 44T 1的变式)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为(B)A .13B .17C .20D .263.如图,在▱ABCD 中,已知∠ODA =90°,AC =10 cm ,BD =6 cm ,则AD 的长为(A )A .4 cmB .5 cmC .6 cmD .8 cm第3题图 第4题图4.如图,▱ABCD 的周长为16 cm ,AC ,BD 相交于点O ,EO ⊥BD 交AD 于点E ,则△ABE 的周长为(C)A .4 cmB .6 cmC .8 cmD .10 cm5.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O.若AC =6,则线段AO 的长度等于3.6.在▱ABCD 中,AB =3,BC =5,对角线AC ,BD 相交于点O ,则OA 的取值范围是1<OA <4.7.如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 在对角线AC 上,且AM =CN ,求证:BM ∥DN.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD. ∵AM =CN ,∴OM =ON.在△BOM 和△DON 中,⎩⎨⎧OB =OD ,∠BOM =∠DON ,OM =ON ,∴△BOM ≌△DON(SAS ).∴∠OBM=∠ODN.∴BM∥DN.知识点2平行四边形的面积8.如图,在▱ABCD中,O是对角线AC,BD的交点,若△AOD的面积是5,则▱ABCD的面积是(C) A.10 B.15C.20 D.25第8题图第9题图9.如图,在▱ABCD中,对角线AC,BD交于点O,若DO=1.5 cm,AB=5 cm,BC=4 cm,则▱ABCD的面积为12cm2.02中档题10.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线的和是(C) A.18 B.28C.36 D.46第10题图第11题图11.如图,▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,则▱ABCD的面积为(B) A.60 cm2B.30 cm2C.20 cm2D.16 cm212.(2017·眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE =1.5,则四边形EFCD的周长为(C)A.14 B.13 C.12 D.10第12题图第13题图13.如图,若▱ABCD的周长为22 cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AD =4__cm,AB=7__cm.14.如图,在▱ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′15.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC 的长;(2)求▱ABCD 的面积.解:(1)∵AO ∶BO =2∶3, ∴设AO =2x ,BO =3x (x >0).∵AC ⊥AB ,AB =25, ∴(2x)2+(25)2=(3x)2. 解得x =2. ∴AO =4.∵四边形ABCD 是平行四边形, ∴AC =2AO =8. (2)∵S △ABC =12AB·AC=12×25×8 =85,∴S ▱ABCD =2S △ABC =2×85=16 5.16.(2016·本溪)如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别相交于点E ,F ,连接EC.(1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求▱ABCD 的周长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,DC ∥AB. ∴∠FDO =∠EBO.在△DFO 和△BEO 中,⎩⎨⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO(ASA ). ∴OE =OF.(2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC ,OA =OC. ∵EF ⊥AC ,∴AE =CE. ∵△BEC 的周长是10,∴BC +BE +CE =BC +BE +AE =BC +AB =10. ∴C ▱ABCD =2(BC +AB)=20.03综合题17.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以P A,PC为边作▱P AQC,则对角线PQ长度的最小值为(D)A.6B.8C.2 2D.4 218.1.2平行四边形的判定第1课时平行四边形的判定01基础题知识点1两组对边分别相等的四边形是平行四边形1.如图,AB=CD=EF,且△ACE≌△BDF,则图中平行四边形的个数为(C)A.1B.2C.3D.42.若四边形ABCD的边AB=CD,BC=DA,则这个四边形是平行四边形,理由是两组对边分别相等的四边形是平行四边形.知识点2两组对角分别相等的四边形是平行四边形3.下面给出四边形ABCD中,∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD为平行四边形的是(B)A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶34.一个四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的是(D)A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.108°,72°,108°知识点3对角线互相平分的四边形是平行四边形5.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件BO=DO(答案不唯一)(只添一个即可),使四边形ABCD是平行四边形.6.已知:如图,在四边形ABCD中,AB∥CD,对角线AC,BD相交于点O,且AO=CO.求证:四边形ABCD 是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵AO=CO,∴△ABO≌△CDO(AAS).∴BO=DO.∴四边形ABCD是平行四边形.7.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是OB ,OD 的中点,求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵点E ,F 分别是OB ,OD 的中点, ∴OE =12OB ,OF =12OD.∴OE =OF.又∵OA =OC ,∴四边形AECF 是平行四边形.知识点4 一组对边平行且相等的四边形是平行四边形8.如图所示,四边形ABCD 和AEFD 都是平行四边形,则四边形BCFE 是平行四边形,理由:一组对边平行且相等的四边形是平行四边形.9.(2016·新疆)如图,在四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF.求证:四边形ABCD 是平行四边形.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°.∵AD ∥BC ,∴∠ADE =∠CBF.在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,∠EAD =∠FCB ,AE =CF ,∴△AED ≌△CFB(AAS ). ∴AD =BC. 又∵AD ∥BC ,∴四边形ABCD 是平行四边形.02 中档题10.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC ,BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(A )A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形11.(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或-2.12.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC上,且AF=CE.求证:四边形BEDF是平行四边形.证明:连接BD交AC于O,∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AO=CO,BO=DO.∵AF=CE,∴AF-AO=CE-CO,即OF=OE.又∵OB=OD,∴四边形BEDF是平行四边形.13.(2017·南京)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∴OE=OF.14.(2016·张家界)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.解:四边形ABFC 是平行四边形. 证明:∵AB ∥CD ,∴∠BAE =∠CFE.∵E 是BC 的中点,∴BE =CE. 在△ABE 和△FCE 中,⎩⎨⎧∠BAE =∠CFE ,∠AEB =∠FEC ,BE =CE ,∴△ABE ≌△FCE(AAS).∴AB =CF .又∵AB ∥CF ,∴四边形ABFC 是平行四边形.03 综合题15.如图所示,在四边形ABCD 中,AD ∥BC ,AD =24 cm ,BC =30 cm ,点P 从点A 向点D 以1 cm /s 的速度运动,到点D 即停止.点Q 从点C 向点B 以2 cm /s 的速度运动,到点B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形PQCD ,则当P ,Q 两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?解:设当P ,Q 两点同时出发t s 后,四边形ABQP 或四边形PQCD 是平行四边形. 根据题意,得AP =t cm ,PD =(24-t)cm ,CQ =2t cm ,BQ =(30-2t)cm (0≤t ≤15). ①若四边形ABQP 是平行四边形, ∵AD ∥BC ,∴还需满足AP =BQ. ∴t =30-2t.解得t =10.∴10 s 后四边形ABQP 是平行四边形; ②若四边形PQCD 是平行四边形, ∵AD ∥BC ,∴还需满足PD =CQ.∴24-t =2t.解得t =8.∴8 s 后四边形PQCD 是平行四边形.综上所述:当P ,Q 两点同时出发8秒或10秒后,所截得两个四边形中其中一个四边形为平行四边形.第2课时三角形的中位线01基础题知识点三角形的中位线1.如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4C.6 D.82.如图,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(C) A.8 B.10C.12 D.14第2题图第3题图3.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为(C) A.50°B.60°C.70°D.80°4.(2016·梧州)如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(B)A.5 B.7C.9 D.11第4题图第5题图5.如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD=20 m,则A,B之间的距离是40m.6.(2017·怀化)如图,在▱ABCD中,对角线AC,BD 相交于点O,点E是AB的中点,OE=5 cm,则AD的长为10cm.第6题图第7题图7.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,EF=1,则BD=2.8.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8 cm,E,F分别为边AC,AB的中点.(1)求∠A的度数;(2)求EF的长.解:(1)∵∠C=90°,∴∠A+∠B=90°.∴∠A=90°-∠B=90°-60°=30°.(2)在Rt △ABC 中,∠A =30°,AB =8 cm , ∴BC =12AB =4 cm .∵E ,F 分别是AC ,AB 的中点, ∴EF 是△ABC 的中位线. ∴EF =12BC =2 cm .9.如图,在△ABC 中,D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,E ,F 分别为AB ,BC ,CA 的中点, ∴DF ,DE 为△ABC 的中位线. ∴DF ∥BC ,DE ∥AC.∴四边形DECF 是平行四边形.02 中档题10.如图,点D ,E ,F 分别为△ABC 各边中点,下列说法正确的是(C )A .DE =DFB .EF =12ABC .S △ABD =S △ACD D .AD 平分∠BAC11.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米第11题图 第12题图12.(2016·陕西)如图,在△ABC 中,∠B =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B)A .7B .8C .9D .1013.如图,▱ABCD 的对角线AC ,BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是9.第13题图 第14题图14.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =18°,则∠PFE 的度数是18°.15.如图,四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,顺次连接E ,F ,G ,H ,得到的四边形EFGH 叫中点四边形.求证:四边形EFGH 是平行四边形.证明:连接BD.∵E ,H 分别是AB ,AD 的中点, ∴EH 是△ABD 的中位线. ∴EH =12BD ,EH ∥BD.同理FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴四边形EFGH 是平行四边形.16.如图,在▱ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上,∴OE ∥CF.∴四边形OCFE 是平行四边形.03 综合题17.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,求线段DH 的长.解:∵AE 为△ABC 的角平分线, ∴∠FAH =∠CAH. ∵CH ⊥AE ,∴∠AHF =∠AHC =90°. 在△AHF 和△AHC 中,⎩⎨⎧∠FAH =∠CAH ,AH =AH ,∠AHF =∠AHC ,∴△AHF ≌△AHC(ASA ). ∴AF =AC ,HF =HC. ∵AC =3,AB =5,∴AF =AC =3,BF =AB -AF =5-3=2. ∵AD 为△ABC 的中线, ∴DH 是△BCF 的中位线. ∴DH =12BF =1.小专题(三) 平行四边形的证明思路类型1 若已知条件出现在四边形的边上,则考虑:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD 中,点E 在AB 的延长线上,且EC ∥BD.求证:四边形BECD 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,即BE ∥DC. 又∵EC ∥BD ,∴四边形BECD 是平行四边形.2.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE =DF.求证:(1)BE =CF ;(2)四边形BECF 是平行四边形. 证明:(1)∵BE ⊥AD ,CF ⊥AD , ∴∠AEB =∠DFC =90°. ∵AB ∥CD ,∴∠A =∠D . 在△AEB 和△DFC 中,⎩⎨⎧∠AEB =∠DFC ,AE =DF ,∠A =∠D ,∴△AEB ≌△DFC (ASA). ∴BE =CF .(2)∵BE ⊥AD ,CF ⊥AD , ∴BE ∥CF . 又∵BE =CF ,∴四边形BECF 是平行四边形.3.如图,在▱ABCD 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF ,连接BE ,DF.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°.∴BF =DE ,CF =AE ,∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE ,即∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形.4.(2016·钦州)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF =DE ,连接BF.求证:(1)BF =DC ;(2)四边形ABFD 是平行四边形.证明:(1)∵DE 是△ABC 的中位线, ∴CE =BE.在△DEC 和△FEB 中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB(SAS ). ∴BF =DC.(2)∵DE 是△ABC 的中位线, ∴DE ∥AB ,且DE =12AB.又∵EF =DE , ∴DE =12DF.∴DF =AB. 又∵DF ∥AB ,∴四边形ABFD 是平行四边形.5.如图,已知D ,E ,F 分别在△ABC 的边BC ,AB ,AC 上,且DE ∥AF ,DE =AF ,将FD 延长到点G ,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.解:ED与AG互相平分.理由:连接EG,AD.∵DE∥AF,DE=AF,∴四边形AEDF是平行四边形.∴AE∥DF,AE=DF.又∵FG=2DF,∴DG=DF.∴AE=DG.又∵AE∥DG,∴四边形AEGD是平行四边形.∴ED与AG互相平分.类型2若已知条件出现在四边形的角上,则考虑利用“两组对角分别相等的四边形是平行四边形”6.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.类型3若已知条件出现在对角线上,则考虑利用“对角线互相平分的四边形是平行四边形”7.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC.∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证得OG =OH.∴四边形EGFH 是平行四边形.周周练(18.1)(时间:45分钟 满分:100分)一、选择题(每小题 4分,共32分)1.下面的性质中,平行四边形不一定具有的是(A )A .对角互补B .邻角互补C .对角相等D .对边相等2.平行四边形的周长为24 cm ,相邻两边的差为2 cm ,则平行四边形的各边长为(B )A .4 cm ,8 cm ,4 cm ,8 cmB .5 cm ,7 cm ,5 cm ,7 cmC .5.5 cm ,6.5 cm ,5.5 cm ,6.5 cmD .3 cm ,9 cm ,3 cm ,9 cm3.下列说法错误的是(D)A .对角线互相平分的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等,另一组对边平行的四边形是平行四边形 4.(2017·丽水)如图,在▱ABCD 中,连接AC ,∠B =∠CAD =45°,AB =2,则BC 的长是(C)A. 2B .2C .2 2D .4第4题图 第5题图5.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,E 是BC 的中点,以下说法错误的是(D)A .OE =12DCB .OA =OCC .∠BOE =∠OBAD .∠OBE =∠OCE6.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为(D )A .6B .12C .20D .247.在▱ABCD 中,AD =8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF =2,则AB 的长为(D)A .3B .5C .2或3D .3或58.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是(B )A.②③B.②⑤C.①③④D.④⑤二、填空题(每小题4分,共24分)9.如图所示,在▱ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有4个平行四边形.第9题图第10题图10.(2016·江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.11.(2016·河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是110°.12.在▱ABCD中,AB,BC,CD的长度分别为2x+1,3x,x+4,则▱ABCD的周长是32.13.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件答案不唯一,如:AB=CD(写一个即可),使四边形ABCD是平行四边形.第13题图第14题图14.(2017·河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是8.三、解答题(共44分)15.(10分)(2017·山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.证明:证法一:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF.∵AB∥CD,∴AE∥CF.∴∠E=∠F.又∵∠AOE=∠COF,∴△AOE≌△COF(AAS).∴OE=OF.证法二:连接AF,CE.∵四边形ABCD是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF. ∵AB ∥CD ,∴AE ∥CF.∴四边形AECF 是平行四边形.∴OE =OF.16.(10分)(2016·黄冈)如图,在▱ABCD 中,E ,F 分别是边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H.求证:AG =CH.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC.∴∠HCF =∠GAE.又∵E ,F 分别是边AD ,BC 的中点, ∴AE =FC ,DE =BF.又∵DE ∥BF ,∴四边形BFDE 是平行四边形. ∴∠BED =∠BFD.∴∠AEG =∠CFH. 在△AGE 和△CHF 中,⎩⎨⎧∠GAE =∠HCF ,AE =CF ,∠AEG =∠CFH ,∴△AGE ≌△CHF(ASA ).∴AG =CH.17.(12分)已知:如图,在四边形ABCD 中,AB =CD ,E ,F ,G 分别是AD ,BC ,BD 的中点,GH 平分∠EGF 交EF 于点H.(1)猜想:GH 与EF 间的关系是GH 垂直平分EF ; (2)证明你的猜想.证明:∵E ,G 分别是AD ,BD 的中点, ∴EG =12AB.∵F ,G 分别是BC ,BD 的中点, ∴GF =12CD.∵AB =CD , ∴EG =GF.又∵GH 平分∠EGF , ∴GH 垂直平分EF.18.(12分)如图1,在▱ABCD 中,∠ABC ,∠ADC 的平分线分别交AD ,BC 于点E ,F.(1)求证:四边形EBFD 是平行四边形; (2)小明在完成(1)的证明后继续进行了探索.连接AF ,CE ,分别交BE ,FD 于点G ,H ,得到四边形EGFH.此时,他猜想四边形EGFH 是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE ∥DF ,要证明四边形EGFH 是平行四边形,只需证GF ∥EH .由(1)可证ED =BF ,则AE =FC ,又由AE ∥CF , 故四边形AFCE 是平行四边形,从而可证得四边 形EGFH 是平行四边形.图2证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠ABC =∠ADC ,AD =BC. ∵BE 平分∠ABC ,∴∠ABE =∠EBC =12∠ABC.∵DF 平分∠ADC ,∴∠ADF =∠CDF =12∠ADC.∴∠EBC =∠ADF.∵AD ∥BC ,∴∠AEB =∠EBC. ∴∠AEB =∠ADF. ∴EB ∥DF. 又∵ED ∥BF ,∴四边形EBFD 是平行四边形.18.2特殊的平行四边形18.2.1矩形第1课时矩形的性质01基础题知识点1矩形的性质1.下列性质中,矩形具有但平行四边形不一定具有的是(C)A.对边相等B.对角相等C.对角线相等D.对边平行2.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D)A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD第2题图第3题图3.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是(C) A.8 B.6 C.4 D.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为(B) A.30°B.60°C.90°D.120°第4题图第5题图5.(2017·怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是(A)A.3 cm B.6 cmC.10 cm D.12 cm6.如果矩形的一边长为6,一条对角线的长为10,那么这个矩形的另一边长是8.7.如图,已知矩形的对角线AC与BD相交于点O,若AO=1,则BD=2.第7题图第8题图8.(2016·昆明)如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是24.9.(2016·岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF.求证:BF=CD.证明:∵四边形ABCD为矩形,∴∠B=∠C=90°.∴∠BFE+∠BEF=90°.∵EF ⊥DF ,∴∠DFE =90°.∴∠BFE +∠CFD =90°. ∴∠BEF =∠CFD .在△BEF 和△CFD 中,⎩⎨⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD (ASA).∴BF =CD .知识点2 直角三角形斜边上的中线等于斜边的一半10.如图,在Rt △ABC 中,∠C =90°,AB =10 cm ,D 为AB 的中点,则CD =5cm .第10题图 第11题图11.如图,在Rt △ABC 中,∠ACB =90°,D ,E ,F 分别是AB ,BC ,CA 的中点,若CD =5 cm ,则EF =5cm .12.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,如果ED =5 cm ,求HF 的长.解:由题意得:DE 是△ABC 的中位线, ∴DE =12AC .∵HF 是Rt △AHC 的斜边AC 的中线, ∴HF =12AC .∴HF =DE =5 cm.02 中档题 13.(2016·荆门)如图,在矩形ABCD 中(AD>AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是(B)A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD -DF第13题图 第14题图14.(2016·绵阳)如图,▱ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为(B)A .3 cmB .4 cmC .5 cmD .8 cm15.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE =3∶1,则∠EAC 的度数是(C )A .18°B .36°C .45°D .72°第15题图 第16题图16.(2016·宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB ,BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是(A )A .4.8B .5C .6D .7.2 17.(2017·广西四市同城)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF.(1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形ABCD 的面积.解:(1)证明:∵四边形ABCD 是矩形,∴OA =OC ,OB =OD ,AC =BD ,∠ABC =90°. ∵BE =DF ,∴OE =OF . 在△AOE 和△COF 中,⎩⎨⎧OA =OC ,∠AOE =∠COF ,OE =OF ,∴△AOE ≌△COF (SAS). ∴AE =CF .(2)∵OA =OC ,OB =OD ,AC =BD ,∴OA =OB . ∵∠AOB =∠COD =60°, ∴△AOB 是等边三角形.∴OA =AB =6.∴AC =2OA =12.在Rt △ABC 中,BC =AC 2-AB 2=63,∴S 矩形ABCD =AB ·BC =6×63=36 3.18.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,延长CB 到点E ,使BE =BC ,连接AE.求证:(1)四边形ADBE 是平行四边形;(2)若AB =4,OB =52,求四边形ADBE 的周长.证明:(1)∵四边形ABCD为矩形,∴AD∥BC,AD=BC.又∵BE=BC,且点C,B,E在一条直线上,∴AD∥BE,AD=BE.∴四边形ADBE是平行四边形.(2)∵四边形ABCD为矩形,∴∠BAD=90°,OB=OD.∴BD=2OB=5.在Rt△BAD中,AD=52-42=3.又∵四边形ADBE为平行四边形,∴BE=AD=3,AE=BD=5.03综合题19.如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为.习题解析第2课时矩形的判定01基础题知识点1有一个角是直角的平行四边形是矩形1.下列说法正确的是(D)A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形2.如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形,求证:四边形ADBE 是矩形.解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC.∴∠ADB=90°.又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形.3.(2016·内江)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.解:(1)证明:∵AF∥BC,∴∠AFC=∠FCB.又∵∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS).∴AF=DC.又∵AF=BD,∴BD=DC,即D是BC的中点.(2)四边形AFBD是矩形.证明:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADB=90°.∴四边形AFBD是矩形.知识点2对角线相等的平行四边形是矩形4.能判断四边形是矩形的条件是(C)A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直5.如图,四边形ABCD的对角线AC,BD相交于点O,AD∥BC,AC=BD.试添加一个条件答案不唯一,如:AB ∥CD ,使四边形ABCD 为矩形.6.如图,矩形ABCD 的对角线相交于点O ,点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,请问四边形EFGH 是矩形吗?请说明理由.解:四边形EFGH 是矩形. 理由:∵四边形ABCD 是矩形,∴AC =BD ,AO =CO ,BO =DO.∴AO =CO =BO =DO.∵点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点, ∴EO =FO =GO =HO.∴OE =OG ,OF =OH. ∴四边形EFGH 是平行四边形.又∵EO +GO =FO +HO ,即EG =FH ,∴四边形EFGH 是矩形.知识点3 有三个角是直角的四边形是矩形7.已知O 为四边形ABCD 对角线的交点,下列条件能使四边形ABCD 成为矩形的是(D )A .OA =OC ,OB =OD B .AC =BD C .AC ⊥BDD .∠ABC =∠BCD =∠CDA =90°8.已知:如图,在▱ABCD 中,AF ,BH ,CH ,DF 分别是∠BAD ,∠ABC ,∠BCD ,∠ADC 的平分线.求证:四边形EFGH 为矩形.证明:∵四边形ABCD 是平行四边形, ∴∠DAB +∠ADC =180°.∵AF ,DF 分别平分∠DAB ,∠ADC , ∴∠FAD =∠BAF =12∠DAB ,∠ADF =∠CDF =12∠ADC.∴∠FAD +∠ADF =90°.∴∠AFD =90°. 同理可得:∠BHC =∠HEF =90°. ∴四边形EFGH 是矩形. 02 中档题9.以下条件不能判定四边形ABCD 是矩形的是(D )A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD10.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C =180°;③AC⊥BD;④AC=BD,正确的有(B)A.①②③B.①②④C.②③④D.①③④11.如图,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A)A.2 3 B.3 3C.4 D.4 3第11题图第12题图12.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD 的中点.若AC=8,BD=6,则四边形EFGH的面积为12.13.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.证明:(1)∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.又∵∠B=90°,∴四边形ABCF是矩形.(2)∵四边形ABCF是矩形,∴∠AFC=∠AFD=90°.∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.又∵∠EGA=∠CGF,∴∠DAF=∠EGA.∴EA=EG.14.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)∵在▱ABCD 中,AD =BC ,AB =CD ,AD ∥CB , ∴∠A =∠EBC.在△ABD 和△BEC 中,⎩⎨⎧AB =BE ,∠A =∠EBC ,AD =BC ,∴△ABD ≌△BEC(SAS ).(2)∵在▱ABCD 中,AB ∥ CD ,且AB =BE , BE ∥CD.∴四边形BECD 为平行四边形. ∴OB =12BC ,OE =12ED.∵∠BOD =2∠A =2∠EBC ,且∠BOD =∠EBC +∠BEO ,∴∠EBC =∠BEO.∴OB =OE.∴BC =ED. ∴四边形BECD 是矩形.03 综合题15.如图,在△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC.设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.视频讲解解:(1)证明:∵CF 平分∠ACD ,且MN ∥BD , ∴∠ACF =∠FCD =∠CFO. ∴OF =OC.同理可证:OC =OE. ∴OE =OF.(2)由(1),知∠OCF =∠OFC ,∠OCE =∠OEC , ∴∠OCF +∠OCE =∠OFC +∠OEC.∵(∠OCF +∠OCE)+(∠OFC +∠OEC)=180°, ∴∠ECF =∠OCF +∠OCE =90°. ∴EF =CE 2+CF 2=122+52=13. 又∵OE =OF , ∴OC =12EF =132.(3)当点O 移动到AC 中点时,四边形AECF 为矩形.理由:连接AE ,AF.当点O 移动到AC 中点时,OA =OC ,。
(名师选题)整理八年级数学下册第十八章平行四边形带答案重点归纳笔记单选题1、如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1B.2C.3D.42、菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.4:1B.5:1C.6:1D.7:13、如图,已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值是()A.5B.10C.6D.84、如图,四边形ABCD是矩形纸片,AB=6,对折矩形纸片ABCD,使AD与BC重合,折痕为EF.展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕为BM,再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=3;③△BMG是等边三角形;④EN=3√3;⑤P为线段BM上一动点,H是线段BN上的动点,则PN+PH的最小值是3√3.其中正确结论有()A .①②③⑤B .①②③④C .①③④⑤D .①②③④⑤5、如图,点A ,B 的坐标分别为A(2,0),B(0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .√2+1B .√2+12C .2√2+1D .2√2−126、如图,在矩形ABCD 中,AB =3,BC =5,点E 为CB 上一动点(不与点C 重合),将△CDE 沿DE 所在直线折叠,点C 的对应点C '恰好落在AE 上,则CE 的长是( )A .√2B .1C .2D .√37、图,在△ABC 中,AB =AC ,四边形ADEF 为菱形,O 为AE ,DF 的交点,S △ABC =8√3 ,则S 菱形ADEF =( )A .4B .4√6C .4√3D .4√28、如图,在矩形ABCD 中,AB =4cm ,对角线AC 与BD 相交于点O ,DE ⊥AC ,垂足为E ,AE =3CE ,则DE 的长为( )A.√3cm B.2cmC.2√2cm D.2√3cm9、某街区街道如图所示,其中CE垂直平分AF,AB//CD,BC//DF.从B站到E站有两条公交线路;线路1是B→D→A→E,线路2是B→C→F→E,则两条线路的长度关系为()A.路线1较短B.路线2较短C.两条路线长度相等D.两条线路长度不确定10、如图,平行四边形ABCD的对角线AC,BD相交于点O,添加下列条件仍不能判断四边形ABCD是矩形的是( )A.AB+BC=AC B.AB= AD C.OA= OD D.∠ABC+∠ADC=180°解答题11、如图,四边形ABCD是一个正方形花园,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?请证明你的猜想.12、如图,在矩形ABCD中,AB=15,E是BC上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;BE,点F在DG上,将△ADF沿着AF折叠,点D刚好落在AG上点H处,且CE=45(1)求AD的长;(2)求FG的长13、如图,已知以△ABC的三边为边,在BC的同侧分别作等边三角形ABD、BCE和ACF.(1)求证:四边形ADEF是平行四边形;(2)△ABC满足什么条件时,四边形ADEF是菱形?是矩形?并说明理由;(3)这样的平行四边形ADEF是否总是存在?请说明理由.整理八年级数学下册第十八章平行四边形带答案(二十三)参考答案1、答案:C分析:根据题意作出合适的辅助线,然后逐一分析即可.如图,连接AC、与BD交于点O,连接ME,MF,NF,EN,MN,∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵BE=DF∴OE=OF∵点E、F时BD上的点,∴只要M,N过点O,那么四边形MENF就是平行四边形∴存在无数个平行四边形MENF,故①正确;只要MN=EF,MN过点O,则四边形MENF是矩形,∵点E、F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,MN过点O,则四边形MENF是菱形;∵点E、F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,MN过点O,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C小提示:本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定、解答本题的关键时明确题意,作出合适的辅助线.2、答案:B分析:先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.如图所示:∵四边形ABCD是菱形,菱形的周长为8,∴AB=BC=CD=DA=2,∠DAB+∠B=180°,∵AE=1,AE⊥BC,∴AE=1AB,2∴∠B=30°,∴∠DAB=150°,∴∠DAB:∠B=5:1;故选B.小提示:本题考查菱形的性质.3、答案:A分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、BP,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,则P是AC中点,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴PQ∥AD,而点Q是AB的中点,故PQ是△ABD的中位线,即点P是BD的中点,同理可得,PM是△ABC的中位线,故点P是AC的中点,即点P是菱形ABCD对角线的交点,∵四边形ABCD是菱形,则△BPC为直角三角形,CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故选:A.小提示:本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.4、答案:C分析:①首先根据EF垂直平分AB,可得AN=BN,然后根据折叠的性质,可得AB=BN,据此判断出△ABN为等边三角形,即可判断出∠ABN=60°;②首先根据∠ABN=60°,∠ABM= ∠NBM,求出∠ABM=∠NBM=30°,然后在Rt△ABM中,根据AB=6,求出AM的大小即可;③求出∠AMB=60°,得到∠BMG=60°,根据AD∥BC,求出∠BGM=60°即可;④根据勾股定理求出EN即可;⑤根据轴对称图形的性质得到AP=PN,PN+PH=AH,且当AH⊥BN时,PN+PH最小,应用勾股定理,求出AH的值即可.解:如图,连接AN,∵EF垂直平分AB,∴AN=BN,根据折叠的性质,可得AB=BN,∴AN=AB=BN,∴△ABN为等边三角形,∴∠ABN=60°,∠PBN=1×60°=30°,即结论①正确;2∵∠ABN=60°,∠ABM=∠NBM,∴∠ABM=∠NBM=1×60°=30°,2∴BM=2AM,∵AB=6,AB2+AM2=BM2,∴62+AM2=(2AM)2,解得AM=2√3,即结论②不正确;∵∠AMB=90°-∠ABM=60°,∴∠BMG=∠AMB=60°,∵AD∥BC,∴∠MBG=∠AMB=60°,∴∠BGM=60°,△BMG是等边三角形;即结论③正确;∵BN=AB=6,BN=3,∴EN=√BN2−BE2=√62−32=3√3,即结论④正确;连接AN,∵△ABM与△NBM关于BM轴对称,∴AP=NP,∴PN+PH=AP+PH,∴当点A、P、H三点共线时,AP+PH=AH,且当AH⊥BN时AH有最小值,∵AB=6,∠ABH=60°,∴∠BAH=30°,∴BH=3,∴AH=√AB2−BH2=√62−32=3√3,∴PN+PH的最小值是3√3,即结论⑤正确;故选:C.小提示:此题考查了矩形的性质,轴对称的性质,全等三角形的判定及性质,等边三角形的判定及性质,直角三角形30度角的性质,熟记等边三角形的判定及性质是解题的关键.5、答案:B分析:如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM= ON+MN最大,∵A(2,0),B(0,2),则△ABO为等腰直角三角形,∴AB=√OA2+OB2=2√2,N为AB的中点,∴ON=12AB=√2,又∵M为AC的中点,∴MN为△ABC的中位线,BC=1,则MN=12BC=12,∴OM=ON+MN=√2+12,∴OM的最大值为√2+12故答案选:B.小提示:本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大.6、答案:B分析:由矩形的性质得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'=√AD2−C′D2=4,设CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故选:B.小提示:本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解题的关键.7、答案:CBC,从而得出AE为△ABC 分析:根据菱形的性质,结合AB=AC,得出DF为△ABC的中位线,DF∥BC,DF=12的高,得出BC×AE=16√3,再根据菱形的面积公式,即可得出菱形的面积.解:∵四边形ADEF为菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴∠CEF=∠B,∠DEB=∠C,∵AC=AB,∴∠B=∠C,∴∠CEF=∠B=∠C=∠DEB,∴CF=EF,DE=DB,∴CF=AF,AD=DB,∴DF∥BC,DF=1BC,2∵∠AOD=90°,∴∠AEB=∠AOD=90°,∴AE⊥BC,∵S△ABC=8√3,BC×AE=8√3,∴12即BC ×AE =16√3,∴S 菱形ADEF =12DF ×AE =12×12BC ×AE =14×16√3=4√3,故C 正确. 故选:C .小提示:本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF 为△ABC 的中位线,是解题的关键.8、答案:D分析:由矩形的性质得出OA =OD =OC ,再根据线段垂直平分线的性质得出OD =CD ,最后根据勾股定理计算,即可得到答案.∵四边形ABCD 是矩形,∴OA =12AC ,OD =12BD ,AC =BD ,CD =AB =4cm ,∴OA =OD =OC ,∵DE ⊥AC ,AE =3CE ,AE +CE =2OC∴OE =CE =12OC ,∠DEA =90°, ∴OD =CD =4cm ,∴OC =OD =CD =4cm ,∴OE =CE =12OC =2cm∴DE =√OD 2−OE 2=2√3cm故选:D .小提示:本题考查了矩形、垂直平分线、勾股定理的知识;解题的关键是熟练掌握矩形、垂直平分线的性质,从而完成求解.9、答案:C分析:由于路线1的路程为BD +DA +AE ,路线2的路程为BC +CF +FE ,将问题变为比较它们的大小这一数学问题.解:这两条路线路程的长度一样.理由如下:延长FD交AB于点G.∵BC∥DF,AB∥DC,∴四边形BCDG是平行四边形,∴DG=CB.∵CE垂直平分AF,∴FE=AE,DE∥AG,∴FD=DG,∴CB=FD.又∵BC∥DF,∴四边形BCFD是平行四边形.∴CF=BD.①∵CE垂直平分AF,∴AE=FE,FD=DA.②∴BC=DA.③路线1的长度为:BD+DA+AE,路线2的长度为:BC+CF+FE,综合①②③,可知路线1路程长度与路线2路程长度相等.故选C.小提示:本题是一个图形在交通方面的应用题,解此类图形应用题的关键是建立合理的数学模型,并利用图形知识来解决这一模型,从而解决实际问题.考查线段的垂直平分线的性质,平行四边形判定与性质,中位线等知识.10、答案:B分析:由勾股定理的逆定理证得∠ABC=90°,根据有一个角是直角的平行四边形是矩形可判断A;根据有一组邻边相等的平行四边形是菱形可判断B;根据对角线相等的平行四边形是矩形可判断C;根据有一个角是直角的平行四边形是矩形可判断D.解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴▱ABCD为矩形,故本选项不符合题意;B.∵AB=AD,∴▱ABCD为菱形,故本选项符合题意;C.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴▱ABCD是矩形,故本选项不符合题意;D.∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴▱ABCD为矩形,故本选项不符合题意;故选:B.小提示:本题考查了矩形的判定定理,勾股定理的逆定理,平行四边形的性质,熟练掌握矩形的判定方法是解决问题的关键.11、答案:BE=AF,BE⊥AF,证明见解析分析:根据正方形性质可得,AB=AD=CD,又有DE=CF,因此可以得到AE=DF,因此可以证明得到△BAE≌ADF,从而证明得到BE=AF,∠AEB=∠DFA,根据三角形内角和定理可以得到∠EAO+∠DFA=90°,等量代换即可得到∠EAO+∠AEB=90°,因此证明得到∠AOE =90°,从而证明得到结论.解:猜想BE=AF,BE⊥AF,理由如下:∵四边形ABCD是正方形∴AB=AD=CD,∠D=∠BAD=90°∵DE=CF,∴AD-DE=CD-CF,即AE=DF在△BAE和△ADF中,{AE=DF ∠BAE=∠D AB=AD∴△BAE≌ADF(SAS)∴BE=AF,∠AEB=∠DFA,∵∠D=90°∴∠EAO+∠DFA=90°∴∠EAO+∠AEB=90°∴∠AOE=90°∴BE⊥AF小提示:本题考查了正方形的性质,全等三角形的判定和性质,综合运用知识分析推导结论是本题的关键.12、答案:(1)AD= 9;(2)FG=7.5分析:(1)设CE=4x,则BE=5x,在Rt△CEG和Rt△AGD中,分别求得CG=3x,GD=√152−(9x)2,再利用CG+GD=CD=15,构造方程求得x的值,即可求解;(1)设HF=y,利用S△ADG=S△AFG+S△ADF,构造方程求得y的值,即可求解.(1)∵CE=45BE,∴设CE=4x,则BE=5x,∴BC=AD=CE+ BE=9x,∵△AGE是由△ABE翻折得到的,∴GE= BE=5x,AG=AB=15,在Rt△CEG中,由勾股定理可知:CG=√EG2−EC2=√(5x)2−(4x)2=3x,在Rt△AGD中,由勾股定理可知:GD=√AG2−AD2=√152−(9x)2,∵CG+GD=CD=15,∴3x+√152−(9x)2=15,解得:x=1,AD=9;(2)由(1)知:CG=3,GD=12,设HF=y,∵△AHF是由△ADF翻折得到的,∴HF=DF=y,∵S△ADG=S△AFG+S△ADF,即12DG×AD=12AG×FH+12DF×AD,∴12×9=15y+9y,解得:y=4.5,即DF=4.5,∴FG=CD−CG−DF=15−3−4.5=7.5.小提示:本题考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.13、答案:(1)证明见解析;(2)当AB=AC时,四边形ADEF是菱形,当∠BAC=150°时,四边形ADEF是矩形.理由见解析;(3)不总是存在,理由见解析分析:(1)根据等边三角形的性质得出AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,求出∠DBE=∠ABC,根据SAS推出△DBE≌△ABC,根据全等得出DE=AC,求出DE=AF,同理AD=EF,根据平行四边形的判定推出即可;(2)当AB=AC时,四边形ADEF是菱形,根据菱形的判定推出即可;当∠BAC=150°时,四边形ADEF是矩形,求出∠DAF=90°,根据矩形的判定推出即可;(3)这样的平行四边形ADEF不总是存在,当∠BAC=60°时,此时四边形ADEF就不存在.(1)证明:∵△ABD、△BCE和△ACF是等边三角形,∴AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,∴∠DBE=∠ABC=60°﹣∠EBA,在△DBE和△ABC中{BD=BA∠DBE=∠ABCBE=BC,∴△DBE≌△ABC(SAS),∴DE=AC,∵AC=AF,∴DE=AF,同理AD=EF,∴四边形ADEF是平行四边形;(2)解:当AB=AC时,四边形ADEF是菱形,理由是:∵△ABD和△AFC是等边三角形,∴AB=AD,AC=AF,∵AB=AC,∴AD=AF,∵四边形ADEF是平行四边形,∴四边形ADEF是菱形;当∠BAC=150°时,四边形ADEF是矩形,理由是:∵△ABD和△ACF是等边三角形,∴∠DAB=∠FAC=60°,∵∠BAC=150°,∴∠DAF=90°,∵四边形ADEF是平行四边形,∴四边形ADEF是矩形;(3)解:这样的平行四边形ADEF不总是存在,理由是:当∠BAC=60°时,∠DAF=180°,此时点D、A、F在同一条直线上,此时四边形ADEF就不存在.小提示:本题考查了菱形的判定,矩形的判定,平行四边形的判定,等边三角形的性质,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键.。
知识点1:平行四边形的定义(1)定义:两组对边分别平行的四边形叫做平行四边形。
(2)表示方法:平行四边形用“ ”表示,平行四边形ABCD 记作“ ABCD ”,其中表示顶点的字母要按顺时针或逆时针方向排列。
(3)平行四边形的基本元素:边,角,对角线。
边:邻边:AB 和AD ,AD 和DC ,DC 和BC ,BC 和AB ,共有四对。
对边:AB 和DC ,AD 和BC ,共有两对。
角:邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠DAB 和∠ABC ,共有四对。
对角:∠BAD 和∠BCD ,∠ADC 和∠ABC ,共有两对。
对角线:AC 和BD ,共有两条。
注意:平行四边形的定义既是性质,又是判定。
(1)由定义知平行四边形两组对边分别平行;(2)由定义可以得出只要四边形中两组对边分别平行,那么这个四边形就是平行四边形。
例:如图,已知AB//DE ,EF//BC ,DF//AC ,图中有几个平行四边形?将它们表示出了,并说明理由。
知识点2:平行四边形的性质边:平行四边形的两组对边分别平行且相等。
符号语言:∵四边形ABCD 是平行四边形,∴AD=BC ,AD//BC ,AB=CD ,AB//CD 角:平行四边形的两组对角分别相等,邻角互补 符号语言:∵四边形ABCD 是平行四边形,∴(1)∠BAD=∠BCD ,∠ABC=∠ADC 。
(2)∠ABC+∠BAD=180°,∠ABC+∠BCD=180°,∠BCD+∠ADC=180°,∠ADC+∠BAD=180°。
对角线:平行四边形的对角线互相平行。
符号语言:∵四边形ABCD 是平行四边形,∴OA=OC=AC ,OB=OD=BD例1:如图所示,在平行四边形ABCD 中,过AC 中点O 作直线,分别交AD 、BC 于点E 、F ,求证:△AOE ≌△COF 。
例2:如图所示,四边形ABCD 是平行四边形,DE 平分∠ADC ,交AB 于点E ,BF 平分∠ABC ,交CD 于点F 。
(1)求证:DE=BF(2)连接EF ,写出图中所有的全等三角形。
(不要求证明)例3:如图所示,□ABCD 的对角线相交于点O ,且AB ≠AD ,过点O 作OE ⊥BD ,交BC 于点E ,若△CDE1l 2l1EC的周长为10,则□ABCD 的周长为__________.知识点3:平行线间的距离 (1)平行线间的距离的定义两条平行线中,一条直线上任意一点到另一点直线的距离,叫做这两条平行线之间的距离。
(2)平行线间的垂线段的性质①文字叙述:平行线间的距离处处相等。
②数学语言:如图所示,A ,C 是l 上任意两点。
若l ∥l ,AB ⊥l ,CD ⊥l ,则AB=CD 。
拓展:三种距离之间的区别与联系 两点间的距离:连接两点的线段的长度。
点到直线的距离:点到直线的垂线段的长度。
两条平行线间的距离:两条平行线中,从一条直线上任一点到另一条直线的垂线段的长度。
联系:它们都是指某一条线段的长度。
例:如图所示,在△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 、l 、l 上,且l 、l 之间的距离为2,l 、l 之间的距离为3,则AC 的长是( )A.2 17B.2 5C.4 2D.7知识点4:平行四边形的面积 平行四边形的面积等于它的底(即平行四边形的一条边)和该底上的高的积。
(1)如图①所示,S =BC AE=CD BF 。
(2)同底(等底)同高(等高)的平行四边形面积相等,如图②所示,□ABCD 和□EBCF 有公共边BC ,则S =S 。
例1:如图所示,已知□ABCD ,AB=8cm ,BC=10cm ,∠B=30°,求□ABCD 的面积。
例2:如图所示,已知P 是□ABCD 的对角线BD 上一点,EF ∥BC ,MN ∥AB ,且EF 、MN 相交于点P ,则图中□AEPM 与□PNCF 的面积关系是( A.相等 B. □AEPM 的面积大C. □AEPM 的面积小D.无法确定知识点5:平行四边形的判定BO DA EC FA BD ACD FD BA 1、边:(1)两组对边分别平行的四边形是平行四边形(定义),符号语言:∵AB ∥DC ,AD ∥BC ,∴四边形ABCD 是平行四边形; (2)两组对边分别相等的四边形是平行四边形,符号语言:∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形; (3)一组对边分别平行且相等的四边形是平行四边形,符号语言:∵AB ∥CD 且AB=CD (或AD ∥BC 且AD=BC ),∴四边形ABCD 是平行四边形。
2、角:(4)两组对角分别相等的四边形是平行四边形,符号语言:∵∠ABC=∠ADC ,∠BAD=∠BCD ,∴四边形ABCD 是平行四边形。
3、对角线:(5)对角线互相平分的四边形是平行四边形,符号语言:∵AO=CO ,DO=BO ,∴四边形ABCD 是平行四边形。
例1:四边形ABCD 如图所示,不能判定四边形ABCD 为平行四边形的选项是( )A. AB ∥CD ,AB=CDB. AB=CD ,AD=BCC. AB=CD ,AD ∥BCD. AB ∥CD ,AD ∥BC例2:如图所示,将□ABCD 的对角线BD 向两个方向延长至点E 和点F ,使BE=DF ,求证四边形AECF 是平行四边形。
知识点6:三角形的中位线(1)三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。
几何描述:如图所示,在△ABC 中,点D 、E 、F 分别为边AB 、BC 、CA 的中点,则线段DE 、EF 、FD 是△ABC 的三条中位线。
(2)三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
几何描述:如图所示,在△ABC 中,点D 、E 、F 分别为边AB 、BC 、CA 的中点,则线段DE 、EF 、FD 是△ABC 的三条中位线,故DF ∥BC ,DF= BC ;DE ∥AC ,DE= AC ;EF ∥BA ,EF= BA 。
(3)三角形中位线定理的作用:①证位置关系:可以证明两条直线平行;②证数量关系:可以证明线段的线段或倍分关系。
例:如图所示,□ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为__________.能力点1:运用平行四边形的性质计算例:如图所示,四边形ABCD 为平行四边形,∠A+∠C=80°,□ABCD 的周长为40,且AB-BC=2,求□ABCD 各内角的度数和各边的长。
能力点2:运用平行四边形的性质证明例1:如图所示,在□ABCD 中,AE ∥CF ,AE 与BD 相交于点P ,CF 与BD 相交于点Q , 求证:BP=DQ 。
例2:如图所示,在□ABCD 中,点E 是AB 的中点,连接DE 并延长,交BC 的延长线于点F 。
(1)求证:△ADE ≌△BFE(2)若DF 平分∠ADC ,连接CE ,试判断CE 与DF 的位置关系,并说明理由。
能力点3:平行四边形性质的综合运用例:如图所示,在□ABCD 中,E 为BC 边上一点,且AB=AE. (1)求证:△ABC ≌△EAD(2)若AE 平分∠DAB ,∠EAC=25°,求∠AED 的度数。
能力点4:平行四边形的判定和性质的综合应用DC例:在□ABCD中,∠BAD的平分线交直线B C于点E,交直线DC于点F。
(1)如图所示,证明CE=CF(2)若∠ABC=90°,G是EF的中点,连接DG(如图2),直接写出∠BDG的度数。
能力点5:构造平行四边形解决问题掌握构造平行四边形的两种基本方法:一是作平行线构造平行四边形;二是延长经过中点的某条线段,再顺次连接线段的端点。
例1:如图所示,已知CD是△ABC的中线,CN=MN,求证:AM=CB。
例2:如图所示,四边形ABCD中,AB∥CD,∠ADC=2∠ABC,求证:AB=AD+CD.能力6:三角形的中位线问题由三角形的中位线定理,可直接得到边边之间的数量关系及位置关系。
在有中点条件时,可考虑利用中位线或构造中位线解决问题。
例1:如图所示,已知四边形ABCD的对角线AC、BD相交于点F,M、N分别为AB、CD的中点,MN分别交BD、AC于点P、Q,且∠FPQ=∠FQP。
若BD=10,求线段AC的长。
例2:如图所示,已知AO是△ABC中∠BAC的平分线,BD⊥AO的延长线于D,E是BC的中点。
求证:DE= (AB-AC)。
能力点7:平行四边形探究性问题平行四边形的探究问题形式多样,要根据题目条件特征及具体的问题来选用判定方法及性质来综合解决问题。
例:如图所示,在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC=1cm ,点P ,Q 分别从点A ,C 同时出发,点P 以cm/s 的速度由点A 向点D 运动,点Q 以cm/s 的速度由点C 向点B 运动,几秒后四边形ABQP 是平行四边形? 18.2.1矩形知识点1:矩形的定义有一个角是直角的平行四边形叫做矩形。
用符号语言表示:∵四边形ABCD 为平行四边形,∠A=90°,∴四边形ABCD 是矩形。
例:已知在四边形ABCD 中,AD ∥BC 且AD=BC ,请添加一个条件,使四边形ABCD 成为矩形,加上的条件可以是_____________.知识点2:矩形的性质矩形是特殊的平行四边形,它除了具备平行四边形的所有性质外,还有以下性质: (1)矩形的四个角都是直角。
(2)矩形的对角线相等。
(3)矩形是轴对称图形,它有两条对称轴,分别是过两组对边中点的直线。
例:如图,矩形ABCD 的对角线AC=8cm ,∠AOD=120°,则AB 的长为( )A.cmB.2cmC.2cmD.4cm知识点3:矩形的判定 判定定理1(定义法):有一个角是直角的平行四边形是矩形。
判定定理2:对角线相等的平行四边形是矩形。
判定定理3:有三个角是直角的四边形是矩形。
例:如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE ,求证:四边形BCDE 是矩形。
知识点4:直角三角形斜边上的中线的性质(1) 直角三角形斜边上的中线等于斜边的一半。
(2) 斜边上中线性质的逆命题也是真命题,即如图三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
E例:如图所示,BD ,CE 是△ABC 的高,G ,F 分别是BC ,DE 的中点,试说明GF ⊥DE 。
能力点1:矩形性质的应用 根据矩形的性质、等腰三角形的性质等,经过简单的计算、推理,求线段长及角的度数或是证明线段(或角)相等。