对数运算及其对数函数
- 格式:doc
- 大小:262.00 KB
- 文档页数:16
对数与对数函数 知识梳理1、对数式log a N 可看作一记号,表示底为a (a >0,且a ≠1),幂为N 的指数工表示方程xa N =(a >0,且a ≠1)的解. 也可以看作一种运算,即已知底为a (a >0,且a ≠1)幂为N ,求幂指数的运算. 因此,对数式log a N 又可看幂运算的逆运算.为a >0,a ≠1时,log x N a a N x =⇔= 【扩展】两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为ln N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即lg1002=.说明:在例1中,10log 0.010.01,log 10ln10e 应改为lg 应改为. 2、对数的运算法则如果a >0且a ≠1,M >0,N >0,那么:(1)log log log a a a MN M N =+ (2)log log log aa a MM N N=- (3)log log ()n a a M n Mn R =∈3、画出函数2log xy =的图象, 再利用电脑软件画出0.5log .x y =的图象42-2-4-55探究:选取底数(a a >0,且a ≠1)的若干不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,你能发现它们有哪些特征吗?画出4log y x =,3log y x =,13log y x =和14log y x =提问:通过函数的图象,你能说出底数与函数图象的关系吗?函数的图象有何特征,性质又如何?先由学生讨论、交流,教师引导总结出函数的性质. (投影) 图象的特征函数的性质(1)图象都在y 轴的右边 (1)定义域是(0,+∞) (2)函数图象都经过(1,0)点 (2)1的对数是0(3)从左往右看,当a >1时,图象逐渐上升,当0<a <1时,图象逐渐下降 .(3)当a >1时,log xa y =是增函数,当0<a <1时,log a y x =是减函数. (4)当a >1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0. 当0<a <1时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0 .(4)当a >1时x >1,则log a x >00<x <1,log a x <0 当0<a <1时x >1,则log a x <00<x <1,log a x <0由上述表格可知,对数函数的性质如下(先由学生仿造指数函数性质完成,教师适当启发、引导):a >10<a <1图象性 质(1)定义域(0,+∞); (2)值域R ; (3)过点(1,0),即当x =1,y =0; (4)在(0,+∞)上是增函数在(0,+∞)是上减函数精讲精练(1)对数运算的例题【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=;(4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例2】求证:(1)log n a a n =; (2)log log log a a a MM N N-=.【例3】试推导出换底公式:log log log c a c bb a= (0a >,且1a ≠;0c >,且1c ≠;0b >).【例4】化简与求值:(1)221(lg 2)lg2lg5(lg 2)lg212++-+ ;(2)2log (4747)++-.【例5】若2510a b ==,则11a b+= . (教材P 83 B 组2题) 【例6】 (1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 .【例7】(1)化简:532111log 7log 7log 7++;(2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅= ,求实数m 的值.(2)对数函数图象和性质的例题【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.【例2】求下列函数的定义域:(1)2log (35)y x =-;(2)0.5log (4)3y x =-.【例3】已知函数()log (3)a f x x =+的区间[2,1]--上总有|()|2f x <,求实数a 的取值范围.【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.【例5】讨论函数0.3log (32)y x =-的单调性.【例6】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<【例7】指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象有何关系?课堂作业(1)对数幂的运算1. 将下列指数式与对数式互化,有x 的求出x 的值 .(1)12155-=(2)42log x = (3)1327x =(4)1()644x= (5)lg0.0001x = (6)5ln e x =2.求log log log ,a b c b c Na⋅⋅∈+的值(a,b,c R 且不等于1,N >0).3.计算331log log 5533+的值.4、判断下列式子是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有(1)log log log ()a a a x y x y ⋅=+ (2)log log log ()a a a x y x y -=-(3)log log log aa a xx y y=÷ (4)log log log a a a xy x y =- (5)(log )log n a a x n x = (6)1log log a a x x=- (7)1log log n a a x x n=5. 用log a x ,log a y ,log a z 表示出(1)(2)小题,并求出(3)、(4)小题的值.(1)log a xyz =____________; (2)23log 8a x y =______________________;(3)75log (42)z ⨯=______________; (4)5lg 100=_____________________; 6. 已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a - 7、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 8、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -9、如果方程2lg (lg5lg7)lg lg5lg70x x +++= 的两根是,αβ,则αβ 的值是( )A 、lg5lg 7B 、lg 35C 、35D 、351 10、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B 、123 C 、122 D 、13311. 若2log 2,log 3,m n a a m n a +=== 。
§2.2.1 对数与对数运算(一)¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例2】计算下列各式的值:(1)lg0.001; (2)4log 8; (3).第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. C. D. 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:= ; 6lg 0.1= .※能力提高8.求下列各式的值:(1)8; (2)9log9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例2】若2510a b ==,则11a b+= .【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.). A. 1B. -1C. 2D. -2 2.25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3log 1的结果是( ). A.12B. 1C. 24.已知32()log f x x =, 则(8)f 的值等于( ). A. 1 B. 2 C. 8 D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg 2lg50+⋅= .7.若3a =2,则log 38-2log 36= .第16讲 §2.2.2 对数函数及其性质(一)¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.【例2】求下列函数的定义域:(1)y =(2)y =【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).AC3.下列函数中哪个与函数y =x 是同一个函数( )A.log (0,1)a xy aa a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y4.函数y ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2] 5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<<6.函数y = . (用区间表示)7.比较两个对数值的大小:ln7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()3log 1f x x =++; (2)y =9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.第17讲 §2.2.2 对数函数及其性质(二)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称 B. x 轴对称 C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ).A.2B. 2C. 22D. 44.图中的曲线是log a y x =的图象,已知a 的值为2,43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.2,43,15,310 B. 2,43,310,15 C. 15,310,43,2 D. 43,2,310,155.下列函数中,在(0,2)上为增函数的是( ). A. 12log (1)y x =+ B. 22log 1y x =- C. 21log y x= D.20.2log (4)y x =-6. 函数2()lg(1)f x x x =+-是 函数. (填“奇”、“偶”或“非奇非偶”)7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.0 x C 1C 2C 4C 3 1y第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象. 2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性.解:设y x α=,代入点(27,3),得327α=,解得13α=,所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<< C .10,1n m -<<> D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已知到今年为止,平改坡剩余面积为原来的22. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年? (3)若通过技术创新,至少保留24a m 的老房子开辟新的改造途径. 今后最多还需平改坡多少年? 解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则2(1)2na x a -=,即110211()()22n=,解得n =5.所以,到今年为止,该工程已经进行了5年.(3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数. 体现了代入法、方程思想等数学方法的运用.第18练 §2.3 幂函数※基础达标1.如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 122.下列函数在区间(0,3)上是增函数的是( ).A. 1y x =B. 12y x = C. 1()3x y = D. 2215y x x =--3.设120.7a =,120.8b =,c 3log 0.7=,则( ).A. c <b <aB. c <a <bC. a <b <cD. b <a <c4.如图的曲线是幂函数n y x =在第一象限内的图象. 已知n 分别取2±,12±四个值,与曲线1c 、2c 、3c 、4c 相应的n 依次为( ).A .112,,,222-- B. 112,,2,22--C. 11,2,2,22--D. 112,,,222--5.下列幂函数中过点(0,0),(1,1)的偶函数是( ).A.12y x =B. 4y x =C. 2y x -=D.13y x = 6.幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 . 7.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新4251c 4c 3c 2c 110.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x -=;⑧ 53y x =. 第19讲 第二章 基本初等函数(Ⅰ) 复习¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a++++-=-0==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 【例2】已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x xe af x a e =+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x xe af x a e =+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a ---+--=⇒-+-10()()0x x a e e a-=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =--∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数xy a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈.(2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%. 由1854.8(1)y x =⨯+%≤66.8, 解得1866.8100(1) 1.154.8x ≤⨯-≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.第19练 第二章 基本初等函数(Ⅰ) 复习※基础达标 1.(06年全国卷II.文2理1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( ).A. ∅B. {}|03x x <<C. {}|13x x <<D. {}|23x x << 2.(08年北京卷.文2)若372log πlog 6log 0.8a b c ===,,,则( ).A. a b c >>B. b a c >>C. c a b >>D. b c a >>3.(05年福建卷)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A. 1,0a b >< B. 1,0a b >> C. 01,0a b <<> D. 01,0a b <<<4.(06年广东卷)函数23()lg(31)1x f x x x=++-的定义域是( ).A.1(,)3-+∞B. 1(,1)3-C. 11(,)33-D. 1(,)3-∞-5.(06年陕西卷)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( ).A. 3B. 4C. 5D. 66.(06年辽宁卷.文14理13)设,0(),0x e x g x lnx x ⎧≤=⎨>⎩,则1(())2g g = .7.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .※能力提高8.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数. 求,a b 的值.9.已知函数y =24log log 42x x(2≤x ≤4). (1)求输入x =234时对应的y 值; (2)令2log t x =,求y 关于t 的函数关系式及t 的范围.※探究创新10.设121()log 1axf x x -=-为奇函数,a 为常数. (1)求a 的值; (2)证明()f x 在区间(1,+∞)内单调递增;(3)若对于区间[3,4]上的每一个x 值,不等式()f x >1()2x m +恒成立,求实数m 的取值范围.。
对数运算与对数函数在数学的广袤世界里,对数运算与对数函数就像隐藏在迷雾中的神秘宝藏,等待着我们去探索和发现。
它们不仅是数学理论中的重要组成部分,更在实际生活和科学研究中有着广泛而深刻的应用。
让我们先从对数运算说起。
对数运算其实就是一种数学运算方式,它是指数运算的逆运算。
想象一下,如果有一个等式 a^b = N,那么对数运算就是要找出 b 的值,我们记为logₐN = b。
比如说,2³= 8,那么 log₂8 = 3。
这就像是在解一个谜题,已知结果和底数,要找出指数。
为什么要有对数运算呢?这是因为在很多实际问题中,直接处理指数形式的数量关系可能会非常困难,但通过对数运算,就能将复杂的问题简单化。
例如,在测量声音强度时,我们使用的单位是分贝(dB),而分贝的计算就涉及到对数运算。
再来说说对数的一些基本性质。
首先是对数的乘法法则:logₐ(MN) =logₐM +logₐN。
这意味着,如果要计算两个数的乘积的对数,就可以转化为这两个数的对数的和。
同样,还有除法法则:logₐ(M/N) =logₐM logₐN。
而对数函数则是基于对数运算构建起来的一类函数。
常见的对数函数形式为 y =logₐx,其中 a 被称为底数,且 a > 0 且a ≠ 1。
当 a > 1时,对数函数是单调递增的;当 0 < a < 1 时,对数函数是单调递减的。
对数函数的图像具有一些独特的特征。
以底数 a > 1 为例,函数图像经过点(1, 0),并且逐渐向右上方延伸,越来越陡峭。
而当 0 < a <1 时,图像经过点(1, 0),逐渐向右下方延伸,变得越来越平缓。
对数函数在解决实际问题中发挥着巨大的作用。
比如在金融学中,计算复利增长;在物理学中,描述某些自然现象的变化规律;在计算机科学中,分析算法的时间复杂度等等。
举个简单的例子,假设你在银行存了一笔钱,年利率为 r,经过 t年后,本金和利息的总和 A 与初始本金 P 之间的关系可以表示为 A =P(1 + r)^t。
对数的计算以及对数函数的基本性质1.对数与对数运算 (1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N=,其中a 叫做底数,N 叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式:log 10a =,log 1a a =,log ba ab =. (3)常用对数与自然对数 常用对数:lg N ,即10log N; 自然对数:ln N ,即log e N(其中 2.71828e =…).(4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 2.对数函数及其性质 定义:函数log (0a y x a =>且1)a ≠叫做对数函数图象:定义域:(0,)+∞ 值域:R 过定点:图象过定点(1,0),即当1x =时,0y =.1 xy O1xyO奇偶性:非奇非偶 单调性:在(0,)+∞上是增函数1a >;在(0,)+∞上是减函数01a <<; 函数值的变化情况:log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<变化对图象的影响:在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. 判断技巧:指数函数令1=x 得到第一象限内底大图上;对数函数令1=y 得到第一象限底大图下。
1.对数的概念如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。
即指数式与对数式的互化:log ba aN b N =⇔=2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。
自然对数:通常将以无理数 2.71828e =⋅⋅⋅为底的对数叫做自然对数,记作ln N 。
3.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈,则log a = 。
⑷log a N a N =2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的. 推广:⑴1log log a b b a=⑵log log log log a b c a b c d d =, ⑶1log log n a a M M n =,则log na m M = 。
特别地:log log 1a b b a =知识要点对数运算与对数函数【例1】 求下列各式中x 的取值范围。
(1)2log (5)x +(2)1log (10)x x --【例2】 将下列指数式化为对数式,对数式化为指数式。
(1) 1642= (2) 9132=- (3) 481log 3=(4) 6125log -=a (5)lg0.0013=-; (6)ln100=4.606【例3】 计算(1)lg 4lg 25+ (2)22log 24log 6-(3)531log ()3(4) 001.0lg (5)e1ln (6)1lg【巩固1】3log =2log =(2log (2= 21log 52+=【巩固2】). A. 1 B. -1 C. 2 D. -2【巩固3】计算2(lg5)lg 2lg50+⋅= .知识要点【例4】 (1)(2 。
对数与对数函数一、相关知识点1.对数的定义:如果()1,0≠>=a a N a x 且,那么数x 叫做以a 为底,N 的对数,记作N x a log =,其中a 叫做对数的底数,N 叫做真数。
2.几种常见对数(1)()1,0≠>a a 且①01log =a ; ②1log =a a ; ③N a Na =log ; ④N a N a =log .(两个对数恒等式) (2)对数的重要公式:①换底公式:()0,1,log log log >=N b a b aN aNb均为大于零且不等于;②abba log 1log =,推广:da d c cb b a log log log log =⋅⋅. (3)对数的运算法则:如果0,0,1,0>>≠>N M a a 且,那么 ①()Na M a MN aloglog log += ; ②NaM a N Malog log log -=; ③()R n n MaM a n∈=log log ;④b a b a mnnm log log = . 3.反函数,只需了解:指数函数xa y =与对数函数xa y log =互为反函数,它们的图象关于直线x y =对称。
题型一:对数的化简和求值1.计算:(1)2110025lg 41lg ÷⎪⎭⎫ ⎝⎛-;(2)32log 2450lg 2lg 5lg +⋅+;(3)()232031027.0252lg 3.0lg 21000lg 8lg 27lg --⎪⎭⎫⎝⎛-⨯+-++-+;(4)()222lg 20lg 5lg 8lg 325lg +++. 2.已知()[]0lg log log 25=x ,求x 的值.3.已知0>a ,且1≠a ,m a =2log ,n a =3log ,求nm a +2的值能力提高:(1).设m ba==52,且211=+ba ,则=m ; (2).若632==b a ,求证:c b a 111=+题型二:(1)对数函数的基本性质题型一:基本性质1.函数()()223lg +-=x x f 恒过定点_______________________2.如果0log log 2121<<y x ,那么()(A)1<<x y ; (B)1<<y x ;(C)y x <<1; (D)x y <<1.3.已知()x x f a log =,()x x g b log =,()x x r c log =,()x x h d log =的图象如图所示则a ,b ,c ,d 的大小为A.b a d c <<<;B.a b d c <<<;C.b a c d <<<;D.d c b a <<<4.若函数()⎪⎩⎪⎨⎧<⎪⎭⎫⎝⎛+≥=)()(4214log 2x x f x x x f ,则⎪⎭⎫⎝⎛23f 的值是( ) A.21; B.1; C.23; D.2 5.若点()b a ,在x y lg =图像上,1≠a ,则下列点也在此图像上的是()A.⎪⎭⎫⎝⎛b a ,1;B. ()b a -1,10;C.⎪⎭⎫⎝⎛+1,10b a ; D.()b a 2,2. 6.函数()()13log 2+=xx f 的值域为7.为了得到函数103lg+=x y 的图像,只需把函数x y lg =的图像上所有的点( ) A.向左平移3个单位长度,再向上平移1个单位长度; B.向右平移3个单位长度,再向上平移1个单位长度; C.向左平移3个单位长度,再向下平移1个单位长度; D.向右平移3个单位长度,再向下平移1个单位长度.8.若函数()()()101≠>--=a a a a k x f xx且在R 上既是奇函数,又是减函数()()k x x g a +=log 的图象是( )9.对于函数()x f 定义域中任意的()2121,x x x x ≠,有如下结论: ①()()()2121x f x f x x f ⋅=+; ②()()()2121x f x f x x f +=⋅; ③()()02121>--x x x f x f ; ④()()222121x f x f x x f +<⎪⎭⎫ ⎝⎛+. 当()x x f lg =时,上述结论中正确结论的序号是. 能力提高:1.已知函数()22log 21+-=a y x 的值域是R ,求a 的取值范围.2.已知函数()()1log 22++=ax ax x f 的定义域为全体实数,求a 的取值范围.3.已知函数()()1log 22++=ax axx f 的值域域为全体实数,求a 的取值范围。
对数运算和对数函数要求层次重难点对数的概念及其运算性质B 理解对数的概念掌握当底数1a >与01a <<时,对数函数的不同性质掌握对数函数的概念、图象和性质;能利用对数函数的性质解题换底公式 A 对数函数的概念 B 对数函数的图象和性质C 指数函数xy a =与对数函数log a y x =互为反函数(0a >且1a ≠)B<教师备案>本讲的内容为对数和对数函数,关于对数的历史,在后面的小故事中有所体现,还有一部分可称为前转:“给我空间、时间和对数,我可以创造一个宇宙”,这是16世纪意大利著名学者伽利略的一段话.从这段话可以看出,伽利略把对数与宝贵的空间和时间相提并论.对数的发展绝非一人之功.首先要提到的是16世纪瑞士钟表匠标尔基,当他结识了天文学家开普勒,看到开普勒每天与天文数字打交道,数字之大、计算量之繁重,真的难以想象,于是便产生了简化计算的想法.从16031611年,标尔基用了八年的时间,一个数一个数的算,造出了一个对数表,这个对数表帮了开普勒的大忙.开普勒认识到了对数表的使用价值,劝标尔基赶快把对数表出版,标尔基认为这个对数表还过于粗糙,一直没下决心出版.正在标尔基犹豫不决的时候,1614年6月在爱丁堡出版了苏格兰纳皮尔男爵所造的题为《奇妙的对数表的说明》一书,这个对数表的出版震动了整个数学界.“对数”一词是纳皮尔首先创造的,意思是“比数”.他最早用“人造的数”来表示对数.俄国著名诗人莱蒙托夫是一位数学爱好者,传说有一次他在解答一道数学题时,冥知识框架例题精讲高考要求第5讲 对数运算和对数函数思苦想没法解决,睡觉时做了一个梦,梦中一位老人揭示他解答的方法,醒后他真的把此题解出来了,莱蒙托夫把梦中老人的像画了出来,大家一看竟是数学家纳皮尔,这个传说告诉我们:纳皮尔在人们心目中的地位是多么的高.(一)知识内容<教师备案>在指数函数x y a =中,对于每个y +∈R ,存在唯一的x 与之对应,幂指数x 叫做以a 为底的y 的对数,这样从y 到x 的对应是指数运算的一个相反运算,让同学思考由函数的定义,判断这是否可以定义一种新的函数?这种运算和对应的函数有什么样的性质呢?1.对数:一般地,如果x a y =(0a >,且1)a ≠,那么数x 叫做以a 为底y 的对数,记作log a x y =,其中a 叫做对数的底数,y 叫做真数.关系式axy指数式 x a y =底数(0,1)a a >≠ 指数(R)x ∈ 幂(值)(R )y +∈对数式 log a y x = 底数(0,1)a a >≠ 对数(R)x ∈ 真数(R )y +∈ 对数恒等式及对数的性质,对数log (0,1)a N a a >≠满足: ⑴零和负数没有对数; ⑵1的对数是零,即log 10a =; ⑶底的对数等于1,即log 1a a =.2.常用对数:通常将以10为底的对数叫做常用对数,并把10log N 记为lg N .3.自然对数:在科学技术中常使用以无理数 2.71828e =为底的对数,以e 为底的对数称为自然对数,并且把log e N 记为ln N .4.对数与指数间的关系:当0,1a a >≠时,log x a a N x N =⇔=.5.指数和对数的互化:log b a a N N b =⇔=.N a N a =log ,log N a a N =(二)主要方法:1.重视对数的概念,应用基础概念解决具体问题2.熟练运用指数和对数的互化板块一:对数的定义和相关概念(三)典例分析:【例1】 ⑴将下列指数式化为对数式,对数式化为指数式:①45625=;②61264-=;③1 5.733m⎛⎫= ⎪⎝⎭;④12log 164=-;⑤lg0.012=-;⑥ln10 2.303=.⑵求下列各式中x 的值:①642log 3x =-;②log 86x =;③lg100x =;④2ln e x -=.【例2】 将下列对数式写成指数式:(1)416log 21-=;(2)2log 128=7;(3)lg0.01=-2;(4)ln10=2.303【例3】 ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345(一)知识内容1.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈ ⑷1log log naa N N n=(正数幂的对数,等于幂指数乘以同一底数幂的底数的对数) <教师备案>以性质⑴为例进行证明如下: 已知log a M ,log a N (M 、0N >),求log ()a MN 设log a M p =,log a N q =,根据对数的定义,可得p M a =,q N a = 由p q MN a a =⋅p q a +=∴log ()log log a a a MN p q M N =+=+2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) <教师备案>证明: 法一:根据指数的运算性质推导 设log b N x =,则x b N =.两边取以a 为底的对数,得log log a a x b N =, 所以log log a a N x b =,即log log log a b a NN b=. 法二:根据对数恒等式及对数的运算性质推导由对数恒等式得:log log log log ()log bN b a a a N b b N ⋅==,所以有log log log a b a NN b=. 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的.<教师备案>常见错误:log ()log log a a a M N M N ±=±;log ()log log a a a MN M N =⋅;log log log a aa MM N N=. 3.关于对数的恒等式板块二:对数的运算性质和法则①log a N a N =②log n a a n =③1log log a b b a=④log log n n a a M M = ⑤log log log log a b a b M MN N=(二)主要方法1.解决与对数函数有关的问题,要特别重视定义域;2.解决对数不等式、对数方程时,要重视考虑对数的真数、底数的范围;3.对数不等式的主要解决思想是对数函数的单调性.(三)典例分析【例4】 求下列各值:⑴221log 36log 32-;⑵log ;⑶lg1;⑷3log 53;⑸3log 59;⑹3log 3;⑺;⑻22(lg5)lg 2lg 25(lg 2)+⋅+;⑼827log 9log 32⋅.【例5】 求值:⑴2572lg3lg7lg lg 94++-;⑵32516log 4log 9log 5⋅⋅.【例6】 若a 、0b >,且a 、1b ≠,log log a b b a =,则A.a b =B.1a b=C.a b =或1a b=D.a 、b 为一切非1的正数【例7】 ⑴8log 3p =,3log 5q =,那么lg5等于______(用p ,q 表示);⑵知18log 9a =,185b =,用,a b 表示36log 45.【点评】⑴换底公式的一个重要应用:log log 1m n n m ⋅=⑵181818log 2log 9=,将未知转化为已知,是对数函数运算性质的重要应用. 【例8】 已知2log 3a =,37b =,求12log 56【例9】 已知lg5m =,lg3n =,用,m n 表示30log 8.【例10】 已知(0,0,1)ab m a b m =>>≠且log m b x =,则log m a 等于A.1x -B.1x +C.1xD.1x -【例11】 已知12()x f x a-=,且(lg )f a =a 的值.【例12】 下列各式中,正确的是A.2lg 2lg x x =B.1log log a a x n =C.log log log a a a x xy y=1log 2a x =【例13】 已知2(3)log (3)1x x x ++=,求实数x 的值.【例14】 设a 为实常数,解关于x 的方程)lg()3lg()1lg(x a x x -=-+-.1.对数函数:我们把函数log (0a y x a =>且1a ≠)叫做对数函数,其中x 是自变量,函数的定义域是(0,)+∞,值域为实数集R .2.对数函数的图象和性质:一般地,对数函数log (0a y x a =>且1a ≠)的图象和性质如下表所示:01a <<1a >图象定义域 (0,)+∞值域 R性质⑴过定点(1,0),即1x =时,0y =⑵在(0,)+∞上是减函数; (2)在(0,)+∞上是增函数.<教师备案>因为对数函数与指数函数密切相关,所以在学习对数函数的概念、图象与性质时,要处处与指数函数相对照.如:指数函数的值域(0,)+∞,变成了对数函数的定义域;而指数函数的定义域为实数集R ,则变成了对数函数的值域;同底的指数函数与对数函数的图象关于直线y x =对称等.y=log a x (0<a <1)O 1yx y=log a x (a >1)O 1yx板块三:对数函数【例15】 求下列函数的定义域:⑴2log a y x =;⑵log (4)a x -;⑶y .【例16】 求下列函数的定义域:⑴31log (32)y x =-;⑵1log (3)x y x -=-.【例17】 已知()log (1)x a f x a =-(0,a >且1)a ≠,⑴求()f x 的定义域; ⑵讨论函数()f x 的单调性;【例18】 求函数)(log )1(log 11log )(222x p x x x x f -+-+-+=的定义域和值域.【例19】 函数2lg(20)y x x =-的值域是A.y >0B.y ∈RC.y >0且y ≠1D.y ≤2【例20】 已知函数2()lg[2(1)94]f x mx m x m =++++,⑴若此函数的定义域为R ,求实数m 的取值范围;⑵若此函数的值域为R ,求实数m 的取值范围.【点评】本题涉及到解一元二次不等式的解法,可根据学生情况进行讲解.【例21】 已知函数18log )(223+++=x nx mx x f 的定义域为R ,值域为[0,2],求m ,n 的值.【例22】 下面结论中,不正确的是A.若a >1,则x a y =与x y a log =在定义域内均为增函数B.函数x y 3=与x y 3log =图象关于直线x y =对称C.2log a y x =与2log a y x =表示同一函数D.若01,01a m n <<<<<,则一定有log log 0a a m n >>【例23】 已知),,)(lg()(为常数b a b a x f xx-=①当a ,b >0且a ≠b 时,求f (x )的定义域;②当a >1>b >0时,判断f (x )在定义域上的单调性,并用定义证明【例24】 在函数10(log <<=a x y a ,)1≥x 的图象上有A ,B ,C 三点,它们的横坐标分别是t ,t +2,t +4,(1)若△ABC 的面积为S ,求S =f (t ); (2)判断S =f (t )的单调性; (3)求S =f (t )的最大值.【例25】 已知函数22log )(+-=x x x f a的定义域为[],αβ,值域为[]log (1),log (1)a a a a βα--,且)(x f 在[],αβ上为减函数. (1)求证α>2; (2)求a 的取值范围.【例26】 对于212()log (23)f x x ax =-+,⑴函数的“定义域为R ”和“值域为R ”是否是一回事;⑵结合“实数a 取何值时,()f x 在[1)-+∞,上有意义”与“实数a 取何值时,函数的定义域为(1)(3)-∞+∞,,”说明求“有意义”问题与求“定义域”问题的区别.⑶结合⑴⑵两问,说明实数a 的取何值时()f x 的值域为(1]-∞-,.【例27】 ⑷实数a 取何值时,()f x 在(1]-∞,内是增函数.⑸是否存在实数a ,使得()f x 的单调递增区间是(1]-∞,,若存在,求出a 的值;若不存在,说明理由.【点评】该题主要考察复合对数函数的定义域、值域以及单调性问题.解题过程中遇到了恒成立问题,“恒为正”与“取遍所有大于零的数”不等价,同时又考察了一元二次函数函数值的分布情况,解题过程中结合三个“二次”的重要结论来进行处理.【例28】 比较下列各组数的大小:⑴2log 3.4,2log 8.5;⑵0.3log 1.8,0.3log 2.7;⑶log 5.1a ,log 5.9a (0,a >且1)a ≠;⑷20.3,2log 0.3,0.32.【点评】利用对数函数的性质比较大小的题,一般都可以通过对数函数的单调性,通过直接比较、中间值法或者图象法得到相关结论.如:设110a <<,比较2lg a ,2(lg )a ,lg(lg )a 的大小.1100lg 1a a <<⇒<<,于是22lg(lg )0(lg )lg a a a <<<.【例29】 设2(log )2(0)x f x x =>,则f (3)的值是A.128B.256C.512D.8【例30】 a 、b 、c 是图中三个对数函数的底数,它们的大小关系是A.c >a >bB.c >b >aC.a >b >cD.b >a >c【例31】 (2005年天津文) 已知111222log log log b a c <<,则()A.222b a c >>B.222a b c >>C.222c b a >>D.222c a b >>【例32】 如果02log 2log <<b a ,那么a ,b 的关系及范围.【例33】 ⑴若log 2log 20a b <<,则()A.01a b <<<B.01b a <<<C.1a b >>D.1b a >> ⑵已知2log 13a <,求a 的取值范围.【点评】在上面的对数函数图象中,共有四条对数函数log a y x =,底数a 的大小比较可以通过作一条直线:1y =,于四条曲线分别交于点1234,,,P P P P ,易知,这四点的横坐标即对应相应的底数的值,故比较这四点的横坐标即可.【例34】 已知函数()1log 3x f x =+,()2log 2x g x =,⑴试比较函数值()f x 与()g x 的大小;⑵求方程|()()|()()4f x g x f x g x -++=的解集.【例35】 函数log a y x =在[2,)x ∈+∞上恒有||1y >,求a 的范围.【例36】 已知a >0,a ≠1,10<<x ,比较|)1(log |x a +和|)1(log |x a -的大小.【例37】 若23log 1a <,则a 的取值范围是 A.203a <<B.23a >C.213a <<D.203a <<或a >1【例38】 若关于23lg lg )lg(=--x a x 至少有一个实数根,则求a 的取值范围.【例39】 设a ,b 为正数,若lg()lg()10ax bx +=有解,则求b a 的取值范围.【例40】 如果2112222log (1)log 2a a a a +++≤,求a 的取值范围.【例41】 已知}2)385(log |{2>+-=x x x A x ,24{|210}B x x x k =-+-≥,要使A B ,求实数k 的取值范围.【例42】 设正数a ,b ,c 满足222c b a =+. (1)求证:1)1(log )1(log 22=-++++bc a a c b ; (2)又设1)1(log 4=++a c b ,32)(log 8=-+c b a ,求a ,b ,c 的值.【例43】 (1)已知0(2log log >=+a y x a a ,)1≠a ,求yx 11+的最小值. (2)已知2052=+y x ,求y x lg lg +的最大值.(3)已知4422=+y x ,求xy 的最大值.【例44】 解方程)12(log 2)22(log 212+=++x x。
对数运算及其对数函数一.选择题(共22小题)1.log42﹣log48等于()A.﹣2 B.﹣1 C.1 D.22.计算:(log43+log83)(log32+log92)=()A.B.C.5 D.153.计算(log54)•(log1625)=()A.2 B.1 C.D.4.计算:log43•log92=()A.B.C.4 D.65.计算4log6+log64的结果是()A.log62 B.2 C.log63 D.36.(log29)•(log34)=()A.B.C.2 D.47.如果lg2=m,lg3=n,则等于()A.B.C.D.8.若3a=2,则log38﹣2log36的值是()A.a﹣2 B.3a﹣(1+a)2C.5a﹣2 D.3a﹣a29.设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a10.函数f(x)=log(x2﹣2x﹣3)的单调递增区间是()A.(﹣∞,﹣1)B.(﹣∞,1)C.(1,+∞)D.(3,+∞)11.若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b12.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a13.设a=log37,b=21.1,c=0.83.1,则()A.b<a<c B.c<a<b C.c<b<a D.a<c<b14.函数y=的值域是()A.R B.[8,+∞)C.(﹣∞,﹣3] D.[3,+∞)15.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c16.若函数y=f(x)的定义域是[﹣1,1],则函数y=f(log2x)的定义域是()A.[﹣1,1] B.C.D.[1,4]17.设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.418.函数y=log a(|x|+1)(a>1)的图象大致是()A. B. C.D.19.函数y=log a(x﹣1)(0<a<1)的图象大致是()A. B.C.D.20.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1 21.已知函数f(x)=ln(﹣x2﹣2x+3),则f(x)的增区间为()A.(﹣∞,﹣1)B.(﹣3,﹣1)C.[﹣1,+∞)D.[﹣1,1)22.已知函数f(x)=㏒(x2﹣ax﹣a)的值域为R,且f(x)在(﹣3,1﹣)上是增函数,则a的取值围是()A.0≤a≤2 B.﹣≤a≤﹣4 C.﹣4<a<0 D.a<0评卷人得分二.填空题(共7小题)23.方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.24.lg0.01+log216的值是.25.计算:log2= ,2= .26.= .27.求值:2log3+log312﹣0.70+0.25﹣1= .28.函数f(x)=的值域为.29.函数y=2x+log2x在区间[1,4]上的最大值是.评卷人得分三.解答题(共2小题)30.计算:(I)(2)+0.2﹣2﹣π0+();(Ⅱ)log3(9×272)+log26﹣log23+log43×log316.31.不用计算器计算:(1)log3+lg25+lg4+7+(﹣9.8)0;(2)()﹣()0.5+(0.008)×.答案参考答案与试题解析一.选择题(共22小题)1.log42﹣log48等于()A.﹣2 B.﹣1 C.1 D.2【解答】解:log42﹣log48=log4=log44﹣1=﹣1,故选:B.2.计算:(log43+log83)(log32+log92)=()A.B.C.5 D.15【解答】解:(log43+log83)(log32+log92)=(log23+log23)(log32+log32)=log23•log32=;故选:A.3.计算(log54)•(log1625)=()A.2 B.1 C.D.【解答】解:(log54)•(log1625)=×=×=1.故选:B.4.计算:log43•log92=()A.B.C.4 D.6【解答】解:log43•log92==,故选:A.5.计算4log6+log64的结果是()A.log62 B.2 C.log63 D.3【解答】解:4log6+log64=2log63+2log62=2log66=2.故选:B.6.(log29)•(log34)=()A.B.C.2 D.4【解答】解:(log29)•(log34)===4.故选:D.7.如果lg2=m,lg3=n,则等于()A.B.C.D.【解答】解:∵lg2=m,lg3=n,∴===.故选:C.8.若3a=2,则log38﹣2log36的值是()A.a﹣2 B.3a﹣(1+a)2C.5a﹣2 D.3a﹣a2【解答】解:∵3a=2,∴log32=a,∴log38﹣2log36=log3==log32﹣2=a﹣2.故选:A.9.设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c==,而,所以c<a,综上c<a<b,故选:C.10.函数f(x)=log(x2﹣2x﹣3)的单调递增区间是()A.(﹣∞,﹣1)B.(﹣∞,1)C.(1,+∞)D.(3,+∞)【解答】解:由x2﹣2x﹣3>0得x<﹣1或x>3,当x∈(﹣∞,﹣1)时,f(x)=x2﹣2x﹣3单调递减,而0<<1,由复合函数单调性可知y=log 0.5(x2﹣2x﹣3)在(﹣∞,﹣1)上是单调递增的,在(3,+∞)上是单调递减的.故选:A.11.若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.12.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【解答】解:∵∵,故选A13.设a=log37,b=21.1,c=0.83.1,则()A.b<a<c B.c<a<b C.c<b<a D.a<c<b【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.14.函数y=的值域是()A.R B.[8,+∞)C.(﹣∞,﹣3] D.[3,+∞)【解答】解:∵t=x2﹣6x+17=(x﹣3)2+8≥8∴层函数的值域变[8,+∞)y=在[8,+∞)是减函数,故y≤=﹣3∴函数y=的值域是(﹣∞,﹣3]故应选C.15.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选:D.16.若函数y=f(x)的定义域是[﹣1,1],则函数y=f(log2x)的定义域是()A.[﹣1,1] B.C.D.[1,4]【解答】解:∵y=f(x)的定义域是[﹣1,1],∴函数y=f(log2x)有意义⇔﹣1≤log2x≤1,∴≤x≤2.∴函数y=f(log2x)的定义域是{x|≤x≤2}.故选:B.17.设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选:D.18.函数y=log a(|x|+1)(a>1)的图象大致是()A. B. C.D.【解答】解:先画y=log a x,然后将y=log a x的图象向左平移1个单位得y=log a(x+1),再保留y=log a(x+1)图象在y轴的右边的图象,y轴左边的图象与之对称即得到函数y﹣log a(|x|+1)(a>1)的大致图象.故选:B.19.函数y=log a(x﹣1)(0<a<1)的图象大致是()A. B.C.D.【解答】解:∵0<a<1,∴y=log a x在(0,+∞)上单调递减,又∵函数y=log a(x﹣1)的图象是由y=log a x的图象向右平移一个单位得到,故选:A.20.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1【解答】解:∵函数单调递减,∴0<a<1,当x=1时log a(x+c)=log a(1+c)<0,即1+c>1,即c>0,当x=0时log a(x+c)=log a c>0,即c<1,即0<c<1,故选:D.21.已知函数f(x)=ln(﹣x2﹣2x+3),则f(x)的增区间为()A.(﹣∞,﹣1)B.(﹣3,﹣1)C.[﹣1,+∞)D.[﹣1,1)【解答】解:由﹣x2﹣2x+3>0,解得:﹣3<x<1,而y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,故y=﹣x2﹣2x+3在(﹣3,﹣1)递增,在(﹣1,1)递减,由y=lnx递增,根据复合函数同增异减的原则,得f(x)在(﹣3,﹣1)递增,故选:B.22.已知函数f(x)=㏒(x2﹣ax﹣a)的值域为R,且f(x)在(﹣3,1﹣)上是增函数,则a的取值围是()A.0≤a≤2 B.﹣≤a≤﹣4 C.﹣4<a<0 D.a<0【解答】解:当a>0时,△=a2+4a≥0,解得a≥0或a≤﹣4,f(x)在(﹣3,1﹣)上是增函数,∴层函数x2﹣ax﹣a在(﹣3,1﹣)上是减函数∵≥1﹣,且(x2﹣ax﹣a)|≥0.即a≥2﹣2,且a≤2综上知实数a的取值围是0≤a≤2故选:A.二.填空题(共7小题)23.方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为 2 .【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.24.lg0.01+log216的值是 2 .【解答】解:lg0.01+log216=﹣2+4=2.故答案为:2.25.计算:log2= ,2= .【解答】解:log2=log2=﹣;2===3.故答案为:;.26.= ﹣4 .【解答】解:===﹣4故答案为:﹣4.27.求值:2log3+log312﹣0.70+0.25﹣1= 4 .【解答】解:∵=﹣2log32+1+2log32﹣1+4=4.故答案为:4.28.函数f(x)=的值域为(﹣∞,2).【解答】解:当x≥1时,f(x)=;当x<1时,0<f(x)=2x<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).29.函数y=2x+log2x在区间[1,4]上的最大值是18 .【解答】解:∵y=2x和y=log2x在区间[1,4]上都是增函数,∴y=2x+log2x在区间[1,4]上为增函数,即当x=4时,函数y=2x+log2x在区间[1,4]上取得最大值y=y=24+log24=16+2=18,故答案为:18三.解答题(共2小题)30.计算:(I)(2)+0.2﹣2﹣π0+();(Ⅱ)log3(9×272)+log26﹣log23+log43×log316.【解答】解:(Ⅰ)====;(Ⅱ)====8(log33)+1+2=8+1+2=11.31.不用计算器计算:(1)log3+lg25+lg4+7+(﹣9.8)0;(2)()﹣()0.5+(0.008)×.【解答】解:(1)原式===.(2)原式===.。